首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Aeronautical applications often require small batches of large-scale sheet metal parts made from titanium and its alloys. Due to the low formability of titanium at room temperature, warm forming processes are necessary. Incremental sheet metal forming (ISF) is suitable for production of prototypes and small batches as well as large-scale parts. A short review of the experimental work done by international scientists in the field of warm ISF including stationary and moved temperature sensors will be presented mostly applied from the backside of the sheet metal. The present paper shows a new approach for a tool setup including a thermocouple inside of the tool. Hence, the sensor for temperature measurement was moved with the forming zone. Furthermore, a suitable closed loop control including a PID controller will be presented. The characteristics of the controller will be discussed. By means of two different warm ISF processes (ISF with resistance heating and laser-assisted ISF), the applicability of the developed setup will be analysed and evaluated. It will be shown that the experimental setup is capable to ensure minimal temperatures needed to ensure adequate formability of Ti grade 5.  相似文献   

2.
Incremental sheet forming (ISF) consists of deforming the sheet, through a spherical punch, punctually and progressively until it reaches the desired geometry. Compared to the conventional process, the ISF can achieve much higher levels of formability. But the stresses and residual strains are often pushed to the limit on the path, producing a piece with brittle behavior, which is not desirable for applications in engineering. To work around this inconvenience, one solution would be to perform the conformation at high temperatures, a process known in engineering as hot forming. This study aims to evaluate the behavior of the state of stresses and strains in the hot incremental sheet forming of 1050 aluminum alloy, with and without pre-heating, using the finite element method. This behavior has been studied by numerical simulation, using the software RADIOSS, which has a suitable formulation for inserting the effects of temperature and strain rate in the material. The results show a decline in the forces for electric hot incremental sheet forming preheated (EHISFP) compared to the electric hot incremental sheet forming (EHISF). Moreover, for these same cases, there was a gain in relation to the geometric precision on average more than 4%.  相似文献   

3.

Frictional stir Incremental sheet forming (ISF) is a new technology used to fabricate parts of hard-to-form materials without using heating equipment. Thus far, limited information is known about the effects of main forming parameters, except spindle speed of the tool, on the temperature of formed sheet in friction-stir ISF. The effects of six forming parameters, namely, sheet thickness, tool vertical step, tool diameter, spindle speed, feed rate, and wall angle of the formed part, were identified using the design of experiment of orthogonal array, analysis of response tables and graphs, and analysis of variance. Results show that spindle speed, feed rate, sheet thickness, and tool vertical step significantly affect the temperature of the sheet. In addition, the temperature of the sheet is significantly increased by increasing sheet thickness, tool vertical step, and spindle speed but significantly decreased with increasing tool feed rate.

  相似文献   

4.
Incremental sheet forming (ISF) is an emerging forming technology that promises high flexibility and formability. These properties make it suited for small-scale and customised production. However, the poor geometric accuracy of ISF limits the wide application of this flexible forming technology. This paper presents a two-directional toolpath correction approach to enhance ISF forming accuracy using a model predictive control (MPC) algorithm. A toolpath optimisation method for vertical toolpath correction has been validated in our previous work (Lu et al., Int J Adv Manuf Technol 72:1–14, 2015), and it helps to reduce errors in the base of the test shapes to a suitable level while its major limitation is that horizontal geometric errors are relatively large. This paper extends our previous work (Lu et al., Int J Adv Manuf Technol 72:1–14, 2015) by augmenting the vertical control module with a new control module for horizontal toolpath correction. The proposed control algorithm was experimentally validated in single-point incremental sheet forming (SPIF) using two forming case studies. In the first case study (a truncated pyramid), two control approaches with different assumptions for the horizontal springback distribution along the horizontal cross-sectional profile were tested and compared. Then, the developed MPC control algorithm was applied to form a more complex asymmetric shape. The results show that the developed strategy can reduce the forming errors in the wall and base of the formed shape compared to the existing works. The ISF process with MPC control leads to significant accuracy improvement in comparison with the typical ISF process that is without toolpath control.  相似文献   

5.
薄板件台阶孔冲压冷锻组合工艺的数值模拟   总被引:3,自引:1,他引:2  
针对构想的一种薄板件台阶孔冲压冷锻组合工艺,应用金属塑性加工有限元模拟的关键技术,包括几何模型、材料断裂破坏、网格划分等,用DEFORM-3D软件对此种薄板件台阶孔的冲压冷锻组合变形进行数值模拟。得到了工件材料的等效应力、应变分布,速度场和力—行程曲线。提出细观变形过程可分为冲头小直径处冲孔、冲头大直径处压凹和闭式模锻三个阶段的认识,分析组合工艺特点和材料成形性能。用料厚为2.35 mm的AL-1100铝板材料进行工艺试验,获得了清晰的台阶孔形状,验证了数值模拟的认识。  相似文献   

6.
The International Journal of Advanced Manufacturing Technology - Incremental sheet forming (ISF) has received increasing attention with its advantages of economy and flexibility for small batch...  相似文献   

7.
As a flexible forming technology, Incremental Sheet Forming (ISF) is a promising alternative to traditional sheet forming processes in small-batch or customised production but suffers from low part accuracy in terms of its application in the industry. The ISF toolpath has direct influences on the geometric accuracy of the formed part since the part is formed by a simple tool following the toolpath. Based on the basic structure of a simple Model Predictive Control (MPC) algorithm designed for Single Point Incremental Forming (SPIF) in our previous work Lu et al. (2015) [1] that only dealt with the toolpath correction in the vertical direction, an enhanced MPC algorithm has been developed specially for Two Point Incremental Forming (TPIF) with a partial die in this work. The enhanced control algorithm is able to correct the toolpath in both the vertical and horizontal directions. In the newly-added horizontal control module, intensive profile points in the evenly distributed radial directions of the horizontal section were used to estimate the horizontal error distribution along the horizontal sectional profile during the forming process. The toolpath correction was performed through properly adjusting the toolpath in two directions based on the optimised toolpath parameters at each step. A case study for forming a non-axisymmetric shape was conducted to experimentally validate the developed toolpath correction strategy. Experiment results indicate that the two-directional toolpath correction approach contributes to part accuracy improvement in TPIF compared with the typical TPIF process that is without toolpath correction.  相似文献   

8.
Incremental sheet forming (ISF) has been attractive during the last decades because of its greater flexibility, increased formability and reduced forming forces. However, traditional finite element simulation used for force prediction is significantly time consuming. This study aims to provide an efficient analytical model for tangential force prediction. In the present work, forces during the cone-forming process with different wall angles and step-down sizes are recorded experimentally. Different force trends are identified and discussed with reference to different deformation mechanisms. An efficient model is proposed based on the energy method to study the deformation zone in a cone-forming process. The effects of deformation modes from shear, bending and stretching are taken into account separately by two sub-models. The final predicted tangential forces are compared with the experimental results which show an average error of 6 and 11 % in respect to the variation of step-down size and wall angle in the explored limits, respectively. The proposed model would greatly improve the prediction efficiency of forming force and benefit both the design and forming process.  相似文献   

9.
Multistage forming is usually adopted to form those parts which have steep angles or even vertical walls during incremental sheet forming (ISF) process. In order to study the multistage incremental forming further, based on a finite element method model which was experimentally verified, different forming strategies were adopted to form a frustum of cone with a wall angle of 30° to research the influence of the number of forming stages (n) and the incremental wall angle between the two adjacent stages (?α) on the formability of ISF. The simulation results including the thickness distribution, the equivalent plastic strain, and the magnitude of springback were analyzed in detail. It was found that with the growth of n, the minimum thickness increases largely, and more uniform thickness distribution is achieved, but the quantity of springback becomes larger in contrast with a single-pass process because of the accumulation of springback during each forming stage. Furthermore, an expression to figure out the appropriate value of n was given. In addition, the maximum thickness reduction decreases initially and then increases as the value of ?α grows. Meanwhile, it indicates that there is no relation between ?α and the quantity of springback.  相似文献   

10.
This paper discusses the strategy of incremental forming and presents a novel forming strategy for tool path generation. To equalize the strain distribution of sheet metal and improve the forming limit, multistage forming is made to reference a hydraulic bulging forming. Under the liquid pressure, a plate sheet gradually approaches the final shape. A hydraulic bulging numerical simulation is used to obtain a series of intermediate surfaces. Then, CNC codes can be generated in CAM software based on the surfaces. The codes are the tool spatial feed paths for single-point incremental sheet metal forming. The paper focuses on the feasibility investigation, and the experiment proved it. The behaviors of forming and the distribution of thickness are also discussed and concluded that the forming limit of the sheet can be improved by imitating the approach between intermediate surfaces.  相似文献   

11.
The three-roll bending forming of sheet metal is an important and flexible manufacturing process due to simple configuration. It is suitable for forming large sheet parts with complex, curved faces. Most researches on roll bending forming of large workpiece are mainly based on experiments and explain the process through macroscopic metal deformation. An analytical model and ABAQUS finite element model (FEM) are proposed in this paper for investigating the three-roll bending forming process. A reasonably accurate relationship between the downward inner roller displacement and the desired springback radius (unloaded curvature radius) of the bent plate is yielded by both analytical and finite element approaches, which all agree well with experiments. Then, the three-roll bending forming process of a semi-circle-shaped workpiece with 3,105 mm (length)?×?714 mm (width)?×?545 mm (height) is simulated with FEM established by the optimum tool and process parameters. Manifested by the experiment for three-roll bending forming of this workpiece, the numerical simulation method proposed yields satisfactory performance in tool and process parameters optimization and workpiece forming. It can be taken as a valuable mathematical tool used for three-roll bending forming of large area sheet metal.  相似文献   

12.
The flexible stretch forming technology (FSFT) is suitable for flexible manufacturing because it affords several advantages including applicability to various forming processes such as sheet metal forming, single curved surface forming, and quadratic curved surface forming. In this study, the formation of a quadratic curved surface with a saddle-type shape by the flexible stretch forming process is systematically investigated through a numerical simulation. A 4-mm-thick Al 3003-H14 aluminum alloy is used as the initial blank material. Urethane pads are defined based on a hyperelastic material model as a cushion for the smooth forming surface. The elastic recovery deformation behavior is also investigated to consider the exact result after the last forming process. The simulation indicates that the stretch forming process can be used to apply more stress to the blank and to reduce the elastic recovery effect. An experiment was then performed to confirm the process formability and reduction of the elastic recovery effect. A comparison of the objective surface between the simulation and the experimental results verified that the stretch forming process reduced the elastic recovery effect. This confirms that FSFT can be feasibly used to manufacture quadratic curved surfaces.  相似文献   

13.
实现了具有开放几何特征钣金件的渐进成形。提出采用工艺参数优化、多道次渐进成形和轨迹补偿等方法提高钣金件的几何精度。设计了多道次渐进成形方法的中间构型,目的在于增大材料塑性变形并减小几何偏差。采用层切法轮廓轨迹形成两道次成形中第一道次的构型,为了防止第一道次成形时出现破裂,将非固定方向的成形角度设定为75°,第二道次将非固定方向的板料完全成形。采用基于几何补偿的两道次渐进成形方法可以将开放几何特征钣金件的几何偏差控制在0.5 mm左右。  相似文献   

14.
The integration of ultrasonic vibration into the incremental sheet forming (ISF) process can significantly reduce the forming force and bring other benefit  相似文献   

15.
The incremental sheet forming processes (ISF) are attracting lots of attentions due to their advantages on rapid prototyping, without special dies and short lead time. The numerical simulation can be a valid method to investigate the forming process and predict the defects. In this study, an extended fully coupled ductile damage model with mixed nonlinear hardening was used to simulate the ISF process. At the same time, the yield surface distortion was also considered in this model, which can enhance the capability of modeling metallic material behavior under complex loading paths. Afterwards, some simulations were conducted with the proposed model. Additionally, one tension-shear orthogonal loading test was assigned on the one representative element in order to investigate the loading path effect during ISF process. By comparing the equivalent plastic strain and ductile damage evolution of the blank, the influence of the yield surface distortion on the ISF process was proved.  相似文献   

16.
In the cold roll forming process, the sheet metal strip is gradually bent into a desired profile by successive roller stations. During this process the roller locating errors of each roller station are introduced, transformed and accumulated until the sheet metal is bent into the final desired profile, which does influence the product’s dimension quality, affect the end-welding of quadrate steel tube, and elongate the costly error-and-trial phase in ramp-up. This paper introduces procedures for expressing the influence of roller locating errors in the forming process of quadrate steel tube, which is based on the formulation of the stream of variation (SOV) model of roller dimensional errors using the CAD/CAPP parameters of the cold roll forming process. The SOV model is utilized to reveal the variation propagation in the manufacturing process. The modeling process is experimentally validated in a two-station forming process.  相似文献   

17.
Rapid Sheet Metal Manufacturing. Part 1: Indirect Rapid Tooling   总被引:2,自引:0,他引:2  
Rapid sheet metal manufacturing (RSMM) is a closed loop process for making sheet metal products which uses advanced computer-aided techniques and computer-controlled machines to produce non-ferrous tooling directly or indirectly. The tooling would be suitable for short-run production or design evaluation of sheet metal products for which prototyping cost and lead time are greatly reduced. The key aspect of this closed-loop process is the method used to fabricate and modify the sheet metal forming tool. Various approaches are adopted in the preparation of the tooling for onward embossing on a sheet metal. The three indirect approaches use selective laser sintering (SLS), stereolithography (SLA), and high-speed computer numerical controlled (CNC) milling to build the masters from computer data models. The masters are used in the vacuum casting process to generate the non-ferrous tooling. Comparisons on quality, lead time and cost are presented.  相似文献   

18.
In modem manufacturing, a new type of sheet metal part with step cross-section in both inner hole and outer edge is proposed. The traditional stamping separating processes can only produce sheet metal part with vertical cross-section. According to the latest developing theory and potential of cold pressure forming: combination of pressure and cold forging, a new flow control forming of sheet metal(FCF) is excogitated based on blanking process of general stamping and combined with cold forging processes such as extrusion and coining, etc, which is aiming at the above-mentioned new type of sheet metal part. With utilization of this new process, the new type of sheet metal parts can be manufactured. In order to shorten the testing period, the numerical simulation was carried out by using DEFORM-3D software, and both deformation and mechanics rules were analyzed. Based on the simulation, both punching part and blanked parts of this new type were successfully developed. Then a new conception of optimal distance between the step walls of inner hole and outside edge was proposed and the design principle for its numerical value was inferred. Furthermore, a mold set for combination of stamping & cold forging was designed and manufactured, by which the technologic experiments were taken for validation with Aluminum plate of thickness 2.35 mm for power battery cover board, which verified the principle of the distance between the step walls. The research of cold pressure forming of thin sheet metal with step cross-section is significant, not only to the development of modem mechanical manufacture, but also to metal plastic forming science.  相似文献   

19.
Local thinning inevitably takes place in sheet metal forming. This can be prevented by the application of a compression load during wall-thickening forming, through which a part can become even thicker than the initial sheet material thickness. Wall-thickening forming is advantageous for the manufacturing of cup-shaped products and products with bosses. This study suggests a progressive process design procedure for the wall-thickening forming of a door lock striker with double bosses. The proposed procedure involves first drawing, redrawing, and upsetting. The design of the progressive process is performed with the suggested design procedure using finite element analysis. To verify the result of this study, an experiment for manufacturing door lock striker with double bosses was performed by the progressive process. The results of the experiment for the measurement of the thickness at the bosses showed good agreement with those of the finite element analysis. From the experimental result, double bosses with a thickness distribution of 2.25–4 mm can be manufactured from sheet metal with an initial thickness of 2 mm using wall-thickening forming, which results in an increase in the strength at the bosses by about 27 %.  相似文献   

20.
Incremental forming is a sheet metal forming process characterized by high flexibility; for this reason, it is suggested for rapid prototyping and customized products. On the other hand, this process is slower than traditional ones and requires in-depth studies to know the influence and the optimization of certain process parameters. In this paper, a complete optimization procedure starting from modeling and leading to the search of robust optimal process parameters is proposed. A numerical model of single point incremental forming of aluminum truncated cone geometries is developed by means of Finite Element simulation code ABAQUS and validated experimentally. One of the problems to be solved in the metal forming processes of thin sheets is the taking into account of the effects of technological process parameters so that the part takes the desired mechanical and geometrical characteristics. The control parameters for the study included wall inclination angle (α), tool size (D), material thickness (Thini), and vertical step size (In). A total of 27 numerical tests were conducted based on a 4-factor, 3-level Box–Behnken Design of Experiments approach along with FEA. An analysis of variance (ANOVA) test was carried out to obtain the relative importance of each single factor in terms of their main effects on the response variable. The main and interaction effects of the process parameters on sheet thinning rate and the punch forces were studied in more detail and presented in graphical form that helps in selecting quickly the process parameters to achieve the desired results. The main objective of this work is to examine and minimize the sheet thinning rate and the punch loads generated in this forming process. A first optimization procedure is based on the use of graphical response surfaces methodology (RSM). Quadratic mathematical models of the process were formulated correlating for the important controllable process parameters with the considered responses. The adequacies of the models were checked using analysis of variance technique. These analytical formulations allow the identification of the influential parameters of an optimization problem and the reduction of the number of evaluations of the objective functions. Taking the models as objective functions further optimization has been carried out using a genetic algorithm (GA) developed in order to compute the optimum solutions defined by the minimum values of sheet thinning and the punch loads and their corresponding combinations of optimum process parameters. For validation of its accuracy and generalization, the genetic algorithm was tested by using two analytical test functions as benchmarks of which global and local minima are known. It was demonstrated that the developed method can solve high nonlinear problems successfully. Finally, it is observed that the numerical results showed the suitability of the proposed approaches, and some comparative studies of the optimum solutions obtained by these algorithms developed in this work are shown here.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号