首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, an adaptive fuzzy robust feedback control approach is proposed for a class of single-input and single-output (SISO) strict-feedback nonlinear systems with unknown nonlinear functions, time delays, unknown high-frequency gain sign, and without the measurements of the states. In the backstepping recursive design, fuzzy logic systems are employed to approximate the unknown smooth nonlinear functions, K-filters is designed to estimate the unmeasured states, and Nussbaum gain functions are introduced to solve the problem of unknown sign of high-frequency gain. By combining adaptive fuzzy control theory and adaptive backstepping design, a stable adaptive fuzzy output feedback control scheme is developed. It has been proven that the proposed adaptive fuzzy robust control approach can guarantee that all the signals of the closed-loop system are uniformly ultimately bounded and the tracking error can converge to a small neighborhood of the origin by appropriately choosing design parameters. Simulation results have shown the effectiveness of the proposed method.  相似文献   

2.
In this note, adaptive neural control is presented for a class of strict-feedback nonlinear systems with unknown time delays. Using appropriate Lyapunov-Krasovskii functionals, the uncertainties of unknown time delays are compensated for such that iterative backstepping design can be carried out. In addition, controller singularity problems are solved by using the integral Lyapunov function and employing practical robust neural network control. The feasibility of neural network approximation of unknown system functions is guaranteed over practical compact sets. It is proved that the proposed systematic backstepping design method is able to guarantee semiglobally uniformly ultimate boundedness of all the signals in the closed-loop system and the tracking error is proven to converge to a small neighborhood of the origin.  相似文献   

3.
A new control design method based on signal compensation is proposed for a class of uncertain multi‐input multi‐output (MIMO) nonlinear systems in block‐triangular form with nonlinear uncertainties, unknown virtual control coefficients, strongly coupled interconnections, time‐varying delays, and external disturbances. By this method, the controller design is performed in a backstepping manner. At each step of backstepping procedure, a nominal virtual controller is first designed to get desired output tracking for the nominal disturbance‐free subsystem, and then a robust virtual compensator is designed to restrain the effect of the uncertainties, delays involved in the subsystem, and the couplings among the subsystems. The designed controller is linear and time‐invariant, so the explosion of complexity in the control law is avoid. It is proved that robust stability and robust practical tracking property of the closed‐loop system can be ensured, and the tracking errors can be made as small as desired. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

4.
The output tracking control problem is considered for a class of uncertain strict-feedback nonlinear systems with time-varying delays. In the paper, the time-varying delays are assumed to be any non-negative continuous and bounded functions, and it is not necessary for their derivatives to be less than one. It is also assumed that the upper bounds of nonlinear delayed state perturbations and external disturbances are unknown. On the basis of backstepping algorithm, a novel design method is proposed by which some simple adaptive robust output tracking control schemes are synthesised. The proposed design method can avoid the repeated differentiation problem which appears in using the conventional backstepping algorithm, and need not know all the nonlinear upper bound functions of uncertainties, which are repeatedly employed at each step of the backstepping algorithm. In particular, it is not necessary to know any information on the time-varying delays to construct our simple output tracking control schemes. It is also shown that the tracking error can converge uniformly exponentially towards a neighbourhood of the origin. Finally, a numerical example and its simulations are provided to demonstrate the design procedure of the simple method proposed in the paper.  相似文献   

5.
In this paper, an adaptive fuzzy backstepping robust control approach is proposed for a class of SISO nonlinear strict‐feedback systems. The nonlinear systems addressed in this paper are assumed to possess three uncertainties: (i) the unstructured uncertainties; (ii) the time delays; and (iii) the dynamics uncertainties. In adaptive backstepping recursive design, fuzzy logic systems are used to approximate the unstructured uncertainties. A nonlinear damping technique and Lyapunov–Krasovskii functions are introduced to cancel the effects of the dynamics uncertainties and deal with the time delays, respectively. Combining the backstepping technique and a small gain approach, a stable adaptive fuzzy robust control approach is developed. It is proved that all the signals of the closed‐loop system are semi‐golablly uniformaly ultimately bounded (SUUB). The effectiveness of the proposed approach is illustrated by a simulation example.  相似文献   

6.
The robust stabilization method via the dynamic surface control (DSC) is proposed for uncertain nonlinear systems with unknown time delays in parametric strict-feedback form. That is, the DSC technique is extended to state time delay nonlinear systems with linear parametric uncertainties. The proposed control system can overcome not only the problem of ldquoexplosion of complexityrdquo inherent in the backstepping design method but also the uncertainties of the unknown time delays by choosing appropriate Lyapunov-Krasovskii functionals. In addition, we prove that all the signals in the closed-loop system are semiglobally uniformly bounded. Finally, an example is provided to illustrate the effectiveness of the proposed control system.  相似文献   

7.
控制方向未知的时变非线性系统鲁棒控制   总被引:6,自引:0,他引:6  
陈刚  王树青 《控制与决策》2005,20(12):1397-1400
针对一类具有未知时变控制方向、不确定时变参数以及未知时变有界干扰的严反馈非线性系统,给出一种带有死区修正算法的鲁棒控制方法.在控制系数符号未知的情况下,通过在反步法中引入Nussbaum增益和死区修正技术,得到一种修正的鲁棒反步设计方法.该方法不需要未知时变控制系数的上下界先验知识以及不确定参数和外界干扰的上界信息.算法保证了闭环系统所有信号的有界性,同时使得跟踪误差收敛于零的任意小邻域内.  相似文献   

8.
In this paper, a direct fuzzy adaptive robust control approach is proposed for a class of SISO nonlinear systems with completely unknown virtual control directions, unknown nonlinearities, unmodeled dynamics and dynamic disturbances. In the backstepping recursive design, fuzzy logic systems are employed to approximate the combined nonlinear uncertainties, a dynamic signal and Nussbaum gain technique are introduced into the control scheme to dominate the dynamic uncertainties and solve the unknown signs of virtual control directions, respectively. It is proved that the proposed robust fuzzy adaptive scheme can guarantee the all signals in the closed-loop system are semi-globally uniformly ultimately bounded. The effectiveness of the proposed approach is illustrated via three examples.  相似文献   

9.
In this paper, adaptive neural control is presented for a class of strict-feedback nonlinear systems with unknown time delays. The proposed design method does not require a priori knowledge of the signs of the unknown virtual control coefficients. The unknown time delays are compensated for using appropriate Lyapunov-Krasovskii functionals in the design. It is proved that the proposed backstepping design method is able to guarantee semiglobal uniformly ultimately boundedness of all the signals in the closed-loop. In addition, the output of the system is proven to converge to a small neighborhood of the origin. Simulation results are provided to show the effectiveness of the proposed approach.  相似文献   

10.
This paper focuses on the problem of adaptive neural control for a class of uncertain nonlinear pure‐feedback systems with multiple unknown time‐varying delays. The considered problem is challenging due to the non‐affine pure‐feedback form and the unknown system functions with multiple unknown time‐varying delays. Based on a novel combination of mean value theorem, Razumikhin functional method, dynamic surface control (DSC) technique and neural network (NN) parameterization, a new adaptive neural controller which contains only one parameter is developed for such systems. Moreover, The DSC technique can overcome the problem of ‘explosion of complexity’ in the traditional backstepping design procedure. All closed‐loop signals are shown to be semi‐globally uniformly ultimately bounded, and the tracking error converges to a small neighborhood of the origin. Two simulation examples are given to verify the effectiveness of the proposed design.  相似文献   

11.
In this paper, an adaptive robust controller is designed for a class of uncertain nonlinear cascade systems with multiple time‐varying delays under external disturbance. It is assumed that multiple time‐varying delays are not exactly known and, therefore, the delayed terms must not appear in the adaptation and control laws. Accordingly, by using a Lyapunov‐Krasovskii function, delays are deleted from the adaptation and control laws. A controller based on an adaptive backstepping approach is designed to assure the global asymptotic tracking of the desired output and boundedness of the other states. The proposed controller is proved to be robust against unknown time‐varying delays and external disturbances applying to the system. Simulation results are provided to show the effectiveness of the proposed approach.  相似文献   

12.
不确定非线性系统的自适应反推高阶终端滑模控制   总被引:1,自引:0,他引:1  
针对一类非匹配不确定非线性系统,提出一种神经网络自适应反推高阶终端滑模控制方案.反推设计的前1步利用神经网络逼近未知非线性函数,结合动态面控制设计虚拟控制律,避免传统反推设计存在的计算复杂性问题,并抑制非匹配不确定性的影响;第步结合非奇异终端滑模设计高阶滑模控制律,去除控制抖振,使系统对于匹配和非匹配不确定性均具有鲁棒性.理论分析证明了闭环系统状态半全局一致终结有界,仿真结果表明了所提出方法的有效性.  相似文献   

13.
Practical adaptive neural control is presented for a class of nonlinear systems with unknown time delays in strict-feedback form. Using appropriate Lyapunov-Krasovskii functionals, the unknown time delays are compensated for. Controller singularity problems are solved by practical neural network control. A novel differentiable control function is provided such that the practical design can be carried out in the decoupled backstepping design. It is proved that the proposed design method is able to guarantee semi-global uniform ultimate boundedness of all the signals in the closed-loop system, and the tracking error is proven to converge to a small neighborhood of the origin.  相似文献   

14.
针对一类状态未知的非线性严格反馈时滞系统, 本文提出了一种基于静态增益函数的输出反馈控制方案. 首先构造了降阶观测器以估计非线性系统的未知状态. 然后在Backstepping设计的每一步定义了具有控制增益函数 的新型Lyapunov-Krasovskii泛函以补偿未知时变时滞, 定义新的选择不唯一的连续控制增益函数以补偿非匹配项 以及Lyapunov-Krasovskii泛函补偿时滞时产生的非负项. 提出了一种无记忆输出反馈控制方案. 理论分析表明: 该 控制方案消除了未知时滞的影响, 保证了闭环系统所有信号的有界性, 并使系统实现渐近稳定. 最后仿真结果验证 了此控制方案的有效性.  相似文献   

15.
This paper investigates an adaptive fuzzy output feedback control design problem for switched nonlinear system in non-triangular structure form. The discussed system contains unknown nonlinear dynamics, unmeasured states and unknown time-varying delays under a batch of switching signals. Fuzzy logic systems are utilised to learn unknown nonlinear dynamics and construct a fuzzy switched nonlinear observer. By combining the property of fuzzy basis function with Lyapunov–Krasovskii functional and the command filter, a novel observer-based fuzzy adaptive backstepping schematic design algorithm is presented. Furthermore, the stability of the closed-loop control system is proved via Lyapunov stability theory and average dwell time method. The simulation results are presented to verify the validity of the proposed control scheme.  相似文献   

16.
In this paper,adaptive dynamic surface control(DSC) is developed for a class of nonlinear systems with unknown discrete and distributed time-varying delays and unknown dead-zone.Fuzzy logic systems are used to approximate the unknown nonlinear functions.Then,by combining the backstepping technique and the appropriate Lyapunov-Krasovskii functionals with the dynamic surface control approach,the adaptive fuzzy tracking controller is designed.Our development is able to eliminate the problem of "explosion of complexity" inherent in the existing backstepping-based methods.The main advantages of our approach include:1) for the n-th-order nonlinear systems,only one parameter needs to be adjusted online in the controller design procedure,which reduces the computation burden greatly.Moreover,the input of the dead-zone with only one adjusted parameter is much simpler than the ones in the existing results;2) the proposed control scheme does not need to know the time delays and their upper bounds.It is proven that the proposed design method is able to guarantee that all the signals in the closed-loop system are bounded and the tracking error is smaller than a prescribed error bound,Finally,simulation results demonstrate the effectiveness of the proposed approach.  相似文献   

17.
In this paper, an adaptive backstepping tracking control scheme is proposed for a class of nonlinear state time‐varying delay systems, which are subject to parametric uncertainties and external disturbances. The bounds of the time delays and their derivatives are assumed to be unknown. Tuning functions method is exploited to construct the control law and adaptive laws. Unknown time‐varying delays are compensated by using appropriate Lyapunov–Krasovskii functional. It is shown that the proposed controller can guarantee the boundedness of all the closed‐loop signals. The tracking performance can be adjusted by choosing suitable design parameters. At the end, a simulation example is provided to illustrate the effectiveness of the design procedure. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

18.
In this paper, a two‐stage control procedure is proposed for stabilization of a class of strict‐feedback systems with unknown constant time delays and nonlinear uncertainties in the input. A nominal controller is first designed to compensate input time delays without considering input nonlinear uncertainties. Extended from backstepping algorithm, input delay compensation is realized by means of predicted states that are computed through integration of cascaded system dynamics, making the nominal closed‐loop system asymptotically stable. Based on the nominal controller presented for the input delay system, a multi‐timescale system is subsequently developed to estimate the unknown input nonlinearity and make the estimate approach the nominal control input as fast as possible. It is proved that the proposed control scheme can make states of the strict‐feedback systems converge to zero and all the signals of the closed‐loop systems are guaranteed to be bounded in the presence of input time delays and nonlinear uncertainties. Simulation verification is carried out to illuminate the effectiveness of the proposed control approach.  相似文献   

19.
一类非匹配不确定非线性系统的鲁棒跟踪控制制   总被引:3,自引:1,他引:2  
针对一类半严格反馈型不确定非线性系统,提出一种鲁棒反演滑模变结构控制方法.采用反演控制方法设计了使前n-1阶子系统稳定的虚拟控制律,抑制非匹配不确定性的影响;在第n步设计了一种连续可导的滑模变结构控制律,消除控制抖振,实现了对存在未知不确定性及扰动系统的鲁棒输出跟踪.通过Lyapunov定理证明了闭环系统所有信号最终有界.仿真结果验证了该方法的有效性.  相似文献   

20.
This paper presents a simple adaptive control approach for uncertain strict-feedback nonlinear systems with unknown time-varying delays. All nonlinear functions and time delays in the systems are assumed to be unknown. Compared with the existing works, the contribution of this study is the design of a simple adaptive control law using single function approximator, without the implementation of virtual controllers derived from the backstepping design procedure. Unlike the existing backstepping methods, virtual controllers are only used as intermediate signals for designing the actual control. Therefore, the proposed control scheme is simpler than the existing methods for strict-feedback time-delay systems because the problems of using multiple approximators and calculating virtual controllers are eliminated. In addition, it is shown that all signals in the closed-loop system are uniformly ultimately bounded.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号