首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple PD controller for robots with elastic joints   总被引:2,自引:0,他引:2  
The point-to-point control of manipulators having elastic joints is considered. It is shown that a simple PD (proportional plus derivative) controller, similar to that used for rigid robots, suffices to globally stabilize the elastic joint robots about a reference position. A robustness analysis is also given with respect to uncertainties on the robot parameters. The results of numerical simulation tests of a manipulator with three revolute elastic joints are presented  相似文献   

2.
In this paper, a mobile robot control law for corridor navigation and wall-following, based on sonar and odometric sensorial information is proposed. The control law allows for stable navigation avoiding actuator saturation. The posture information of the robot travelling through the corridor is estimated by using odometric and sonar sensing. The control system is theoretically proved to be asymptotically stable. Obstacle avoidance capability is added to the control system as a perturbation signal. A state variables estimation structure is proposed that fuses the sonar and odometric information. Experimental results are presented to show the performance of the proposed control system.  相似文献   

3.
针对机械臂末端安装串联弹性执行器(Series Elastic Actuator,SEA)与环境或工件接触作业工况,考虑SEA端部负载对接触面压力随机械臂运动姿态变化的问题,研究一种具有重力补偿的SEA接触力控制方法。首先分析了一种基于滚珠丝杆模组的SEA与Staubli TX90 组合的力控制实验装置结构,建立了SEA与工件接触过程的动力学模型,提出了一种具有输入重力补偿的PD型SEA弹簧力控制方法,该方法在没有接触力传感器的情况下,依据机械臂关节角对SEA端部负载进行重力输入补偿,通过检测弹簧压缩变形量,计算并反馈弹簧力实现对接触力的控制。最后通过SEA与正弦面工件接触力控制实验,并对力传感器采集的接触力信号进行频谱分析,验证了所提出控制方法的有效性。  相似文献   

4.
The paper deals with the modeling, identification, and control of a flexible joint robot developed for medical applications at the German Aerospace Center (DLR). In order to design anthropomorphic kinematics, the robot uses a coupled joint structure realized by a differential gearbox, which however leads to strong mechanical couplings inside the coupled joints and must be taken into account. Therefore, a regulation MIMO state feedback controller based on modal analysis is developed for each coupled joint pair, which consists of full state feedback (motor position, link side torque, as well as their derivatives). Furthermore, in order to improve position accuracy and simultaneously keep good dynamic behavior of the MIMO state feedback controller, a cascaded tracking control scheme is proposed, based on the MIMO state feedback controller with additional feedforward terms (desired motor velocity, desired motor acceleration, derivative of the desired torque), which are computed in a computed torque controller and take the whole rigid body dynamics into account. Stability analysis is shown for the complete controlled robot. Finally, experimental results with the DLR medical robot are presented to validate the practical efficiency of the approaches.  相似文献   

5.
The tracking problem is considered for robots having flexible joints. We propose a state feedback control algorithm which guarantees arbitrary attenuation on the outputs of the effects of time-varying disturbances as well as of parameter uncertainties. Only a lower bound on the values of the elastic constants is required to be known.  相似文献   

6.
In this paper, the distributed formation control problem for multiple nonholonomic mobile robots using consensus-based approach is considered. A transformation is given to convert the formation control problem for multiple nonholonomic mobile robots into a state consensus problem. Distributed control laws are developed for achieving the formation control objectives: a group of nonholonomic mobile robots at least exponentially converge to a desired geometric pattern with its centroid moving along the specified reference trajectory. Rigorous proofs are provided by using graph, matrix , and Lyapunov theories. Simulations are also given to verify the effectiveness of the theoretical results.  相似文献   

7.
This paper presents a new method for the position control of industrial robots with elastic joints and where the dynamic of each actuator is described by a simplified model. The inverse dynamic of the system is computed and used to compensate the nonlinear terms and decouple the system through a coordinate transformation and nonlinear feedback (exact linearization). To simplify the algorithm for the inverse dynamic and hence reduce its computation, each actuator-link pair of the robot is considered as a 2-input 2-output nonlinear system, a link subsystem and an actuator subsystem. A cascade compensation using the exact linearization is then applied to each subsystem, thereby avoiding the computation of the first and second partial derivatives of the inverse of the inertia matrix and the vector of the coriolis and centrifugal forces. This gives a formalism that is relatively simple and efficient for symbolical computation, which is very important for the maintenance of accuracy. Similarly, a cascade linear controller is constructed for each subsystem of the resulting linear decoupled 2-input 2-output system. The basis vector functions for the coordinate transformation are so chosen that only one state of the link subsystem can theoretically not be measured directly or indirectly. To estimate this state, an observer with linear error dynamic is constructed. The applicability of this observer to this general case is also proved. Simulation results using the first three links of Puma 560 are finally presented.  相似文献   

8.
针对悬吊式机械臂在工作过程中受起吊荷载的影响而产生的重心不稳现象,在模糊PID控制算法的支持下,进行悬吊式机械臂重力补偿控制系统设计研究。硬件方面,改装主控制器、传感器和通信模块,加设重力补偿装置及驱动电机设备。在此基础上完成软件设计,根据机械臂的组成结构以及工作原理,构建悬吊式机械臂数学模型。在该模型下,检测悬吊式机械臂实时位姿,针对不同位姿建立相应的重力平衡方程。计算机械臂负载力矩,利用模糊PID算法求解机械臂重力补偿控制量,实现悬吊式机械臂重力补偿控制功能。实验结果表明:与传统重力补偿控制系统相比,优化设计系统的控制误差降低了0.056kN,机械臂的稳定系数提升了0.14,即优化设计系统可提高补偿控制效果,具有一定应用价值。  相似文献   

9.
An adaptive particle filter for soft fault compensation of mobile robots   总被引:1,自引:0,他引:1  
Soft fault compensation plays an important role in mobile robot locating, mapping, and navigating. It is difficult to achieve fast and accurate compensation for mobile robots because they are usually highly non-linear, non-Gaussian systems with limited computation and memory resources. An adaptive particle filter is presented to compensate two kinds of soft faults for mobile robots, i.e., noise or factor faults of dead reckoning sensors and slippage of wheels. Firstly, the kinematics models and the fault models are discussed, and five kinds of residual features are extracted to detect soft faults. Secondly, an adaptive particle filter is designed for fault compensation, and two kinds of adaptive scheme are discussed: 1) the noise variances of linear speed and yaw rate are adjusted according to residual features; 2) the particle number is adapted according to Kullback-Leibler divergence (KLD) of two approximate distribution denoted with two particle sets with different particles, i.e., increasing particle number if the KLD is large and decreasing particle number if the KLD is small. The theoretic proof is given and experimental results show the efficiency and accuracy of the presented approach.  相似文献   

10.
The paper presents the compliance errors compensation technique for over-constrained parallel manipulators under external and internal loadings. This technique is based on the non-linear stiffness modeling which is able to take into account the influence of non-perfect geometry of serial chains caused by manufacturing errors. Within the developed technique, the deviation compensation reduces to an adjustment of a target trajectory that is modified in the off-line mode. The advantages and practical significance of the proposed technique are illustrated by an example that deals with groove milling by the Orthoglide manipulator that considers different locations of the workpiece. It is also demonstrated that the impact of the compliance errors and the errors caused by inaccuracy in serial chains cannot be taken into account using the superposition principle.  相似文献   

11.
This paper investigates modelling and adaptive tracking control problems for flexible joint robots subjected to random disturbances. A stochastic flexible joint robot model is given by introducing random noises reasonably. Under some weaker assumptions, a new controller is constructed by exploiting adaptive dynamic surface control technique. It is proved that the mean square of the tracking error can be made arbitrarily small by choosing appropriate design parameters. A mechanics model is provided in the simulation to show the effectiveness of the presented theory.  相似文献   

12.
Evolution of neural control structures: some experiments on mobile robots   总被引:3,自引:0,他引:3  
From perception to action and from action to perception, all elements of an autonomous agent are interdependent and need to be strongly coherent. The final behavior of the agent is the result of the global activity of this loop and every weakness or incoherence of a single element has strong consequences on the performances of the agent. We think that, for the purpose of building autonomous robots, all these elements need to be developed together in continuous interaction with the environment. We describe the implementation of a possible solution (artificial neural networks and genetic algorithms) on a real mobile robot through a set of three different experiments. We focus our attention on three different aspects of the control structure: perception, internal representation and action. In all the experiments these aspects are not considered as single processing elements, but as part of an agent. For every experiment, the advantages and disadvantages of this approach are presented and discussed. The results show that the combination of genetic algorithms and neural networks is a very interesting technique for the development of control structures in autonomous agents. The time necessary for evolution, on the other hand, is a very important limitation of the evolutionary approach.  相似文献   

13.
In this work, we present a constructive method to design a family of virtual contraction based controllers that solve the standard trajectory tracking problem of flexible‐joint robots in the port‐Hamiltonian framework. The proposed design method, called virtual contraction based control, combines the concepts of virtual control systems and contraction analysis. It is shown that under potential energy matching conditions, the closed‐loop virtual system is contractive and exponential convergence to a predefined trajectory is guaranteed. Moreover, the closed‐loop virtual system exhibits properties such as structure preservation, differential passivity, and the existence of (incrementally) passive maps. The method is later applied to a planar RR robot, and two nonlinear tracking control schemes in the developed controllers family are designed using different contraction analysis approaches. Experiments confirm the theoretical results for each controller.  相似文献   

14.
本文研究了一类基于动态补偿的非线性系统的近似最优PD控制的问题.用微分方程的逐次逼近理论将非线性系统的最优控制问题转化为求解线性非齐次两点边值序列问题,并提供了从时域最优状态反馈到频域最优PD控制器参数的优化方法,从而获取系统最优的动态补偿网络,设计出最优PD整定参数,给出其实现算法.最后仿真示例将所提出的方法与传统的线性二次型调节器(LQR)逐次逼近方法相比较,表明该方法具有良好的动态性能和鲁棒性.  相似文献   

15.
旋翼飞行机械臂建模及动态重心补偿控制   总被引:2,自引:0,他引:2  
旋翼飞行机械臂是将多关节机械臂固连在旋翼飞行平台上而组成的一种面向主动任务操作的特殊系统,其飞行平台和机械臂之间存在强耦合特性.本文针对机械臂的规划运动对飞行平台的干扰问题,建立了系统运动学和动力学模型,并通过动态计算系统重心位置坐标,设计出基于backstepping的动态重心补偿控制方法,针对补偿项测量噪声问题设计了二阶低通滤波器,并使用Lyapunov稳定性理论证明了系统的稳定性.仿真和实验均验证了在相同的参数条件下,具有动态重心补偿项的控制算法比没有重心补偿项的控制算法在轨迹跟踪和姿态稳定方面具有明显优势.  相似文献   

16.
针对带有执行器饱和的柔性关节机器人系统,提出一种位置反馈动态面控制,以实现机器人连杆的角位置跟踪.在一般动态面控制的设计框架下,设计观测器重构系统未知速度状态,利用径向基函数神经网络学习饱和非线性特性,结合“最小参数学习”算法减轻计算负担.通过Lyapunov方法证明得出闭环系统所有信号半全局一致有界,跟踪误差可以通过调节控制器参数达到任意小.仿真结果表明,控制系统能够克服外界干扰,有效补偿系统存在的执行器饱和,实现柔性关节机器人的准确跟踪控制.该方法避免了传统反演设计存在的“微分爆炸”现象,简化了设计过程.  相似文献   

17.
18.
A general family of asymptotically stabilizing control laws is introduced for a class of nonlinear Hamiltonian systems. The inherent passivity property of this class of systems and the Passivity Theorem are used to show the closed loop input/output stability which is then related to the internal state space stability through an observability condition. Applications of these results include fully actuated robots, flexible-joint robots, and robots with link flexibility.  相似文献   

19.
In this paper a novel kinematic model is proposed where the transformation between the robot posture and the system state is bijective. A nonlinear control law is constructed in the Lyapunov stability analysis framework. This control law achieves a global asymptotic stability of the system based on the usual requirements for reference velocities. The control law is extensively analysed and compared to some existing, globally stable control laws.  相似文献   

20.
In this paper, we present a controller to solve the path-tracking task in a wheeled mobile robot. We show that a linear PD controller, driven by the tracking error, can be used to generate the desired profiles to be tracked by the motor velocities by means of two linear inner proportional-integral loops. We formally prove that an ultimate bound exists which can be rendered small by a suitable selection of the controller gains. This is the first time that such a result is presented in the literature when considering, simultaneously, both the kinematic and the dynamic models of the wheeled mobile robot.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号