首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, three thermally labile additives microcrystalline cellulose (MCC), nanocrystalline cellulose (NCC), and polyvinylpyrrolidone (PVP) were introduced to the P84-copolyimide (PI) solution. PI-based carbon tubular membranes were fabricated using dip-coating method, followed by sample characterizations in order to determine their structural morphologies, thermal stability and gas permeation performance. NCC was added as the membrane pore former for the hydrogen gas (H2) separation. While tests involving pure H2 and N2 permeation were carried out at room temperature, carbon membranes were carbonized at a final temperature of 800 °C, with the heating rate of 3 °C/min under the Ar flow. Excellent result of H2/N2 selectivity was obtained with value of 430.06 ± 4.16. Addition of NCC has significantly increased the number of pore channels in the membrane, hence, contributing to high gas permeance and selectivity. NCC has shown potential as a good additive for an enhanced hydrogen separation performance.  相似文献   

2.
The postcombustion separation of CO2 from a flue gas mixture is a unit operation in carbon capture. Today, CO2 is normally separated with alkanolamines in aqueous solutions. These absorption processes are energy intensive and costly. Increased environmental considerations and the significant footprints of many energy sources warrant the development of new gas separation techniques for the competitive implementation of carbon capture and storage technologies. Improved adsorbent-mediated separation processes are candidates for such new low-energy low-cost processes. In this study, porous silica-based adsorbents with amine-like motifs were synthesized. The temperature- and pressure-dependent adsorption of CO2 and CO2/H2O mixtures were determined and compared for these materials. The experimental uptake capacities of the materials modified with primary propyl amine moieties were significantly higher than those of materials modified with bis-ethanol amine or amidine. The propyl-amine-modified samples also showed good selectivity for CO2 over nitrogen gas.  相似文献   

3.
In the present study, a novel electrocatalyst with excellent catalytic performance based on PdCu bimetallic nanoparticles (NPs) supported on ordered mesoporous silica and multi-walled carbon nanotubes (PdCu NPs/SBA-15-MWCNT) was prepared for electrochemical hydrogen evolution reaction (HER). For this purpose, low-cost mesoporous SBA-15 was synthesized using silica extracted from Stem Sweep Ash (SSA) as an economically attractive silica source. Mesoporous SBA-15 with unparalleled porous structure is a stable support for PdCu bimetallic NPs which prevents the accumulation of PdCu bimetallic NPs and improves its efficiency in the catalytic process. The main advantage of this strategy is low loading of bimetallic catalyst with high catalytic activity. The presence of both mesoporous SBA-15 and MWCNTs materials in PdCu/SBA15-MWCNTs/carbon paste electrode (CPE) increases the metallic active sites and the electrical conductivity of electrode which provides great performance for HER. PdCu/SBA15-MWCNTs-CPE provided small Tafel slope (45 mV dec?1), low onset potential (~-150 mV), high current density (?165.24 mA cm?2at -360 mV) and exchange current density (2.51 mA cm?2) with great durability for HER in H2SO4 solution. Analysis of kinetic data suggests that the electrocatalyst controls HER by the Volmer-Heyrovsky mechanism. In addition, studies showed that the presence of sodium dodecyl sulfate (SDS) in electrolyte can decrease the potential of HER and increase the current density.  相似文献   

4.
The increased demand for a reliable and sustainable renewable energy source encourages the hydrogen-based economy. For the same, membrane separation approaches were reviewed as an advantageous process over contemporary techniques due to the environmentally friendly nature, economically viable pathway, and easily adaptable technology. A comprehensive assessment for the advancements in the type of membranes namely, polymeric and mixed matrix membranes (MMMs) has been delineated in the present article with the fabrication methodologies and associated mechanism for hydrogen separation. In hydrogen separation mechanism of the membrane, depends on the morphology of the membrane (dense or porous). The existence of pores in membranes offers various gas transport mechanisms such as Knudsen diffusion, surface diffusion, capillary condensation, molecular sieving mechanisms were observed, depending on the pore size of membranes and in dense membrane gas transport through the solution-diffusion mechanism. In polymer membrane, hydrogen separation occurs mainly due to solubility and diffusivity of gases. The hydrogen separation mechanism in MMMs is very complex due to the combining effect of polymer and inorganic fillers. So, the gas separation performance of MMMs was evaluated using the modified Maxwell model. Moreover, adequate polymeric material and inorganic fillers have been summarised for MMMs synthesis and highlighting the mechanism for gas transport phenomena in the process. Several types of materials implemented with polymeric matrix examined in the literature, amongst these functionally aligned CNTs with Pd-nanoparticles dispersed in polymer matrix were observed to reveal the best outcome for the hydrogen separation membrane due to the uniform distribution of inorganic material in the matrix. Henceforth, the agglomeration gets reduced promoting hydrogen separation.  相似文献   

5.
Hydrogen is envisaged to become an alternative clean energy source to fossil fuels that eventually lead to gradually increasing demand to design an efficient adsorbent for high storage capacity. Being inspired from the metal-doped adsorbents, mesoporous KIT-6 was functionalized with different metals namely Ce, Co, Cr, Cu, Ni, Pd, Pt, Sn and Ti with constant loading by wet impregnation method. Hydrogen adsorption performance showed that the metal doping improves the hydrogen storage capacity of KIT-6 except for KCu. Adsorbents KPd and KPt showed small hysteresis during adsorption/desorption analysis. Among all the metals, Pd-doped KIT-6 (KPd) showed the maximum uptake capacity (0.31 wt%) at atmospheric conditions. However, Sn-doped KIT-6 (KSn) showed the maximum uptake of 4.74 wt% at 77 K and 40 bar. This study provides a thorough insight in to the hydrogen adsorption/desorption behavior of the various metal–doped KIT-6 studied, which could be important first-hand information before designing the hydrogen storage material for the practical application.  相似文献   

6.
In the present article, an axisymmetric two-dimensional (2D) computational fluid dynamic (CFD) model was adapted to predict the efficiency of the silica membrane for hydrogen (H2) separation as a renewable energy source. In this model, continuum flows on the shell and tube sides are defined through the Navier-Stokes and transport of chemical species equations. Components transfer through the silica membrane is characterized by introducing source-sink terms based on activating transport mechanisms. To validate the presented model results related to H2 molar fraction at the retentate and permeate sides were compared with experimental data. The CFD model prognosticates the local information of velocity distribution and the molar fraction of the components. Finally, considering the effects of temperature, pressure difference, gas flow rate, and inner radius of the module on the H2 molar fraction, silica membrane performance was investigated. Moreover, it has been shown that with increasing working temperature from 323 to 473 K, H2 molar fraction at the shell side decreases from 59% to 28.4%, and in the tube side, it rises from 78.8% to 82.8%. On the shell side, it could be seen that H2 permeates better for a low gas flow rate. At the tube side, this parameter has a positive effect on H2 purification. The result of the impact of pressure differences at shell and tube sides was used to indicate the variation in the H2 molar fraction. An increase in pressure difference causes a decrease of H2 molar fraction at the tube side. At the shell side, H2 molar fraction would be decreased with an addition in pressure difference from 1 to 3 bar. Any further pressure difference rise from 3 to 4 bar, make this trend ascending. Likewise, at the shell and tube sides, by enhancing the inner radius of the module, the molar fraction of H2 increases.  相似文献   

7.
In this study, vapor-phase ethylenediamine (EDA) is utilized to specifically modify the physicochemical properties of the outer surface of polyimide membranes without modifying the internal membrane structure for hydrogen purification. The surfaces of polyimide membranes before and after EDA-vapor modification have been characterized by Fourier transform infrared-attenuated total reflectance (FTIR-ATR), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD), which confirmed the modification mechanism including the conversion of imide groups into amide groups with simultaneous cross-linking between polymer chains and a physical decrement in d-space. Based on pure gas permeation tests, only a 10-min vapor-phase EDA treatment can significantly improve H2/CO2 selectivity (up to ∼100). This is attributed to intensive surface modification by EDA vapor, hence rendering this simple and yet novel technique more effectively for hydrogen purification than the conventional solution approach. Although the H2/CO2 separation performance in mixed gas tests is not as superior as that in pure gas permeation tests, mixed gas results affirmed impressive H2/CO2 separation performance of vapor-phase EDA modified polyimide membranes. This novel vapor modification strategy appears to be promising for large-scale processes, especially the modification of hollow fiber membranes for industrial hydrogen purification.  相似文献   

8.
In this study, the activity of the mesoporous SBA-15 supported Ni, Co and NiCo catalysts prepared by the wet-impregnation were investigated in dry reforming of methane reaction. The catalysts were characterized by XRD, TPR, N2 adsorption-desorption isotherms, SEM, TEM and TG/DT techniques before and/or after activity tests. N2 adsorption-desorption isotherm of the all catalysts were consistent with Type IV isotherm, indicating mesoporous structures. TEM images of bimetallic NiCo catalysts clearly proved the presence of characteristic honeycomb structure. Incorporation Co into SBA-15 supported Ni catalysts inhibited the agglomeration of the nickel particles due to the formation of NiCo alloy. Activity test results showed that bimetallic 4Ni1Co@SBA-15 catalyst (Ni/Co:4/1) gave highly promising activity with high methane (73%) and carbon dioxide (89%) conversion values at 750 °C. Co incorporation into SBA-15 supported Ni catalyst significantly decreased the coke formation during dry reforming of methane.  相似文献   

9.
Nickel nanoparticles were immobilized in mesoporous silica by a polyethyleneimine (PEI)-aided route and their catalytic performance was evaluated in dry reforming of methane. NH2 terminal groups of PEI strongly interacted with surface silanol groups of mesoporous silica and then, Ni-chelating PEIs were highly dispersed inside its ordered channel. The steric hindrance of PEI with a long hydrocarbon chain also restricted the aggregation of Ni-PEI complexes anchored in the porous framework. The catalysts prepared by the PEI-aided route showed the stable activity at 750 °C for 40 h because Ni particles were confined inside the pore and therefore, cannot be sintered more than the pore diameter of their parent support. The carbon deposit is much smaller in the catalyst prepared by the PEI-aided route than the reference catalyst synthesized via a traditional impregnation method, suggesting that the sintering of Ni particles is a main contribution to the generation of graphitic carbon.  相似文献   

10.
A thin palladium composite membrane without any modified layer was successfully obtained on a rough porous alumina substrate. Prior to the fabrication of palladium membrane, a poly(vinyl) alcohol (PVA) layer was first coated onto the porous substrate by dip-coating technique to improve its surface roughness and pore size. After deposition of palladium membrane on the PVA modified substrate, the polymer layer can be completely removed from the composite membrane by heat treatment. The microstructure of the palladium composite membrane was characterized in detail using SEM, EDXS and XRD analysis. Permeation measurements were carried out using H2 and N2 at temperatures of 623 K, 673 K, 723 K and 773 K. The results indicated that the hydrogen permeation flux of 0.238 mol m?2 s?1 with H2 separation factor α(H2/N2) of 956 for the as-prepared palladium membrane was obtained at 773 K and 100 kPa. Furthermore, the good membrane stability was proven during the total operation time of 160 h at the temperature range of 623 K–773 K and gas exchange cycles of 30 between hydrogen and nitrogen at 723 K.  相似文献   

11.
In this work, a new catalyst based on modified mesoporous silica SBA-16 is proposed and used for electrochemical oxidation of methanol. Mesoporous silica SBA-16 nanoparticles are synthesized hydrothermally under the acidic medium using SiO2/F127/BuOH/HCl/H2O gel. Pure SiO2 powder is prepared from inexpensive and environmentally friendly silica source of stem cane ash (SCA). The synthesized SBA-16 is characterized using X-ray diffraction, scanning electronic microscopy, transmission electron microscopy, Brumauer–Emmett–Teller (BET) and FT-IR techniques. The synthesized SBA-16 is modified with Ni(II) by dispersion in a 0.1 M nickel chloride solution. A modified carbon paste electrode (CPE) is prepared by mixing of NiSBA-16 to carbon paste (NiSBA-16CPE). The electrocatalytic oxidation of methanol was studied on modified electrode by cyclic voltammetry and chronoamperometry. From cyclic voltammetry, it is observed that the oxidation current is extremely increased by using NiSBA-16CPE compared to the nonmodified CPE. The incorporation of Ni2+ into SBA-16 channels provides the active sites for catalysis of methanol oxidation. Also, the rate constant for the catalytic reaction (k) of methanol is obtained.  相似文献   

12.
In this work, track-etched poly (ethylene terephthalate) (PET) membranes having different pore sizes were functionalized by the carboxylic groups and the amino groups. Palladium (Pd) nanoparticles of average diameter 5 nm were synthesized chemically and deposited onto pore walls as well as on the surface of these pristine and functionalized membranes. Effect of Pd nanoparticles binding on these membranes were explored and aminated membrane were found to bind more Pd nanoparticles due to its affinity. The morphology of these composite membranes is characterized by Scanning Electron Microscope (SEM) for confirmation of Pd nanoparticle deposition on pore wall as well as on the surface. Gas permeability of functionalized and non-functionalized membranes for hydrogen and carbon dioxide has been examined. From the gas permeability data of hydrogen (H2) and carbon dioxide (CO2) gases, it was observed that these membranes have higher permeability for H2 as compared with CO2. Due to absorption of hydrogen by Pd nanoparticles selectivity of H2 over CO2 was found higher as compared to without Pd embedded membranes. Such type of membranes can be used to develop hydrogen selective nanofilters for purification/separation technology.  相似文献   

13.
N and Cu cooperatively functionalized mesoporous resin and carbon materials with bicontinuous cubic structure (FDU-14) were obtained by a novel synthesis method. In this method, block copolymers were used as the templates as well as the precursors for the preparation of these modifying mesoporous materials. The CuC2O4 in the channels of mesoporous FDU-14 resins was gotten by in situ oxidation of the templates in a catalytic redox system containing Cu2+, Al3+, NO3, PO43−, SO42− ions. Simultaneously, the phenol–formaldehyde resin frameworks were in situ functionalized by the amine group resulting from the reduction of NO3, leading to the formation of N and CuC2O4 modified mesoporous FDU-14 resin materials. Its pyrolysis at the different temperatures resulted in the production of N and Cu cooperatively functionalized mesoporous FDU-14 resin and carbon materials. The structure and composition of these materials were characterized by the X-ray power diffraction, transmission electron microscopy, N2 adsorption–desorption analysis, X-ray photoelectron spectroscopy, infrared spectroscopy, thermogravimetry analysis, and inductive coupled plasma emission spectroscopy. The electrochemical measurement indicated that N and Cu cooperatively functionalized mesoporous FDU-14 carbon materials possessed the enhanced electrochemical hydrogen storage performance.  相似文献   

14.
At present, a low-cost and efficient electrocatalyst is vital to conquering the sluggish oxygen reduction reaction (ORR) in fuel cells. In particular, N and S dual heteroatom doped mesoporous carbon (NSMC) catalysts are believed to be one of the best ORR catalyst options due to the distribution of nitrogen, sulfur sites. In this work, for NSMC synthesis we employed 2D Santa barbara amorphous (SBA-15) silica as support material and L-cysteine as N and S dual precursor. The optimal loading of NSMC-0.4, reveals the high concentration of defect sites (ID/IG = 0.99), pyridinic (21.41 at. %), graphitic-N (50.27 at. %), thiophene-S (77.16 at. %) sites on MC surface resulting in an improved ORR performance. The NSMC-0.4 showed more positive onset potential of 0.78 V vs. RHE, half-wave potential of 0.68 V, current density of 2.8 mA/cm2, peroxide production of 81%, followed by two-electron reduction process and lower Rct of 10 Ω/cm2 in an alkaline electrolyte solution. However, NSMC-0.6 demonstrated the higher amount of peroxide selectivity (150%) due to the presence of a large quantity of pyrrolic-N sites. In addition, our work provide an excellent guide for the synthesis and design of NSMC for efficient peroxide production via an electrochemical synthesis route.  相似文献   

15.
In this study, 70 wt.% Ni/Al2O3 was prepared via a glycine–nitrate combustion method and applied as the catalyst for decomposing methane into hydrogen and carbon nanotubes that can be applied in polymer-electrolyte-membrane fuel cell (PEMFC). The methane conversion and the hydrogen content in the effluent gas reached 71 and 83%, respectively, at an operating temperature of 700 °C under ambient pressure. IV tests demonstrated that the methane is inert to the electro-catalyst and acts mainly as a diluting gas. A porous Al2O3-supported thin-film Pd membrane was integrated with the catalytic methane decomposition process. Due to the high initial hydrogen content, even an imperfect Pd membrane, effectively increased the hydrogen content to >98%, which resulted in only a slight performance loss of ∼10% compared to the application of pure hydrogen as the fuel. The advantages, such as continuous hydrogen separation, simple process, high reliability and value-added by-product, all make this process highly attractive for future PEMFC application.  相似文献   

16.
Palladium membrane was prepared on the inner surface of alumina tube by bio-membrane assisted electroless plating combined with osmosis method (BELP). In this preparation technique, an egg-shell film not only served as a semipermeable membrane to form osmotic system for preparing palladium membrane, but also acted as a protection layer to prevent the contamination of the palladium membrane from the osmotic solution. Moreover, the plating solution was circulated through the tube side to promote the mass transfer on the solid–liquid interface between the plating surface and the solution. The detailed depositing process of the palladium membrane was studied by scanning electron microscopy (SEM) and Energy dispersive X-ray spectroscopy (EDXS). Both long term operation and temperature cycling test carried out for hydrogen and nitrogen permeation confirmed that the palladium membrane was stable.  相似文献   

17.
A single phase, dense PdCu alloy film was prepared by one-step electroplating. The electroplated film was easily delaminated from the SUS electrode by cutting around the edge, and the single alloy film was thus collectable. The phase structure, surface morphologies, and alloy compositions were determined by X-ray diffraction (XRD), scanning electron microscopy (SEM), and electron probe microanalysis (EPMA). The plated film before and after hydrogen permeation tests consisted of a single face-centered cubic α phase and an ordered body-centered cubic β phase, respectively. The atomic ratios of Pd and Cu were 49 and 51 at%, respectively; the Pd and Cu contents were slightly higher and lower than Pd47Cu53, which shows the highest hydrogen permeability among Pd-Cu systems. The as-plated film exhibited high mechanical strength, and its load force at break point and displacement were 3 and 1.7 times those of the as-rolled Pd47Cu53 films. The hydrogen permeability of the plated film with the β phase was almost the same as that of the rolled film and the values reported in literature.  相似文献   

18.
Bi-reforming of methane (BRM) was evaluated for Ni catalyst dispersed on SBA-15 support prepared by hydrothermal technique. BRM reactions were conducted under atmospheric condition with varying reactant partial pressure in the range of 10–45 kPa and 1073 K in fixed-bed reactor. The ordered hexagonal mesoporous SBA-15 support possessing large specific surface area of 669.5 m2 g?1 was well preserved with NiO addition during incipient wetness impregnation. Additionally, NiO species with mean crystallite dimension of 14.5 nm were randomly distributed over SBA-15 support surface and inside its mesoporous channels. Thus, these particles were reduced at various temperatures depending on different degrees of metal-support interaction. At stoichiometric condition and 1073 K, CH4 and CO2 conversions were about 61.6% and 58.9%, respectively whilst H2/CO ratio of 2.14 slightly superior to theoretical value for BRM would suggest the predominance of methane steam reforming. H2 and CO yields were significantly enhanced with increasing CO2/(CH4 + H2O) ratio due to growing CO2 gasification rate of partially dehydrogenated species from CH4 decomposition. Additionally, a considerable decline of H2 to CO ratio from 2.14 to 1.83 was detected with reducing H2O/(CH4 + CO2) ratio due to dominant reverse water-gas shift side reaction at H2O-deficient feedstock. Interestingly, 10%Ni/SBA-15 catalyst was resistant to graphitic carbon formation in the co-occurrence of H2O and CO2 oxidizing agents and the mesoporous catalyst structure was still maintained after BRM. A strong correlation between formation of carbonaceous species and catalytic activity was observed.  相似文献   

19.
With a growing interest in hydrogen as energy carrier, the efficient purification of hydrogen from gaseous mixtures is very important. This paper addresses the separation of hydrogen using Carbon Molecular Sieves Membranes (CMSM), which show an attractive combination of high permeability, selectivity and stability. Supported CMSM containing various amounts of aluminium have been prepared from novolac and aluminium acetyl acetonate (Al(acac)3) as carbon and alumina precursors. The thickness of the CMSM layers depend on the content of Al(acac)3 in the dipping solution, which also has influence in the pore size and pore size distribution of the membranes. The permeation properties of the membranes against the Al content in the membrane follows a volcano shape, where the membrane containing 4 wt (%) of Al(acac)3 has the best properties and was stable during 720 h for hydrogen at 150 °C and 6 bar pressure difference. All the CMSM have permeation properties well above the Robeson Upper limit.  相似文献   

20.
Cobalt oxide (Co3O4) nanoparticles decorated on mesoporous carbon nitride (Co3O4/MCN) nanocomposites for photocatalytic hydrogen evolution were investigated in this work. MCN was prepared using 3-amino-1,2,4-triazole, high nitrogen content, as a single molecular carbon and nitrogen precursor and SiO2 nanoparticles as the hard template. Complementary characterization techniques were employed to understand the textural and chemical properties of the nanocomposites. The bare MCN showed high photocatalytic activity under visible light irradiation without using any co-catalyst. The photocatalytic activity of Co3O4/MCN with a Co3O4 mass content of 5 wt % presented two times higher than the bare MCN, which is attributed to the enhanced visible-light harvesting and more efficient charge separation. Mechanistic study shows lower electron-hole recombination rate, higher charge separation efficiency occurs after the formation of p-n type heterojunction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号