首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hydrogen for fuel-cell electric vehicles (FCEVs) was produced using clean, renewable solar energy to electrolyze water. This report describes the design, construction, and initial performance testing of a solar hydrogen fueler at the GM Proving Ground in Milford, MI. The system used high-efficiency photovoltaic (PV) modules, a high-pressure (6500 psi, 44.8 MPa) electrolyzer, and an optimized direct connection between the PV and electrolyzer systems. This resulted in world-class solar to hydrogen efficiencies as high as 9.3% (based on H2 lower heating value, LHV). The system could potentially supply approximately 0.5 kg of hydrogen per day from solar power for the average solar insolation in Detroit; more hydrogen would be produced in locations with more abundant sunshine. This is sufficient hydrogen to operate an FCEV for an average daily urban commute. Thus, the solar hydrogen fueler testing served as a “proof of concept” for clean, renewable hydrogen with potential applications including convenient, clean, quiet, small-scale home fueling of FCEVs (that can contribute to the growth of a future FCEV fleet) and fueling in remote locations where grid electricity is not available.  相似文献   

2.
First responders are facing new challenges in handling hydrogen vehicle accidents. Hazard analyses, physical effects evaluations, and accident progression studies are performed to develop appropriate emergency response strategies. Results show that hydrogen release from thermally-activated pressure relief device and catastrophic tank rupture are the two major accidents leading to large hazard zones. Three types of hazard distances and accident durations are determined by the novel nomograms built in the paper. The nomograms indicate that fireball radiation leads to longer hazard distances than overpressure effects in the event of catastrophic tank rupture. Based on the hydrogen physical effects evaluations and accident progression analyses, new emergency response strategies are developed to deal with the typical accidents of hydrogen vehicles, including traffic collision on a road, vehicle fire in a parking lot, and hydrogen leak during refueling at a station. Rapid initial assessment techniques, firefighting strategy, rescue operation tactics and waste disposal pre-treatment are proposed.  相似文献   

3.
Last three decades, costumers and manufacturers of automotive sector have been influenced positively by Hydrogen and fuel cells (FCs). The main goal of automakers can be pointed as minimizing the fuel consumption and exhaust emissions while improving the range limits, energy efficiency and latest technology adaptation. Therewithal, electric assisted propulsion systems added to vehicles and are called as electric vehicles (EVs). For that matter, Battery Electric Vehicles (BEVs) and hydrogen Fuel Cell Electric Vehicles (FCEVs) have become the focus of researchers and producers. In this mini foreseen review, overview of the next quarter century vision of FCEVs are expressed and discussed by the helped of previous researches and with future forecast reports. The introduction part is summarized the general approach and future expectations of FCs in detailed. Technical overview is represented for FCs and FCEVs in terms of current state of technology to foreseen expectancy. Infrastructure analysis and future aspects overview part is also discussed for sector's perspective on FCEVs. The near future perspective of the FCEVs, which is seen as the next step in EVs, is discussed in detail in the next quarter century vision. Authors concluded that, between the 2030s-2050s, hydrogen FCEVs will continue their rising demand scale under the circumstances of decreasing expensive technology; enhanced energy optimization; extended range limits and increasing hydrogen refueling stations.  相似文献   

4.
Proton exchange membrane fuel cell (PEMFC) technology for use in fuel cell vehicles and other applications has been intensively developed in recent decades. Besides the fuel cell stack, air and fuel control and thermal and water management are major challenges in the development of the fuel cell for vehicle applications. The air supply system can have a major impact on overall system efficiency. In this paper a fuel cell system model for optimizing system operating conditions was developed which includes the transient dynamics of the air system with varying back pressure. Compared to the conventional fixed back pressure operation, the optimal operation discussed in this paper can achieve higher system efficiency over the full load range. Finally, the model is applied as part of a dynamic forward-looking vehicle model of a load-following direct hydrogen fuel cell vehicle to explore the energy economy optimization potential of fuel cell vehicles.  相似文献   

5.
As the energy transformation in the transportation sector is taking place driven by the development of fuel cell technologies, fuel cell hybrid electric vehicles become promising solutions owing to their long driving duration and zero emissions. However, the unsatisfied lifespan of fuel cells is an inevitable obstacle for their massive commercialization. This paper aims to propose an online adaptive prognostics-based health management strategy for fuel cell hybrid electric vehicles, which can improve the durability of the fuel cell thanks to online health monitoring. Here, particle filtering method is adapted for online fuel cell prognostics and the uncertainty of the predicted results is calculated based on the distribution of particles. A health management strategy is developed based on prognostics and a decision-making process is designed by considering the prognostics uncertainty through a decision fusion method. The obtained results show that the developed strategy has effectively improved the durability of the on-board fuel cell by up to 95.4%. Moreover, a sensitivity analysis of the prognostics occurrence frequency and probability calculation has also been conducted in this paper.  相似文献   

6.
Combining with the characteristics of different types of electric vehicles, the on-board hydrogen-producing fuel cell vehicle design is adopted, which eliminates the problems about the high-pressure hydrogen storage and the hydrogenation process. The fuel cell is used as the main power source to drive the motor, and the lithium battery is used as the auxiliary power source to accelerate and recycle energy in order to meet the special requirements, like energy recovery, power and dynamic characteristics, of fuel cell vehicles. On the ADVISOR simulation platform based on MATLAB/Simulink environment, a hybrid drive model and a pure fuel cell drive model are built, and simulation and comparative analysis are performed. In the hybrid drive model, fuel cells and lithium batteries work in the highly efficient and safe operating areas respectively, and the output power of fuel cell has small fluctuations, improving energy utilization efficiency and extending the service life of the fuel cell. At the same time, the charge and discharge of the lithium battery can be effectively managed to ensure the safety of charging and prolong the service life of the lithium battery.  相似文献   

7.
This paper designs an off-grid charging station for electric and hydrogen vehicles. Both the electric and hydrogen vehicles are charged at the same time. They appear as two electrical and hydrogen load demand on the charging station and the charging station is powered by solar panels. The output power of solar system is separated into two parts. On part of solar power is used to supply the electrical load demand (to charge the electric vehicles) and rest runs water electrolyzer and it will be converted to the hydrogen. The hydrogen is stored and it supplies the hydrogen load demand (to charge the hydrogen-burning vehicles). The uncertainty of parameters (solar energy, consumed power by electrical vehicles, and consumed power by hydrogen vehicles) is included and modeled. The fuel cell is added to the charging station to deal with such uncertainty. The fuel cell runs on hydrogen and produces electrical energy to supply electrical loading under uncertainties. The diesel generator is also added to the charging station as a supplementary generation. The problem is modeled as stochastic optimization programming and minimizes the investment and operational costs of solar and diesel systems. The introduced planning finds optimal rated powers of solar system and diesel generator, operation pattern for diesel generator and fuel cell, and the stored hydrogen. The results confirm that the cost of changing station is covered by investment cost of solar system (95%), operational cost of diesel generator (4.5%), and investment cost of diesel generator (0.5%). The fuel cell and diesel generator supply the load demand when the solar energy is zero. About 97% of solar energy will be converted to hydrogen and stored. The optimal operation of diesel generator reduces the cost approximately 15%.  相似文献   

8.
This work combines materials development with hydrogen storage technology advancements to address onboard hydrogen storage challenges in light-duty vehicle applications. These systems are comprised of the vehicle requirements design space, balance of plant requirements, storage system components, and materials engineering culminating in the development of an Adsorbent System Design Tool that serves as a preprocessor to the storage system and vehicle-level models created within the Hydrogen Storage Engineering Center of Excellence. Computational and experimental efforts were integrated to evaluate, design, analyze, and scale potential hydrogen storage systems and their supporting components against the Department of Energy 2020 and Ultimate Technical Targets for Hydrogen Storage Systems for Light Duty Vehicles. Ultimately, the Adsorbent System Design Tool was created to assist material developers in assessing initial design parameters that would be required to estimate the performance of the hydrogen storage system once integrated with the full fuel cell system.  相似文献   

9.
This paper compares battery electric vehicles (BEV) to hydrogen fuel cell electric vehicles (FCEV) and hydrogen fuel cell plug-in hybrid vehicles (FCHEV). Qualitative comparisons of technologies and infrastructural requirements, and quantitative comparisons of the lifecycle cost of the powertrain over 100,000 mile are undertaken, accounting for capital and fuel costs. A common vehicle platform is assumed. The 2030 scenario is discussed and compared to a conventional gasoline-fuelled internal combustion engine (ICE) powertrain. A comprehensive sensitivity analysis shows that in 2030 FCEVs could achieve lifecycle cost parity with conventional gasoline vehicles. However, both the BEV and FCHEV have significantly lower lifecycle costs. In the 2030 scenario, powertrain lifecycle costs of FCEVs range from $7360 to $22,580, whereas those for BEVs range from $6460 to $11,420 and FCHEVs, from $4310 to $12,540. All vehicle platforms exhibit significant cost sensitivity to powertrain capital cost. The BEV and FCHEV are relatively insensitive to electricity costs but the FCHEV and FCV are sensitive to hydrogen cost. The BEV and FCHEV are reasonably similar in lifecycle cost and one may offer an advantage over the other depending on driving patterns. A key conclusion is that the best path for future development of FCEVs is the FCHEV.  相似文献   

10.
A mobile renewable house using PV/wind/fuel cell hybrid power system   总被引:1,自引:0,他引:1  
A photovoltaic/wind/fuel cell hybrid power system for stand-alone applications is proposed and demonstrated with a mobile house. This concept shows that different renewable sources can be used simultaneously to power off-grid applications. The presented mobile house can produce sufficient power to cover the peak load. Photovoltaic and wind energy are used as primary sources and a fuel cell as backup power for the system. The power budgeting of the system is designed based on the local data of solar radiation and wind availability. Further research will focus on the development of the data acquisition system and the implementation of automatic controls for power management.  相似文献   

11.
The U.S. Department of Energy (DOE) developed a vehicle Framework model to simulate fuel cell-based light-duty vehicle operation for various hydrogen storage systems. This transient model simulates the performance of the storage system, fuel cell, and vehicle for comparison to Technical Targets established by DOE for four drive cycles/profiles. Chemical hydrogen storage models have been developed for the Framework for both exothermic and endothermic materials. Despite the utility of such models, they require that material researchers input system design specifications that cannot be estimated easily. To address this challenge, a design tool has been developed that allows researchers to directly enter kinetic and thermodynamic chemical hydrogen storage material properties into a simple sizing module that then estimates system parameters required to run the storage system model. Additionally, the design tool can be used as a standalone executable file to estimate the storage system mass and volume outside of the Framework model. These models will be explained and exercised with the representative hydrogen storage materials exothermic ammonia borane (NH3BH3) and endothermic alane (AlH3).  相似文献   

12.
This paper has performed an assessment of lifecycle (as known as well-to-wheels, WTW) greenhouse gas (GHG) emissions and energy consumption of a fuel cell vehicle (FCV). The simulation tool MATLAB/Simulink is employed to examine the real-time behaviors of an FCV, which are used to determine the energy efficiency and the fuel economy of the FCV. Then, the GREET (Greenhouse gases, Regulated Emissions, and Energy use in Transportation) model is used to analyze the fuel-cycle energy consumption and GHG emissions for hydrogen fuels. Three potential pathways of hydrogen production for FCV application are examined, namely, steam reforming of natural gas, water electrolysis using grid electricity, and water electrolysis using photovoltaic (PV) electricity, respectively. Results show that the FCV has the maximum system efficiency of 60%, which occurs at about 25% of the maximum net system power. In addition, the FCVs fueled with PV electrolysis hydrogen could reduce about 99.2% energy consumption and 46.6% GHG emissions as compared to the conventional gasoline vehicles (GVs). However, the lifecycle energy consumption and GHG emissions of the FCVs fueled with grid-electrolysis hydrogen are 35% and 52.8% respectively higher than those of the conventional GVs. As compared to the grid-based battery electric vehicles (BEVs), the FCVs fueled with reforming hydrogen from natural gas are about 79.0% and 66.4% in the lifecycle energy consumption and GHG emissions, respectively.  相似文献   

13.
The Proton Exchange Membrane Fuel Cell (PEMFC) health monitoring and management are of critical importance for the performance and cost efficiency of Fuel Cell Electric Vehicle (FCEV). Prognostics play an important role in improving the lifetime and reducing maintenance costs of PEMFC by predicting the degradation trend. In this paper, the degradation prediction of PEMFC is based on a novel model-driven method which combines the Unscented Kalman Filter (UKF) algorithm with the proposed voltage degradation model. The experimental data originated from the FCEVs which achieve postal delivery mission in the real road are used for construction and validation of the proposed model-driven prognostic method. At our best knowledge, this is the first application which uses field-based data for FC health prognosis. The influence of different lengths of measured voltage data on degradation prediction of PEMFC, and the degradation prediction performance of PEMFC in different FCEVs are also investigated by the proposed method. Test results show that the proposed model-driven method is able to accurately estimate the voltage degradation trend of PEMFC in the FCEV. When more data are applied to learning the degradation of PEMFC, the mean Relative Error (RE) in the prediction phase will decrease. Especially, when the learning data exceeds 45 h, the mean RE in prediction phase is reduced to 0.68%. Considering that the maximum mean RE in the prediction phase is 2.03% for 3 postal FCEVs, the proposed method can be applied in the degradation trend prediction of PEMFC in FCEV under real conditions.  相似文献   

14.
Electric vehicles (EVs) are considered a promising alternative to conventional vehicles (CVs) to alleviate the oil crisis and reduce urban air pollution and carbon emissions. Consumers usually focus on the tangible cost when choosing an EV or CV but overlook the time cost for restricting purchase or driving and the environmental cost from gas emissions, falling to have a comprehensive understanding of the economic competitiveness of CVs and EVs. In this study, a life cycle cost model for vehicles is conducted to express traffic and environmental policies in monetary terms, which are called intangible cost and external cost, respectively. Battery electric vehicles (BEVs), fuel cell electric vehicles (FCEVs), and CVs are compared in four first-tier, four new first-tier, and 4 s-tier and below cities in China. The comparison shows that BEVs and FCEVs in most cities are incomparable with CVs in terms of tangible cost. However, the prominent traffic and environmental policies in first-tier cities, especially in Beijing and Shanghai, greatly increase the intangible and external costs of CVs, making consumers more inclined to purchase BEVs and FCEVs. The main policy benefits of BEVs and FCEVs come from three aspects: government subsidies, purchase and driving restrictions, and environmental taxes. With the predictable reduction in government subsidies, traffic and environmental policies present important factors influencing the competitiveness of BEVs and FCEVs. In first-tier cities, BEVs and FCEVs already have a competitive foundation for large-scale promotion. In new first-tier and second-tier and below cities, stricter traffic and environmental policies need to be formulated to offset the negative impact of the reduction in government subsidies on the competitiveness of BEVs and FCEVs. Additionally, a sensitivity analysis reveals that increasing the mileage and reducing fuel prices can significantly improve the competitiveness of BEVs and FCEVs, respectively.  相似文献   

15.
This article addresses the issue of the diffusion of hydrogen cars in the market, particularly the competition with electric cars for the replacement of conventional vehicles. Using the multi-technological competition model developed by Le Bas and Baron-Sylvester’s (Diffusion technologique non binaire et schéma épidémiologique. Une reconsidération. Economie Appliquée 1995; tome XLVIII(3):71–101), it is shown that the early deployment of plug-in hybrid vehicles—the only electric technology which can compete with fuel cell cars in the multipurpose vehicle field—risks closing the market for hydrogen in the future. Moreover, the advent of the hydrogen vehicle depends on the rapid advancements in fuel cell technologies, as well as on the existence of an infrastructure with a sufficient coverage.  相似文献   

16.
This paper conducts a techno-economic study on hydrogen Fuel Cell Electric Vehicles (FCV), Battery Electric Vehicles (BEV) and hydrogen Fuel Cell plug-in Hybrid Electric Vehicles (FCHEV) in the UK using cost predictions for 2030. The study includes an analysis of data on distance currently travelled by private car users daily in the UK. Results show that there may be diminishing economic returns for Plug-in Hybrid Electric Vehicles (PHEV) with battery sizes above 20 kWh, and the optimum size for a PHEV battery is between 5 and 15 kWh. Differences in behaviour as a function of vehicle size are demonstrated, which decreases the percentage of miles that can be economically driven using electricity for a larger vehicle. Decreasing carbon dioxide emissions from electricity generation by 80% favours larger optimum battery sizes as long as carbon is priced, and will reduce emissions considerably. However, the model does not take into account reductions in carbon dioxide emissions from hydrogen generation, assuming hydrogen will still be produced from steam reforming methane in 2030.  相似文献   

17.
In recent years, significant research and development efforts were spent on hydrogen storage technologies with the goal of realizing a breakthrough for fuel cell vehicle applications. This article scrutinizes design targets and material screening criteria for solid state hydrogen storage. Adopting an automotive engineering point of view, four important, but often neglected, issues are discussed: 1) volumetric storage capacity, 2) heat transfer for desorption, 3) recharging at low temperatures and 4) cold start of the vehicle. The article shall help to understand the requirements and support the research community when screening new materials.  相似文献   

18.
The investment of private money in technological innovation is driven by the expectation of successful market penetration. This decision to invest is less risky when the innovation represents gradual improvement of existing technologies. The term disruptive innovation is used to describe the opposite case, i.e. innovations that are so different that their establishment in the market causes a disruption to the pre-existing system. The existing literature on disruptive innovations provides us with historic case studies of successful market capture by new technologies, but this in itself is insufficient to clarify the chances of success for nascent technologies. This paper sets out to bring greater clarity to the characteristics of disruptive innovation in a way that informs the debate on the viability of emerging technologies. Whilst existing definitions are based on technologies that were successful, this paper proposes a three part criteria to define candidate disruptive technologies: disruption should relate to manufacturers and/or infrastructure (the two often being inter-related), whilst innovation must provide more than the equivalence of service to the end-user. A review of seven historical case studies of successful disruptive technologies reveals seven characteristics of candidate disruptive technologies at the stage of niche market penetration. Examining battery electric and hydrogen fuel cell vehicles against these seven characteristics, shows that both candidate disruptive technologies share the same challenges as those identified in the successful historic case studies and also helps to identify potential pathways to greater market penetration in the future for these technologies.  相似文献   

19.
In this paper we present firstly the different hybrid systems with fuel cell. Then, the study is given with a hybrid fuel cell–photovoltaic generator. The role of this system is the production of electricity without interruption in remote areas. It consists generally of a photovoltaic generator (PV), an alkaline water electrolyzer, a storage gas tank, a proton exchange membrane fuel cell (PEMFC), and power conditioning units (PCU) to manage the system operation of the hybrid system. Different topologies are competing for an optimal design of the hybrid photovoltaic–electrolyzer–fuel cell system. The studied system is proposed. PV subsystem work as a primary source, converting solar irradiation into electricity that is given to a DC bus. The second working subsystem is the electrolyzer which produces hydrogen and oxygen from water as a result of an electrochemical process. When there is an excess of solar generation available, the electrolyzer is turned on to begin producing hydrogen which is sent to a storage tank. The produced hydrogen is used by the third working subsystem (the fuel cell stack) which produces electrical energy to supply the DC bus. The modelisation of the global system is given and the obtained results are presented and discussed.  相似文献   

20.
This paper presents modeling, design and analysis of a Grid-connected Hybrid Photovoltaic Fuel Cell System (HPVFCS) with a reactive power compensation feature. A hydrogen based fuel cell is a proven technology and its use along with the photovoltaic system (PV) can lead to energy stability in grid-connected or standalone systems. In this paper, the Voltage Source Converter (VSC) is connected between the DC output of HPVFCS and an AC grid. The control strategy employed guarantees the maximum utilization of the PV array and the optimum use of an FC. The active and reactive power of VSC can be controlled independently using P-Q control theory. The additional function of the reactive power compensation using P-Q control theory can enhance the performance of the distribution systems where HPVFCS system is connected. Its applicability is verified by the test bench created with MATLAB/Simulink®  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号