首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reactive compatibilization of polypropylene/polyethylene terephthalate (PP/PET) blends by addition of glycidyl methacrylate grafted PP (PP-g-GMA) was studied. Two PP-g-GMA copolymers, containing either 0.2 or 1.2 wt% of GMA, were used as interface modifiers. These were incorporated into PP blends (with either 70 or 90 wt% PET), replacing 1/5 of PP in the system. The use of these modifiers changed the blends' tensile mechanical behavior from fragile to ductile. Blend tensile strength was improved by 10% and elongation at break showed 10 to 20-fold increases while stiffness remained constant. Scanning electron micrographs showed the PP average domain size in injection molded specimens to decrease to the micron/sub-micron size upon addition of the GMA modified resins, while the unmodified blends exhibited heterogeneous morphology comprising large lamellae 10–20 μm wide. The low-GMA graft content PP seemed slightly more efficient than the high GMA content PP in emulsifiying PP/PET blends. The GMA grafting level on PP had very limited effects on the blends' mechanical behavior in the range of GMA graft density provided by the two modified resins investigated.  相似文献   

2.
Polyethylene terephthalate (PET) and polypropylene (PP) are incompatible thermoplastics because of differences in chemical structure and polarity, hence their blends possess inferior mechanical and thermal properties. Compatibilization with a suitable block/graft copolymer is one way to improve the mechanical and thermal properties of the PET/PP blend. In this study, the toughness, dynamic mechanical analysis (DMA), and thermogravimetric analysis (TGA) of PET/PP blends were investigated as a function of different content of styrene‐ethylene‐butylene‐styrene‐g‐maleic anhydride (SEBS‐g‐MAH) compatibilizer. PET, PP, and SEBS‐g‐MAH were melt‐blended in a single step using the counter rotating twin screw extruder with compatibilizer concentrations of 0, 5, 10, and 15 phr, respectively. The impact strength of compatibilized blend with 10 phr SEBS‐g‐MAH increased by 300% compared to the uncompatibilized blend. Scanning electron microscope (SEM) micrographs show that the addition of 10 phr SEBS‐g‐MAH compatibilizer into the PET/PP blends decreased the particle size of the dispersed PP phase to the minimum level. The improvement of the storage modulus and the decrease in the glass transition temperature of the PET phase indicated an interaction among the blend components. Thermal stability of the PET/PP blends was significantly improved because of the addition of SEBS‐g‐MAH. J. VINYL ADDIT. TECHNOL., 23:45–54, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
The properties of polypropylene (PP)/polyamide 6 (PA) blends, obtained by the following two different blending methods, were investigated. Blends of PP/PA and PP/PA/maleic anhydride have been prepared using a twin screw extruder and a fiber cutting, flying and mixing apparatus that directly commingles PP fiber and PA fiber. The properties measured include rheological properties by means of a capillary rheometer, morphologies by scanning electron microscopy, and mechanical properties by a universal testing machine and a high rate impact tester. In the presence of compatibilizer, a marked dispersibility of the polymer blends of PP and PA was observed, and mechanical properties were found to increase as a result of improvement of the interfacial adhesion and the dispersibility. The properties of PP/PA blends manufactured by two different pieces of equipment were shown to be similar in the case of melting both resins. But in particular, superior impact properties were obtained in blends not melting PA fibers as a dispersed phase rather than blends using maleic anhydride grafted polypropylene (PP-g-MA) as a compatibilizer.  相似文献   

4.
Blends of a styrene–maleic anhydride copolymer (SMA) with polyethlene (PE) or polyethylene melt grafted with tertiary (PE-g-DMAEMA) or secondary (PE-g-tBAEMA) amino methacrylate were prepared by blending in a batch melt mixer. The morphology of these blends at various compositions was examined with a scanning electron microscope (SEM) and related to their tensile and impact properties. The SMA/PE blends are found to have the typical coarse morphology of incompatible blends and poor mechanical properties, while their reactive conterparts, SMA/PE-g-DMAEMA or SMA/PE-g-tBAEMA blends, show finer morphology and modestly improved tensile and impact strength. This was attributed to chemical interaction of the acidic anhydride and the basic amino groups. The greater improvement in morphology for SMA/PE-g-tBAEMA than for SMA/PE-g-DMAEMA suggests a stronger interaction between the secondary amino groups and the anhydride groups, possibly with the formation of SMA-g-tBAEMA-g-PE graft polymer through amide covalent bonds. The amide formation appears to occur at the interfacial region in the blends and is too little to be detected by Fourier transform infrared (FTIR) spectra. However, differential scanning calorimeters (DSC) and the viscosity measurements indicate crystallinity and molecular weight changes for the SMA/PE-g-tBAEMA blends, supporting an argument for the formation of SMA-g-tBAEMA-g-PE grafts at the phase interface.  相似文献   

5.
Polymer blends based on high-density polyethylene (HDPE) and acrylonitrile butadiene rubber (NBR) were prepared by a melt blending technique. The mixing parameters such as temperature, time, and speed of mixing were varied to obtain a wide range of properties. The mixing parameters were optimized by evaluating the mechanical properties of the blend over a wide range of mixing conditions. The morphology of the blend indicated a two-phase structure in which NBR phase was dispersed as domains up to 50% of its concentration in the continuous HDPE matrix. However, 70 : 30 NBR/HDPE showed a cocontinuous morphology. The tensile strength, elongation at break, and hardness of the system were measured as a function of blend compostion. As the polymer pair is incompatible, technological compatibilization was sought by the addition of maleic-modified polyethylene (MAPE) and phenolic-modified polyethylene (PhPE). The interfacial activity of MAPE and PhPE was studied as a function of compatibilizer concentration by following the morphology of the blend using scanning electron micrographs. Domain size of the dispersed phase showed a sharp decrease by the addition of small amounts of compatibilizers followed by a leveling off at higher concentrations. Also, more uniformity in the distribution of the dispersed phase was observed in compatibilized systems. The tensile strength of the compatibilized systems showed improvement. The mechanical property improvement, and finer and uniform morphology, of compatibilized systems were correlated with the improved interfacial condition of the compatibilized blends. The experimental results were compared with the current theories of Noolandi and Hong. © 1995 John Wiley & Sons, Inc.  相似文献   

6.
LDPE/PA6 binary blends and LDPE/PA6/compatibilizer ternary blends were prepared in a Brabender extruder, equipped with a prototype static mixer. Compatibility of the components was estimated by rheological properties (viscosity and a melt flow index), and observations of the structure were made with the help of scanning electron microscopy and tensile strength. It was found that the blends' structure and properties are dependent on the recipe content of the polymer blends and the conditions of their manufacturing. Uniformity of the blends of the thermodynamically immiscible polymers was improved by using a prototype static mixer giving mechanical compatibilization and a compatibilizer giving chemical compatibilization. LDPE grafted with a maleic anhydride (LDPE-g-MAH) was used as a compatibilizer. © 1998 John Wiley & Sons, Inc. J Appl Polym Sci 69: 719–727, 1998  相似文献   

7.
The tensile behavior of blends of linear polyethylene (PE) and isotactic polypropylene (PP) was examined in relation to their morphology. Yield stress increases monotonically with increasing PP content, while true ultimate strength is much lower in all blends than in the pure polymers as a result of early fracture. The blends fail at low elongation because of their two-phase structure, consisting of interpenetrating networks or of islands of PE in a PP matrix, as shown by scanning electron microscopy of fracture surfaces and transmission electron microscopy of thin films. While spherulites in PP are very large (~100 μm in diameter), addition of 10% or more of PE drastically reduces their average size. This, together with the profusion of intercrystalline links introduced by PE, may be associated with maximization of tensile modulus in blends containing ~80% PP. Introduction of special nucleating agents to PP reduces average spherulite size and is accompanied by slight improvements in modulus. Thin films of blends strained in the electron microscope neck and fibrillate in their PE regions, but fracture cleanly with little fibrillation in areas of PP.  相似文献   

8.
Morphology features and effects of particle size and composition of the disperse phase on the impact properties have been studied for the blends of isotactic polypropylene (PP)/ethylene-propylene-diene terpolymer and (EPDM)/linear low-density polyethylene (LLDPE). The blend components were mixed in a twin-screw extruder, press molded, and analyzed by scanning electron microscopy, SEM (fractured and toluene etched samples), and by transmission electron microscopy, TEM (RuO4 stained samples). TEM was most effective for the identification of component distribution and particle size measurement. An increasing degree of LLDPE and EPDM interpenetration was observed with the PE content. Not one case of a neat component separation was detected. LLDPE addition improves the EPDM dispersability, affecting mainly the larger particles. The impact properties at room temperature were especially dependent on the rubber content, whereas at low temperature the particle diameter appears to be the controlling parameter. The affect of LLDPE on blend toughness is more evident in the latter case.  相似文献   

9.
Summary Blends of recycled poly(ethylene terephthalate) (R-PET) and high-density polyethylene (R-PE), obtained from post-consumer packaging materials, were prepared both by melt mixing and extrusion processes and compatibilized by addition of various copolymers containing functional reactive groups, such as maleic anhydride, acrylic acid and glycidyl methacrylate. The effect of the type and concentration of compatibilizer, as well as the mixing conditions, on the phase morphology, thermal behaviour, rheological and mechanical properties of the blends was investigated. The results indicated that addition (5÷10 pph) of ethylene-co-glycidyl methacrylate copolymer (E-GMA) allows for a marked improvement of processability and physical/mechanical performances of R-PET/R-PE blends. Received: 1 March 2001/Revised version: 15 November 2001/ Accepted: 28 January 2002  相似文献   

10.
The objective of this work was to investigate the compatibilization of a blend of linear low density polyethylene with polypropylene by Injection of a free radical initiator during extrusion. The reactive extrusion process utilized a single screw extruder equipped with two static mixers. The initiator was injected into the extruder feedport and temperature programming used to cause most reaction to occur within the static mixers. Although elongation at yield was increased by 37 percent, impact strength and yield strength decreased by 17 and 54 percent, respectively. Scanning electron microscopy showed that the maximum size of the dispersed phase decreased from a maximum size of four microns to less than two microns upon addition of initiator. Size exclusion chromatography (SEC), temperature rising elution chromatography (TREF), and differential scanning calorimetry showed that the polypropylene in the blend was degrading while the polyethylene was increasing in molecular size. The combination of SEC and TREF was particularly useful in elucidating this result. No copolymer was discerned by any of the methods used.  相似文献   

11.
The electrical properties of ester/ether‐based thermoplastic polyurethane (TPU) and polypropylene (PP) blends are presented in this article. Special attention has been paid to analyze the effect of blend ratio, compatibilization, and effect of nanoclay on the electrical properties of TPU/PP blends. The electrical properties measured were dielectric constant (ε′), volume resistivity (ρυ), loss factor (ε″), and dissipation factor (tan δ). Addition of PP into TPU increases the volume resistivity and reduces the dissipation and loss factor due to the decrease in the overall polarity of the system. Further addition of compatibilizer and nanoclay to this system reduced the dissipation factor and loss factor with increased volume resistivity. Compared with the ether‐TPU based blend nanocomposites, the ester‐TPU blends show better compatibility as confirmed by analysis. POLYM. COMPOS., 35:1671–1682, 2014. © 2013 Society of Plastics Engineers  相似文献   

12.
A series of highly oriented tapes has been prepared from a blend consisting of equal proportions of polyethylene and polypropylene. The mechanical properties and the structure and morphology of the samples have been investigated using DSC, optical microscopy, and wide angle and small angle diffraction, including measurements of crystal strain on samples under stress. It has been confirmed that the blend is incompatible, and a structural model has been proposed which is consistent with the observation that the polyethylene and polypropylene components act essentially independently in their response to external macroscopic stress.  相似文献   

13.
The effect of addition of an ethylene-propylene block polymer on rheological and mechanical properties of a linear-low-density polyethylene/polypropylene blend was examined. The samples were prepared by melt blending in a twin-screw extruder followed by injection molding. The single-, two- and three-component systems were treated the same way. The mechanical behavior of the blends was evaluated by means of tensile, and flexural, tests at 23 and ?40°C. The capillary, elongational, and dynamic-flow measurements were performed at 190°C.  相似文献   

14.
The in situ microfiber-reinforced polyethylene terephthalate/isotactic polypropylene (15/85, w/w) composite (PET/iPP MRC) was successfully obtained through the micro-nano-laminating co-extrusion by using polypropylene-grafted-glycidyl methacrylate (PP-g-GMA) as a compatibilizer. The effect of the compatibilizer on the rheological behavior, micromorphology of PET/iPP MRC, foaming capability and the mechanical properties of foamed PET/iPP MRC was investigated. Extensional rheology measurement revealed the strain hardening of PET/iPP MRC is more obviously than iPP and with compatibilizer added. Scanning electron microscope observation indicated that the introduction of PP-g-GMA compatibilizer can improve the compatibility between PET and PP and subsequently lead to the decrease of diameter of PET microfibers. In addition, the incorporating of PP-g-GMA compatibilizer can also decrease the diameter and enhance the cell density of PET/iPP MRC cell. Both the tensile strength and the impact strength of the PET/iPP MRC foam are higher than that of the iPP foam, and improved with the compatibilizer added.  相似文献   

15.
The properties of metallocene polyethylene (mPE)/polylactic acid (PLA) bio‐based blends containing an ethylene‐glycidyl methacrylate‐vinyl acetate (EGMA‐VA) compatibilizer, with or without the annealing effect of PLA were investigated. The results from SEM (Scanning electron microscope) morphology observation revealed that the dispersed PLA particles sizes within the mPE matrix tended to decrease with the added compatibilizer due to the enhanced interfacial interaction. DSC (Differential scanning calorimetry) and XRD (X‐ray diffractometer) results indicated that the addition of the compatibilizer completely hindered the cold crystallization and rearrangement crystallization of PLA, even though the additional annealing effect tended to increase the crystallization of PLA. Tensile test results showed the synergistic effects by compatibilization and annealing treatment improved the tensile strength and Young's modulus, up to 38 % and 62 % increase, respectively. With the incorporation of the compatibilizer, the viscosity increased and reached the highest level among all neat resins and blends, which was attributed to the enhanced interfacial interaction between mPE and PLA. Hopefully, the incorporated bio‐based PLA materials could be helpful in reducing the use of petroleum‐based materials and are beneficial to the environment in terms of the sustainable development concern. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2399–2409, 2013  相似文献   

16.
Interfacially compatibilized immiscible blends with an isotactic polypropylene matrix (PP) and dispersed polyamide-66 (PA) were prepared by extrusion with anhydride-grafted isotactic PP compatibilizers, one of high-anhydride content (HAC, 2.7 wt % grafted maleic anhydride) and one of low-anhydride content (LAC, 0.2 wt % anhydride). On a weight basis, HAC was more efficient than LAC in dispersing PA to submicron domains, but on a total weight % anhydride basis, both compatibilizers were equally efficient. Both compatibilizers imparted similar tensile strength improvement compared to an uncompatibilized blend. Maximum fracture strain was obtained at similar total anhydride content, but much higher maximum fracture strain was achieved with LAC than with HAC. Good adhesion in an 11.25 wt % LAC blend was seen at the microscale as fibrillar ligaments connecting PA particles to the drawn PP matrix. Interfacial failure was observed in a lower fracture strain composition, 11.25 wt % HAC. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
The immiscible polypropylene (PP)/natural rubber (NR) blends of various concentrations were prepared by using a twin-screw extruder. The prepared blends were passed through the reactor where they were ultrasonically treated by an extrusion process. Mechanical properties and rheology of the obtained blends were studied, along with morphology by using the scanning electron microscopy and the atomic force microscopy (AFM). Mechanical properties of the treated blends were found to improve significantly in comparison with those of untreated blends. Under most treatment conditions, no significant differences in the viscosity of the treated and untreated blends were observed. The AFM studies revealed the development of interfacial layers, interfacial roughening and improved interfacial adhesion between PP and NR phases in the blends subjected to ultrasonic treatment. At the same time weak adhesion and delamination at the interface were found in the untreated blends. The improved interfacial adhesion, morphology and mechanical properties are believed to be due to the formation of in situ copolymer at the interface of two immiscible polymers caused by an ultrasonic treatment without the use of any chemicals.  相似文献   

18.
The capillary flow properties and morphologies of ultrahigh molecular weight polyethylene/polypropylene (UHMWPE/PP) blends were studied. The results show that UHMWPE is difficult to process. The melts flowed unsteadily at lower shear rate. With 10 wt % PP contained in the UHMWPE/PP blends, the apparent melt viscosity was much lower than that of UHMWPE. When the PP content increased to 20 and 30 wt %, no pressure vibration occurred throughout the whole shear rate range. Microstructure analysis showed that PP prefers to locate in the amorphous or low crystallinity zones of the UHMWPE matrix. The flowability of UHMWPE increased substantially with the addition of PP. The addition of PE could not effectively reduce the chain entanglement density of UHMWPE. The improvement of processability of UHMWPE by the addition of PE was rather limited. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 3894–3900, 2004  相似文献   

19.
B.C. Poon  A. Hiltner  E. Baer 《Polymer》2004,45(3):893-903
The effect of chain microstructure on adhesion of ethylene copolymers to polypropylene (PP) was studied using coextruded microlayers. Adhesion was measured by delamination toughness G using the T-peel test, and interfacial morphology was examined by atomic force microscopy. Good adhesion to PP was achieved with homogeneous metallocene catalyzed copolymers (mPE) with density 0.90 g cm−3 or less. Good adhesion was attributed to entanglement bridges. In contrast, a heterogeneous Ziegler-Natta catalyzed copolymer (ZNPE) of density 0.925 g cm−3 exhibited poor adhesion to PP due to an amorphous interfacial layer of low molecular weight, highly branched fractions that prevented effective interaction of ZNPE bulk chains with PP. Blending mPE with ZNPE eliminated the amorphous interfacial layer and resulted in epitaxial crystallization of ZNPE bulk chains with some increase in G. Increasing the mPE content of the blend past the amount required to completely resolve the amorphous interfacial layer of ZNPE resulted in a steady, almost linear, increase in G. Phase separation of mPE and ZNPE during crystallization produced an interface with regions of epitaxially crystallized ZNPE bulk chains and other regions of entangled mPE chains. Entanglement bridges imparted much better adhesion than did epitaxially crystallized lamellae.  相似文献   

20.
Two types of ultralow density polyethylene (ULDPE) of different melt viscosities were blended with a polypropylene (PP) in a twin screw extruder. Morphology, thermal, rheological, and mechanical properties of the blends were determined. Morphological observation from SEM showed a clean phase separation of PP/ULDPE blends. However, depending on the viscosity ratio, a significant difference in the extent of phase separation, as well as in the phase inversion composition, was demonstrated. The melting temperature of PP and ULDPE were respectively increased and decreased in the blend. Crystallization rate and the, crystallinity of PP and ULDPE were first increased and then decreased as the other component was increased. Yield at low frequencies was observed with 30 wt% ULDPE in PP. In ULDPE-rich compositions, complex viscosities of the blends gave negative deviation from the additive rule of mixing. Mechanical properties such as flexural modulus, elongation at break and Vicat softening point were closely relatable to the morphology. The impact strength of PP is significantly improved by ULDPE addition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号