共查询到20条相似文献,搜索用时 15 毫秒
1.
Minyoung Kim 《Applied Intelligence》2013,38(1):45-57
Kernel machines such as Support Vector Machines (SVM) have exhibited successful performance in pattern classification problems mainly due to their exploitation of potentially nonlinear affinity structures of data through the kernel functions. Hence, selecting an appropriate kernel function, equivalently learning the kernel parameters accurately, has a crucial impact on the classification performance of the kernel machines. In this paper we consider the problem of learning a kernel matrix in a binary classification setup, where the hypothesis kernel family is represented as a convex hull of fixed basis kernels. While many existing approaches involve computationally intensive quadratic or semi-definite optimization, we propose novel kernel learning algorithms based on large margin estimation of Parzen window classifiers. The optimization is cast as instances of linear programming. This significantly reduces the complexity of the kernel learning compared to existing methods, while our large margin based formulation provides tight upper bounds on the generalization error. We empirically demonstrate that the new kernel learning methods maintain or improve the accuracy of the existing classification algorithms while significantly reducing the learning time on many real datasets in both supervised and semi-supervised settings. 相似文献
2.
Multiple kernel learning (MKL) approach has been proposed for kernel methods and has shown high performance for solving some real-world applications. It consists on learning the optimal kernel from one layer of multiple predefined kernels. Unfortunately, this approach is not rich enough to solve relatively complex problems. With the emergence and the success of the deep learning concept, multilayer of multiple kernel learning (MLMKL) methods were inspired by the idea of deep architecture. They are introduced in order to improve the conventional MKL methods. Such architectures tend to learn deep kernel machines by exploring the combinations of multiple kernels in a multilayer structure. However, existing MLMKL methods often have trouble with the optimization of the network for two or more layers. Additionally, they do not always outperform the simplest method of combining multiple kernels (i.e., MKL). In order to improve the effectiveness of MKL approaches, we introduce, in this paper, a novel backpropagation MLMKL framework. Specifically, we propose to optimize the network over an adaptive backpropagation algorithm. We use the gradient ascent method instead of dual objective function, or the estimation of the leave-one-out error. We test our proposed method through a large set of experiments on a variety of benchmark data sets. We have successfully optimized the system over many layers. Empirical results over an extensive set of experiments show that our algorithm achieves high performance compared to the traditional MKL approach and existing MLMKL methods. 相似文献
3.
Zhifeng Hao Ganzhao Yuan Xiaowei Yang Zijie Chen 《Neural computing & applications》2013,23(3-4):975-987
The canonical support vector machines (SVMs) are based on a single kernel, recent publications have shown that using multiple kernels instead of a single one can enhance interpretability of the decision function and promote classification accuracy. However, most of existing approaches mainly reformulate the multiple kernel learning as a saddle point optimization problem which concentrates on solving the dual. In this paper, we show that the multiple kernel learning (MKL) problem can be reformulated as a BiConvex optimization and can also be solved in the primal. While the saddle point method still lacks convergence results, our proposed method exhibits strong optimization convergence properties. To solve the MKL problem, a two-stage algorithm that optimizes canonical SVMs and kernel weights alternately is proposed. Since standard Newton and gradient methods are too time-consuming, we employ the truncated-Newton method to optimize the canonical SVMs. The Hessian matrix need not be stored explicitly, and the Newton direction can be computed using several Preconditioned Conjugate Gradient steps on the Hessian operator equation, the algorithm is shown more efficient than the current primal approaches in this MKL setting. Furthermore, we use the Nesterov’s optimal gradient method to optimize the kernel weights. One remarkable advantage of solving in the primal is that it achieves much faster convergence rate than solving in the dual and does not require a two-stage algorithm even for the single kernel LapSVM. Introducing the Laplacian regularizer, we also extend our primal method to semi-supervised scenario. Extensive experiments on some UCI benchmarks have shown that the proposed algorithm converges rapidly and achieves competitive accuracy. 相似文献
4.
Wang Z Chen S Sun T 《IEEE transactions on pattern analysis and machine intelligence》2008,30(2):348-353
In this paper, we develop a new effective multiple kernel learning algorithm. First, map the input data into m different feature spaces by m empirical kernels, where each generatedfeature space is takenas one viewof the input space. Then through the borrowing the motivating argument from Canonical Correlation Analysis (CCA)that can maximally correlate the m views in the transformed coordinates, we introduce a special term called Inter-Function Similarity Loss R IFSL into the existing regularization framework so as to guarantee the agreement of multi-view outputs. In implementation, we select the Modification of Ho-Kashyap algorithm with Squared approximation of the misclassification errors (MHKS) as the incorporated paradigm, and the experimental results on benchmark data sets demonstrate the feasibility and effectiveness of the proposed algorithm named MultiK-MHKS. 相似文献
5.
In recent years, several methods have been proposed to combine multiple kernels using a weighted linear sum of kernels. These different kernels may be using information coming from multiple sources or may correspond to using different notions of similarity on the same source. We note that such methods, in addition to the usual ones of the canonical support vector machine formulation, introduce new regularization parameters that affect the solution quality and, in this work, we propose to optimize them using response surface methodology on cross-validation data. On several bioinformatics and digit recognition benchmark data sets, we compare multiple kernel learning and our proposed regularized variant in terms of accuracy, support vector count, and the number of kernels selected. We see that our proposed variant achieves statistically similar or higher accuracy results by using fewer kernel functions and/or support vectors through suitable regularization; it also allows better knowledge extraction because unnecessary kernels are pruned and the favored kernels reflect the properties of the problem at hand. 相似文献
6.
Recently, multiple kernel learning (MKL) has gained increasing attention due to its empirical superiority over traditional single kernel based methods. However, most of state-of-the-art MKL methods are “uniform” in the sense that the relative weights of kernels keep fixed among all data.Here we propose a “non-uniform” MKL method with a data-dependent gating mechanism, i.e., adaptively determine the kernel weights for the samples. We utilize a soft clustering algorithm and then tune the weight for each cluster under the graph embedding (GE) framework. The idea of exploiting cluster structures is based on the observation that data from the same cluster tend to perform consistently, which thus increases the resistance to noises and results in more reliable estimate. Moreover, it is computationally simple to handle out-of-sample data, whose implicit RKHS representations are modulated by the posterior to each cluster.Quantitative studies between the proposed method and some representative MKL methods are conducted on both synthetic and widely used public data sets. The experimental results well validate its superiorities. 相似文献
7.
Han Y Liu G 《IEEE transactions on systems, man, and cybernetics. Part B, Cybernetics》2012,42(3):827-837
Localized multiple kernel learning (LMKL) is an attractive strategy for combining multiple heterogeneous features in terms of their discriminative power for each individual sample. However, models excessively fitting to a specific sample would obstacle the extension to unseen data, while a more general form is often insufficient for diverse locality characterization. Hence, both learning sample-specific local models for each training datum and extending the learned models to unseen test data should be equally addressed in designing LMKL algorithm. In this paper, for an integrative solution, we propose a probability confidence kernel (PCK), which measures per-sample similarity with respect to probabilistic-prediction-based class attribute: The class attribute similarity complements the spatial-similarity-based base kernels for more reasonable locality characterization, and the predefined form of involved class probability density function facilitates the extension to the whole input space and ensures its statistical meaning. Incorporating PCK into support-vectormachine-based LMKL framework, we propose a new PCK-LMKL with arbitrary l(p)-norm constraint implied in the definition of PCKs, where both the parameters in PCK and the final classifier can be efficiently optimized in a joint manner. Evaluations of PCK-LMKL on both benchmark machine learning data sets (ten University of California Irvine (UCI) data sets) and challenging computer vision data sets (15-scene data set and Caltech-101 data set) have shown to achieve state-of-the-art performances. 相似文献
8.
This paper presents two sets of features, shape representation and kinematic structure, for human activity recognition using a sequence of RGB-D images. The shape features are extracted using the depth information in the frequency domain via spherical harmonics representation. The other features include the motion of the 3D joint positions (i.e. the end points of the distal limb segments) in the human body. Both sets of features are fused using the Multiple Kernel Learning (MKL) technique at the kernel level for human activity recognition. Our experiments on three publicly available datasets demonstrate that the proposed features are robust for human activity recognition and particularly when there are similarities among the actions. 相似文献
9.
10.
Multiple Kernel Learning (MKL) is a popular generalization of kernel methods which allows the practitioner to optimize over convex combinations of kernels. We observe that many recent MKL solutions can be cast in the framework of oracle based optimization, and show that they vary in terms of query point generation. The popularity of such methods is because the oracle can fortuitously be implemented as a support vector machine. Motivated by the success of centering approaches in interior point methods, we propose a new approach to optimize the MKL objective based on the analytic center cutting plane method (accpm). Our experimental results show that accpm outperforms state of the art in terms of rate of convergence and robustness. Further analysis sheds some light as to why MKL may not always improve classification accuracy over naive solutions. 相似文献
11.
Zhang Zhiwen Duan Feng Caiafa Cesar F. Solé-Casals Jordi Yang Zhenglu Sun Zhe 《World Wide Web》2022,25(4):1685-1701
World Wide Web - Benefitting from machine learning techniques based on deep neural networks, data-driven saliency has achieved significant success over the past few decades. However, existing... 相似文献
12.
现有的多核学习算法大多假设训练样本分类完全正确,将其应用到受扰分类样本上时,由于分类存在差错,因此往往只能实现次优性能.为了解决这一问题,首先将受扰分类多核学习问题建模为随机规划问题,并得到一种极小极大表达式;然后提出基于复合梯度映射的一阶学习算法对问题进行求解.理论分析表明,该算法的收敛速度为O(1/T),大大快于传统算法的收敛速度O(1/√T).最后,基于五个UCI数据集的实验结果也验证了本文观点和优化算法的有效性. 相似文献
13.
Action recognition in videos plays an important role in the field of computer vision and multimedia, and there exist lots of challenges due to the complexity of spatial and temporal information. Trajectory-based approach has shown to be efficient recently, and a new framework and algorithm of trajectory space information based multiple kernel learning (TSI-MKL) is exploited in this paper. First, dense trajectories are extracted as raw features, and three saliency maps are computed corresponding to color, space, and optical flow on frames at the same time. Secondly, a new method combining above saliency maps is proposed to filter the achieved trajectories, by which a set of salient trajectories only containing foreground motion regions is obtained. Afterwards, a novel two-layer clustering is developed to cluster the obtained trajectories into several semantic groups and the ultimate video representation is generated by encoding each group. Finally, representations of different semantic groups are fed into the proposed kernel function of a multiple kernel classifier. Experiments are conducted on three popular video action datasets and the results demonstrate that our presented approach performs competitively compared with the state-of-the-art. 相似文献
14.
Composite kernel learning 总被引:2,自引:0,他引:2
The Support Vector Machine is an acknowledged powerful tool for building classifiers, but it lacks flexibility, in the sense that the kernel is chosen prior to learning. Multiple Kernel Learning enables to learn the kernel, from an ensemble of basis kernels, whose combination is optimized in the learning process. Here, we propose Composite Kernel Learning to address the situation where distinct components give rise to a group structure among kernels. Our formulation of the learning problem encompasses several setups, putting more or less emphasis on the group structure. We characterize the convexity of the learning problem, and provide a general wrapper algorithm for computing solutions. Finally, we illustrate the behavior of our method on multi-channel data where groups correspond to channels. 相似文献
15.
This paper addresses the problem of optimal feature extraction from a wavelet representation. Our work aims at building features by selecting wavelet coefficients resulting from signal or image decomposition on an adapted wavelet basis. For this purpose, we jointly learn in a kernelized large-margin context the wavelet shape as well as the appropriate scale and translation of the wavelets, hence the name “wavelet kernel learning”. This problem is posed as a multiple kernel learning problem, where the number of kernels can be very large. For solving such a problem, we introduce a novel multiple kernel learning algorithm based on active constraints methods. We furthermore propose some variants of this algorithm that can produce approximate solutions more efficiently. Empirical analysis show that our active constraint MKL algorithm achieves state-of-the art efficiency. When used for wavelet kernel learning, our experimental results show that the approaches we propose are competitive with respect to the state-of-the-art on brain–computer interface and Brodatz texture datasets. 相似文献
16.
针对当前稀疏数据推荐准确率低的问题,提出一种基于多核学习卷积神经网络的稀疏数据推荐算法.将项目的辅助信息送入卷积神经网络学习特征,将向量在可再生核希尔伯特空间组合,利用多核学习技术增强卷积神经网络的特征学习能力;基于学习的卷积特征集初始化非负矩阵模型,通过非负矩阵模型实现对缺失评分的预测.实验结果表明,该算法有效提高了稀疏数据集的推荐性能,验证了多核学习卷积神经网络的有效性. 相似文献
17.
Multimedia Tools and Applications - Recently, supervised person re-identification (Re-ID) algorithms have achieved great performance on benchmarks. However, it highly depends on labeled training... 相似文献
18.
Due to the poor generalizability of the subject-specific mental workload (MWL) classifier, we propose a cross-subject MWL recognition framework in this paper. Firstly, we use fuzzy mutual information-based wavelet-packet transform (FMI-WPT) technique to extract the salient physiological features of the MWL. Then, we combine kernel spectral regression (KSR) and transferable discriminative dimensionality reduction (TDDR) methods to reduce the dimensionality of the feature vector and to transfer the classifier model across subjects. Finally, the measured data analysis results are presented to show the enhanced performance of the proposed framework for multi-class MWL recognition. 相似文献
19.
Multiple kernel learning (MKL) has recently become a hot topic in kernel methods. However, many MKL algorithms suffer from high computational cost. Moreover, standard MKL algorithms face the challenge of the rapid development of distributed computational environment such as cloud computing. In this study, a framework for parallel multiple kernel learning (PMKL) using hybrid alternating direction method of multipliers (H-ADMM) is developed to integrate the MKL algorithms and the multiprocessor system. The global problem with multiple kernel is divided into multiple local problems each of which is optimized in a local processor with a single kernel. An H-ADMM is proposed to make the local processors coordinate with each other to achieve the global optimal solution. The results of computational experiments show that PMKL exhibits high classification accuracy and fast computational speed. 相似文献
20.
Qingyao Wu Xiaoming Zhou Yuguang Yan Hanrui Wu Huaqing Min 《Knowledge and Information Systems》2017,52(3):687-707
Transfer learning aims to enhance performance in a target domain by exploiting useful information from auxiliary or source domains when the labeled data in the target domain are insufficient or difficult to acquire. In some real-world applications, the data of source domain are provided in advance, but the data of target domain may arrive in a stream fashion. This kind of problem is known as online transfer learning. In practice, there can be several source domains that are related to the target domain. The performance of online transfer learning is highly associated with selected source domains, and simply combining the source domains may lead to unsatisfactory performance. In this paper, we seek to promote classification performance in a target domain by leveraging labeled data from multiple source domains in online setting. To achieve this, we propose a new online transfer learning algorithm that merges and leverages the classifiers of the source and target domain with an ensemble method. The mistake bound of the proposed algorithm is analyzed, and the comprehensive experiments on three real-world data sets illustrate that our algorithm outperforms the compared baseline algorithms. 相似文献