首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 15 毫秒
1.
Simple, mesh/grid free, explicit and implicit numerical schemes for the solution of linear advection–diffusion problems is developed and validated herein. Unlike the mesh or grid‐based methods, these schemes use well distributed quasi‐random points and approximate the solution using global radial basis functions. The schemes can be seen as generalized finite differences with random points instead of a regular grid system. This allows the computation of problems with complex‐shaped boundaries in higher dimensions with no need for complex mesh/grid structure and with no extra implementation difficulties. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

2.
In this paper, we use a numerical method based on the boundary integral equation (BIE) and an application of the dual reciprocity method (DRM) to solve the second-order one space-dimensional hyperbolic telegraph equation. Also the time stepping scheme is employed to deal with the time derivative. In this study, we have used three different types of radial basis functions (cubic, thin plate spline and linear RBFs), to approximate functions in the dual reciprocity method (DRM). To confirm the accuracy of the new approach and to show the performance of each of the RBFs, several examples are presented. The convergence of the DRBIE method is studied numerically by comparison with the exact solutions of the problems.  相似文献   

3.
A variation of the Petrov–Galerkin method of solution of a partial differential equation is presented in which the weight function applied to the time derivative term of the transient convection–diffusion equation is different from the weight function applied to the special derivatives. This allows for the formulation of fourth-order explicit and centred difference schemes. Comparison with analytic solutions show that these methods are able to capture steep wave fronts. The ability of the explicit method to capture wave fronts increases as the amount of convective transport increases.  相似文献   

4.
In this paper, the degenerate scale for plate problem is studied. For the continuous model, we use the null-field integral equation, Fourier series and the series expansion in terms of degenerate kernel for fundamental solutions to examine the solvability of BIEM for circular thin plates. Any two of the four boundary integral equations in the plate formulation may be chosen. For the discrete model, the circulant is employed to determine the rank deficiency of the influence matrix. Both approaches, continuous and discrete models, lead to the same result of degenerate scale. We study the nonunique solution analytically for the circular plate and find degenerate scales. The similar properties of solvability condition between the membrane (Laplace) and plate (biharmonic) problems are also examined. The number of degenerate scales for the six boundary integral formulations is also determined. Tel.: 886-2-2462-2192-ext. 6140 or 6177  相似文献   

5.
A boundary element method (BEM)-based variational method is presented for the solution of elliptic PDEs describing the mechanical response of general inhomogeneous anisotropic bodies of arbitrary geometry. The equations, which in general have variable coefficients, may be linear or nonlinear. Using the concept of the analog equation of Katsikadelis the original equation is converted into a linear membrane (Poisson) or a linear plate (biharmonic) equation, depending on the order of the PDE under a fictitious load, which is approximated with radial basis function series of multiquadric (MQ) type. The integral representation of the solution of the substitute equation yields shape functions, which are global and satisfy both essential and natural boundary conditions, hence the name generalized Ritz method. The minimization of the functional that produces the PDE as the associated Euler–Lagrange equation yields not only the Ritz coefficients but also permits the evaluation of optimal values for the shape parameters of the MQs as well as optimal position of their centers, minimizing thus the error. If a functional does not exists or cannot be constructed as it is the usual case of nonlinear PDEs, the Galerkin principle can be applied. Since the arising domain integrals are converted into boundary line integrals, the method is boundary-only and, therefore, it maintains all the advantages of the pure BEM. Example problems are studied, which illustrate the method and demonstrate its efficiency and great accuracy.  相似文献   

6.
The paper introduces a methodology to compute strict upper and lower bounds for linear‐functional outputs of the exact solutions of the advection–diffusion–reaction equation. The bounds are computed using implicit a posteriori error estimators from stabilized finite element approximations of the exact solution. The new methodology extends the a posteriori error estimates yielding bounds for the standard Galerkin formulation to be able to obtain bounds for stabilized formulations. This methodology is combined with both hybrid‐flux and flux‐free techniques for error assessment. The application to stabilized formulations provides sharper estimates than when applied to Galerkin methods. The best results are found in combination with the flux‐free technique. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
The analysis of transient heat conduction problems in large, complex computational domains is a problem of interest in many technological applications including electronic cooling, encapsulation using functionally graded composite materials, and cryogenics. In many of these applications, the domains may be multiply connected and contain moving boundaries making it desirable to consider meshless methods of analysis. The method of fundamental solutions along with a parallel domain decomposition method is developed for the solution of three‐dimensional parabolic differential equations. In the current approach, time is discretized using the generalized trapezoidal rule transforming the original parabolic partial differential equation into a sequence of non‐homogeneous modified Helmholtz equations. An approximate particular solution is derived using polyharmonic splines. Interfacial conditions between subdomains are satisfied using a Schwarz Neumann–Neumann iteration scheme. Outside of the first time step where zero initial flux is assumed, the initial estimates for the interfacial flux is given from the converged solution obtained during the previous time step. This significantly reduces the number of iterations required to meet the convergence criterion. The accuracy of the method of fundamental solutions approach is demonstrated through two benchmark problems. The parallel efficiency of the domain decomposition method is evaluated by considering cases with 8, 27, and 64 subdomains. Copyright 2004 © John Wiley & Sons, Ltd.  相似文献   

8.
In this paper, we consider linear and non‐linear space–time fractional reaction–diffusion equations (STFRDE) on a finite domain. The equations are obtained from standard reaction–diffusion equations by replacing a second‐order space derivative by a fractional derivative of order β∈(1, 2], and a first‐order time derivative by a fractional derivative of order α∈(0, 1]. We use the Adomian decomposition method to construct explicit solutions of the linear and non‐linear STFRDE. Finally, some examples are given. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
Explicit schemes are known to provide less numerical diffusion in solving the advection–diffusion equation, especially for advection‐dominated problems. Traditional explicit schemes use fixed time steps restricted by the global CFL condition in order to guarantee stability. This is known to slow down the computation especially for heterogeneous domains and/or unstructured meshes. To avoid this problem, local time stepping procedures where the time step is allowed to vary spatially in order to satisfy a local CFL condition have been developed. In this paper, a local time stepping approach is used with a numerical model based on discontinuous Galerkin/mixed finite element methods to solve the advection–diffusion equation. The developments are detailed for general unstructured triangular meshes. Numerical experiments are performed to show the efficiency of the numerical model for the simulation of (i) the transport of a solute on highly unstructured meshes and (ii) density‐driven flow, where the velocity field changes at each time step. The model gives stable results with significant reduction of the computational cost especially for the non‐linear problem. Moreover, numerical diffusion is also reduced for highly advective problems. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

10.
We consider the numerical approximation of singularly perturbed problems, and in particular reaction–diffusion problems, by the h version of the finite element method. We present guidelines on how to design non‐uniform meshes both in one and two dimensions that are asymptotically optimal as the meshwidth tends to zero. We also present the results of numerical computations showing that robust, optimal rates can be achieved even in the pre‐asymptotic range. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

11.
A family of trigonometrically fitted Runge–Kutta methods for the numerical integration of the radial Schrödinger equation is developed. Theoretical and numerical results obtained for the radial Schrödinger equation and for the well known Woods–Saxon potential and for the coupled differential equations of the Schrödinger type show the efficiency of the new method.  相似文献   

12.
The consistency and stability of a Thomas–Gladwell family of multistage time‐stepping schemes for the solution of first‐order non‐linear differential equations are examined. It is shown that the consistency and stability conditions are less stringent than those derived for second‐order governing equations. Second‐order accuracy is achieved by approximating the solution and its derivative at the same location within the time step. Useful flexibility is available in the evaluation of the non‐linear coefficients and is exploited to develop a new non‐iterative modification of the Thomas–Gladwell method that is second‐order accurate and unconditionally stable. A case study from applied hydrogeology using the non‐linear Richards equation confirms the analytic convergence assessment and demonstrates the efficiency of the non‐iterative formulation. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

13.
In this paper, a nth-order shear deformation theory is proposed to analyze the free vibration of laminated composite plates. The present nth-order shear deformation theory satisfies the zero transverse shear stress boundary conditions on the top and bottom surface of the plate. Reddy’s third-order theory can be considered as a special case of present nth-order theory (n = 3). Natural frequencies of the laminated composite plates with various boundary conditions, side-to-thickness ratios, material properties are computed by present nth-order theory and a meshless radial point collocation method based on the thin plate spline radial basis function. The results are compared with available published results which demonstrate the accuracy and efficiency of present nth-order theory.  相似文献   

14.
Exponentially fitted Runge–Kutta methods for the numerical integration of the radial Schrödinger equation or systems of equations of the Schrödinger type and for the numerical solution of other related initial-value problems with periodic or oscillating solutions are developed in this paper. Numerical and theoretical results obtained for several well-known problems show the efficiency of the new methods.  相似文献   

15.
In this work, an enhanced cell‐based smoothed finite element method (FEM) is presented for the Reissner–Mindlin plate bending analysis. The smoothed curvature computed by a boundary integral along the boundaries of smoothing cells in original smoothed FEM is reformulated, and the relationship between the original approach and the present method in curvature smoothing is established. To improve the accuracy of shear strain in a distorted mesh, we span the shear strain space over the adjacent element. This is performed by employing an edge‐based smoothing technique through a simple area‐weighted smoothing procedure on MITC4 assumed shear strain field. A three‐field variational principle is utilized to develop the mixed formulation. The resultant element formulation is further reduced to a displacement‐based formulation via an assumed strain method defined by the edge‐smoothing technique. As the result, a new formulation consisting of smoothed curvature and smoothed shear strain interpolated by the standard transverse displacement/rotation fields and smoothing operators can be shown to improve the solution accuracy in cell‐based smoothed FEM for Reissner–Mindlin plate bending analysis. Several numerical examples are presented to demonstrate the accuracy of the proposed formulation.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
This article presents the first application of the Finite Calculus (FIC) in a Ritz-FEM variational framework. FIC provides a steplength parametrization of mesh dimensions, which is used to modify the shape functions. This approach is applied to the FEM discretization of the steady-state, one-dimensional, diffusion–absorption and Helmholtz equations. Parametrized linear shape functions are directly inserted into a FIC functional. The resulting Ritz-FIC equations are symmetric and carry a element-level free parameter coming from the function modification process. Both constant- and variable-coefficient cases are studied. It is shown that the parameter can be used to produce nodally exact solutions for the constant coefficient case. The optimal value is found by matching the finite-order modified differential equation (FOMoDE) of the Ritz-FIC equations with the original field equation. The inclusion of the Ritz-FIC models in the context of templates is examined. This inclusion shows that there is an infinite number of nodally exact models for the constant coefficient case. The ingredients of these methods (FIC, Ritz, MoDE and templates) can be extended to multiple dimensions  相似文献   

17.
This paper analyses the performance of the main radial basis functions in the formulation of the Boundary Element Method (DIBEM). This is an alternative for solving problems modeled by non-adjoint differential operators, since it transforms domain integrals in boundary integrals using radial basis functions. The solution of eigenvalue problem was chosen to performance evaluation. Natural frequencies are calculated numerically using several radial functions and their accuracy is evaluated by comparison with the available analytical solutions and with the Finite Element Method as well. The standard radial basis functions have presented similar performance to compact radial functions, being even slightly superior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号