首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subclinical infection of BALB/c mice with the intracellular bacterial pathogen Listeria monocytogenes results in the development of protective antilisterial immunity. L. monocytogenes can infect hepatocytes, and antilisterial cytotoxic T lymphocytes (CTL) lyse Listeria-infected hepatocytes in a major histocompatibility complex (MHC) class Ia-restricted manner. It remained to be determined whether L. monocytogenes-infected hepatocytes are susceptible to MHC class Ib-restricted cytolysis. In this study, we showed that hepatocytes express MHC class Ib molecule Qa-1(b) mRNA and protein. We further showed that Listeria-infected hepatocytes are susceptible to MHC class Ib-restricted cytolysis, since C57BL/6-derived Listeria-infected hepatocytes were lysed by BALB/c-derived antilisterial CTL. These results establish that Listeria-infected hepatocytes are susceptible to cytolysis by MHC class Ib restricted Listeria-specific CTL.  相似文献   

2.
Cytotoxic T Cells (CTLs) can exhibit considerable antitumor activity. Thus far, the characterized tumor peptide antigens recognized by CTLs are all presented by classical MHC class Ia molecules [human lymphocyte antigen A (HLA-A), HLA-B, and HLA-C in humans and H-2K, H-2D, and H-2L in mice]. Here we show that CTLs recognized peptides presented by nonclassical MHC class Ib molecule Qa-1b expressed by tumor cells. These CTLs conferred in vivo protection by delaying the growth of Qa-1b-expressing B78H1 melanoma cells pulsed with Qa-1b-binding peptides Cw4L or B35L and injected s.c. in C57BL/6 mice. A hierarchy of the peptides was found with regard to their ability to trigger CTLs; Cw4L stimulated a strong CTL response. The closely related and cross-reactive peptide B35L induced a weaker CTL response but was still efficient in sensitizing the target cells. Finally, Qa-1b-expressing melanoma cells without exogenous peptides were not immunogenic but possibly expressed endogenous cross-reactive antigenic peptides. The data are compatible with earlier findings that CTL activation requires relatively strong peptide antigens, whereas subsequent effector functions are also mediated by weak peptide analogues. In conclusion, CTLs mediated tumor immunity through the recognition of peptides presented by nonclassical MHC class Ib molecules. The identification of similar CTLs in humans may facilitate the vaccination of cancer patients because MHC class Ib/peptide complexes are much less polymorphic than MHC class Ia/peptide complexes.  相似文献   

3.
CD8+ T cells are effective mediators of immunity against Listeria monocytogenes, but the mechanisms by which they provide antilisterial immunity are poorly understood. CD8+ T cells efficiently lyse target cells in vitro by at least two independent pathways. To test the hypothesis that CD8+ T cell-mediated immunity to L. monocytogenes is dependent on perforin or CD95 (Fas, Apo-1), we used C57BI/6 (B6) and perforin-deficient (PO) mice to generate CD8+ T cell lines specific for the L. mono cytogenes-encoded Ag listeriolysin O (LLO). Both lines specifically produce IFN-gamma and TNF-alpha, and mediate target cell lysis in vitro. Cytolysis mediated by the PO-derived CD8+ T cell line is delayed relative to the B6-derived line and is completely inhibited by anti-CD95 Abs. In vivo, PO-derived CD8+ T cells provide specific antilisterial immunity in B6 hosts, CD95-deficient hosts, and IFN-gamma-depleted hosts. However, PO-derived CD8+ T cells fail to provide antilisterial immunity in hosts depleted of TNF-alpha. These results indicate that single Ag-specific CD8+ T cells derived from PO mice can mediate antilisterial immunity by a mechanism that is independent of CD95 or IFN-gamma, but requires TNF-alpha.  相似文献   

4.
Mouse spleen T cells can adoptively transfer immunity to Listeria monocytogenes; this activity was markedly enhanced by stimulation with Con A in vitro before transfer. The enhanced and prolonged protection against L. monocytogenes in vivo was correlated with enhanced lysis in vitro of target cells infected with strains of L. monocytogenes that produce listeriolysin O (LLO). One of the targets of such cytotoxic cells from BALB/c (H2d) mice was a peptide that corresponded to amino acids 91 to 99 (p91-99) of the LLO molecule, which satisfies the binding motif of H2-Kd. Listeria-immune CD3+CD8+, but not CD3+CD8-, cells could also lyse H-2-incompatible, infected target cells. Immune cells from C57BL/6 (H2b) mice lysed allogeneic H-2d target cells infected with L. monocytogenes or a Bacillus subtilis transformant that secretes LLO, but did not lyse targets pulsed with p91-99. This H2-unrestricted cytolysis was therefore directed at a fragment of the LLO molecule other than p91-99. Listeria-infected bone marrow macrophages from congenic and recombinant strains of mice were lysed only when they shared the H2-T region or were Qa1-compatible with the immune cytotoxic cells; sharing of the H2-D, Q, or M region was insufficient. Thus, the immune response to L. monocytogenes included cytolytic CD8+ cells that recognized endogenously processed Listeria-derived Ags in the context of the class Ia H2-K molecule, as well as a class Ib H2-T molecule.  相似文献   

5.
CD8+ T cells require perforin to mediate immunity against some, but not all, intracellular pathogens. Previous studies with H-2b MHC perforin gene knockout (PO) mice revealed both perforin-dependent and perforin-independent pathways of CD8+ T cell-mediated immunity to Listeria monocytogenes (LM). In this study, we address two previously unresolved issues regarding the requirement for perforin in antilisterial immunity: 1) Is CD8+ T cell-mediated, perforin-independent immunity specific for a single Ag or generalizable to multiple Ags? 2) Is there a deficiency in the priming of the CD8+ T cell compartment of PO mice following an immunizing challenge with LM? We used H-2d MHC PO mice to generate CD8+ T cell lines individually specific for three known Ags expressed by a recombinant strain of virulent LM. Adoptive transfer experiments into BALB/c host mice revealed that immunity can be mediated by PO CD8+ T cells specific for all Ags examined, indicating that perforin-independent immunity is not limited to CD8+ T cells that recognize listeriolysin O. Analysis of epitope-specific CD8+ T cell expansion by MHC class I tetramer staining and ELISPOT revealed no deficiency in either the primary or secondary response to LM infection in PO mice. These results demonstrate that the perforin-independent pathway of antilisterial resistance mediated by CD8+ T cells is generalizable to multiple epitopes. Furthermore, the results show that reduced antilisterial resistance observed with polyclonal PO CD8+ T cells is a consequence of a deficiency in effector function and not a result of suboptimal CD8+ T cell priming.  相似文献   

6.
Natural killer (NK) cells preferentially lyse targets that express reduced levels of major histocompatibility complex (MHC) class I proteins. To date, the only known mouse NK receptors for MHC class I belong to the Ly49 family of C-type lectin homodimers. Here, we report the cloning of mouse NKG2A, and demonstrate it forms an additional and distinct class I receptor, a CD94/NKG2A heterodimer. Using soluble tetramers of the nonclassical class I molecule Qa-1(b), we provide direct evidence that CD94/NKG2A recognizes Qa-1(b). We further demonstrate that NK recognition of Qa-1(b) results in the inhibition of target cell lysis. Inhibition appears to depend on the presence of Qdm, a Qa-1(b)-binding peptide derived from the signal sequences of some classical class I molecules. Mouse NKG2A maps adjacent to CD94 in the heart of the NK complex on mouse chromosome six, one of a small cluster of NKG2-like genes. Our findings suggest that mouse NK cells, like their human counterparts, use multiple mechanisms to survey class I expression on target cells.  相似文献   

7.
Recent studies on human NK cells have demonstrated that the NK cell CD94/NKG2 receptors bind to the nonclassical MHC class I molecule HLA-E. A functional CD94/NKG2 complex has not yet been identified in rodents, but cDNA encoding rat and mouse CD94 and NKG2 have recently been cloned, suggesting that CD94/NKG2 receptors may exist in species other than man. The mouse nonclassical MHC class I molecule Qa-1 shares several features with HLA-E. This suggests that Qa-1 may be similarly recognized by murine NK cells. To study the ability of Qa-1 to bind to murine NK cells, we have produced a soluble tetrameric form of Qa-1b. In the present study, we demonstrate that Qa-1b tetramers distinctly bind to a large subset of fresh or IL-2-activated NK1.1+/CD3- splenocytes independently of the expression of Ly49 inhibitory receptors. Binding occurs whether NK cells have evolved in an MHC class I-expressing or in an MHC class I-deficient environment. Our data suggest the existence of a Qa-1-recognizing structure on a large subpopulation of murine NK cells that may be similar to the human CD94/NKG2 heterodimeric complex.  相似文献   

8.
Recent studies revealed that CD4+ cells initiate allograft rejection through direct recognition of allogeneic MHC class II Ags and indirect recognition of MHC peptides processed by self APCs. Both pathways were shown to help CD8+ cells that eventually lysed allogeneic MHC class I-presenting targets. There was little evidence, however, that CD4+ cells are sufficient for graft rejection. We studied skin graft rejection by CD8-deficient (CD8 -/-) mice. We showed that BALB/cJ(H-2d) CD8 -/- mice could reject allogeneic skin from C57BL/6J(H-2b) mice deficient in MHC class I or in MHC class II Ags. To understand the role of CD4+ cells in this process, we isolated them from CD8 -/- mice and transferred them to BALB/cJ nude mice that had been grafted with allogeneic skin (H-2b) from animals deficient in MHC class I or MHC class II. Nude mice injected with CD4+ cells rejected MHC class II and, albeit more slowly, MHC class I disparate skins. We showed in vitro evidence that CD4+ cells were not cytotoxic toward MHC class I or MHC class II disparate targets and that they recognized MHC class I allogeneic targets through indirect recognition. CD4+ cells produced Th1 cytokines, but not IL-4, following stimulation with allogeneic cells. Furthermore, intragraft TNF-alpha was elevated in skin grafted onto nude mice reconstituted with CD4+ cells compared with nonreconstituted mice. This suggests that MHC class II- or MHC class I-guided CD4+ cells alone are sufficient to induce rejection by the generation of cytokine-induced lesions.  相似文献   

9.
BACKGROUND: Cytotoxic T lymphocytes (CTLs) contribute to the rejection of transplanted tissues through two pathways: first, by direct recognition of foreign graft major histocompatibility complex (MHC) class I molecules; and second, by recognition of foreign graft-derived peptides presented by classical MHC class Ia molecules that are matched between graft and donor. However, a number of observations suggest that additional categories of CTL recognition patterns may exist, but they remain to be defined molecularly. METHODS: Previous studies showed that the murine nonclassical MHC molecule H2 M3 may be involved in allorecognition. We investigated whether other members of nonclassical MHC class Ib, namely Qa1 and Qa2, may be recognized. Alloreactive CTLs were generated from mice mismatched for non-MHC and/or MHC genetic backgrounds and tested using various target cells, including cells transfected with Qa1 or Qa2. Furthermore, candidate peptides were synthesized and used to generate CTLs specific for peptide presented by Qa1 or Qa2. RESULTS: The experiments demonstrate that allogeneic and xenogeneic peptides were recognized by CTLs when presented on shared nonclassical MHC class Ib Qa1 and Qa2 molecules. CONCLUSIONS: The results confirm that MHC class Ib molecules present peptides to CTLs. This potentially important alloreactivity pathway may be functional between most individuals because sharing of MHC class Ib alleles is frequent.  相似文献   

10.
Tumor-specific cytotoxic T cells (CTLs) can play an important role against cancer as illustrated by the observation that adoptive transfer of tumor-specific CTLs can mediate potent anti-tumor effects. Although such CTLs can be detected at the tumor site, relatively little is known about the mechanisms by which they enter the tumor. In this study, the role of major histocompatibility complex (MHC) class 1 molecules on vascular endothelium in the tumor in entry of, and tumor eradication by, tumor-specific CTL was investigated. Two H-2Db-restricted CTL clones recognizing peptide VNIRNCCYI on human adenovirus type 5 early region 1-(Ad5E1)-induced tumors were used to test whether CTLs were able to cross the vascular endothelium lacking the restricting MHC molecule. One CTL clone recognizes peptide VNIRNCCYI in the context of both H-2Db and H-2Dbm14 molecules. The other CTL clone recognizes this peptide only in the context of H-2Db. Adoptive transfer of these CTLs leads to eradication of Ad5E 1-induced, H-2Db-expressing tumors in B6(H-2Db+) and Bm14(H-2Db-) nude mice. Our data show that presentation of tumor-derived peptides by MHC molecules on endothelial cells of blood vessels in a tumor do not play a major role in eradication of tumors by adoptively transferred CTL in combination with interleukin-2. Moreover, our data show that successful adoptive CTL immunotherapy is possible across allogeneic barriers, without inducing severe side effects, provided the tumor expresses the MHC class 1-peptide complex recognized by the CTLs.  相似文献   

11.
The aim of the current study was to determine whether immunization with synthetic peptides corresponding to the joining region segment of p210 bcr-abl chimeric protein can elicit CD8+ cytotoxic T lymphocytes (CTLs) capable of specifically lysing leukemia cells. BALB/c mice were immunized with peptides identical to the joining region segment of p210 bcr-abl protein. Class I major histocompatibility complex (MHC)-restricted bcr-abl peptide-specific CD8+ CTLs were elicited. The CTL clones were H-2 Kd restricted and specifically recognized a nonamer peptide of the combined sequence of bcr-abl amino acids but neither bcr nor abl amino acid sequence alone. Despite specificity and substantial lytic potential against syngeneic cell line incubated with exogenously supplied peptides, the bcr-abl peptide-specific CTLs failed to lyse syngeneic murine leukemia cells expressing human p210 bcr-abl protein containing the same bcr-abl joining region peptide sequence. Similarly, the bcr-abl peptide-specific CTLs did not lyse human bcr-abl-positive chronic myelogenous leukemia cells expressing murine class I MHC antigen (i.e., K562 cells infected with vaccinia virus expressing H-2 Kd). The appropriateness of the joining region segment of bcr-abl protein to serve as a T cell target depends upon whether that segment is presented by class I MHC in a concentration high enough to stimulate CTLs. The current experiments using murine peptide-specific CTLs could not establish that the joining region of bcr-abl protein is processed and presented by class I MHC antigen-processing pathway, but the possibility was not ruled out. Alternative models and/or strategies are necessary.  相似文献   

12.
Although activation of natural killer (NK) cytotoxicity is generally inhibited by target major histocompatibility complex (MHC) class I expression, subtle features of NK allorecognition suggest that NK cells possess receptors that are activated by target MHC I. The mouse Ly-49D receptor has been shown to activate NK cytotoxicity, although recognition of MHC class I has not been demonstrated previously. To define Ly-49D-ligand interactions, we transfected the mouse Ly-49D receptor into the rat NK line, RNK-16 (RNK.mLy-49D). As expected, anti- Ly-49D monoclonal antibody 12A8 specifically stimulated redirected lysis of the Fc receptor- bearing rat target YB2/0 by RNK.mLy-49D transfectants. RNK.mLy-49D effectors were tested against YB2/0 targets transfected with the mouse MHC I alleles H-2Dd, Db, Kk, or Kb. RNK.mLy-49D cells lysed YB2/0.Dd targets more efficiently than untransfected YB2/0 or YB2/0 transfected with Db, Kk, or Kb. This augmented lysis of H-2Dd targets was specifically inhibited by F(ab')2 anti-Ly-49D (12A8) and F(ab')2 anti-H-2Dd (34-5-8S). RNK.mLy-49D effectors were also able to specifically lyse Concanavalin A blasts isolated from H-2(d) mice (BALB/c, B10.D2, and DBA/2) but not from H-2(b) or H-2(k) mice. These experiments show that the activating receptor Ly-49D specifically interacts with the MHC I antigen, H-2Dd, demonstrating the existence of alloactivating receptors on murine NK cells.  相似文献   

13.
Invasion of endothelial tissues may be crucial in a Listeria monocytogenes infection leading to meningitis and/or encephalitis. Internalization of L. monocytogenes into endothelial cells has been previously demonstrated by using human umbilical vein endothelial cells as a model system. However, during the crossing of the blood-brain barrier, L. monocytogenes most likely encounters brain microvascular endothelial cells which are strikingly different from macrovascular or umbilical vein endothelial cells. In the present study human brain microvascular endothelial cells (HBMEC) were used to study the interaction of L. monocytogenes with endothelial cells, which closely resemble native microvascular endothelial cells of the brain. We show that L. monocytogenes invades HBMEC in an InlB-dependent and wortmannin-insensitive manner. Once within the HBMEC, L. monocytogenes replicates efficiently over a period of at least 18 h, moves intracellularly by inducing actin tail formation, and spreads from cell to cell. Using a green fluorescent protein-expressing L. monocytogenes strain, we present direct evidence that HBMEC are highly resistant to damage by intracellularly growing L. monocytogenes. Infection of HBMEC with L. monocytogenes results in foci of heavily infected, but largely undamaged endothelial cells. Heterologous plaque assays with L. monocytogenes-infected P388D1 macrophages as vectors demonstrate efficient spreading of L. monocytogenes into HBMEC, fibroblasts, hepatocytes, and epithelial cells, and this phenomenon is independent of the inlC gene product.  相似文献   

14.
Listeria monocytogenes is an intracellular bacterium that secretes proteins into the cytosol of infected macrophages. Major histocompatibility complex (MHC) class I molecules bind peptides that are generated by the degradation of bacterial proteins and present them to cytolytic T lymphocytes (CTL). In this study we have investigated CTL responses in L. monocytogenes-immunized mice to peptides that (i) derive from the L. monocytogenes proteins phosphatidylinositol-specific phospholipase C, lecithinase (most active on phosphatidylcholine), metalloprotease (Mpl), PrfA, and the ORF-A product and (ii) conform to the binding motif of the H2-Kd MHC class I molecule. We identified a nonamer peptide, Mpl 84-92, that is presented to L. monocytogenes-specific CTL by H2-Kd MHC class I molecules. Unlike other motif-conforming peptides derived from the secreted Mpl of L. monocytogenes, Mpl 84-92 is bound with high affinity by H2-Kd. Mpl 84-92 is the fourth L. monocytogenes-derived peptide found to be presented to CTL by the H2-Kd molecule during infection and demonstrates the importance of high-affinity interactions between antigenic peptides and MHC class I molecules for CTL priming.  相似文献   

15.
Two distinct and complementary pathways, one mediated by perforin and the other dependent upon CD95 (Fas), effect cell-mediated cytotoxicity. We examined the relative roles of these pathways in host defenses against the intracellular bacterial pathogen Listeria monocytogenes by using murine listeriosis as a model system. Mice which lacked both perforin and Fas (P0L0) were generated, and their responses to primary and secondary listeriosis were compared to those of wild-type (WT), Fas-deficient (L0), and perforin knockout (P0) mice. Relative to WT mice during primary listeriosis, P0 mice exhibited a reduced capacity to clear the infection from their spleens but not their livers whereas L0 mice had elevated bacterial titers in their livers and a modestly increased titer in their spleens. In contrast, bacterial titers in P0L0 mice were increased approximately 50- to 560-fold in their spleens and 230- to 1, 000-fold in their livers; eventual clearance of listeriae from both organs was significantly delayed. Furthermore, the resistance of P0L0 mice to secondary listeriosis was significantly reduced in their spleens and livers compared to that of WT, P0, or L0 mice. In vitro experiments indicated that immune cytotoxic T lymphocytes (CTL) lysed L. monocytogenes-infected hepatocytes primarily via a Fas-dependent, perforin-independent mechanism. The absence of Fas severely abrogated the lysis of infected hepatocytes by immune CD8(+) CTL. Taken together, these results provide the first evidence for Fas-dependent CTL-mediated lysis of L. monocytogenes-infected hepatocytes and demonstrate complementary roles for Fas and perforin in host defenses against an intracellular bacterial pathogen.  相似文献   

16.
Cytotoxic T lymphocytes (CTLs) lyse virally infected cells that display viral peptide epitopes in association with major histocompatibility complex (MHC) class I molecules on the cell surface. However, despite a strong CTL response directed against viral epitopes, untreated people infected with the human immunodeficiency virus (HIV-1) develop AIDS. To resolve this enigma, we have examined the ability of CTLs to recognize and kill infected primary T lymphocytes. We found that CTLs inefficiently lysed primary cells infected with HIV-1 if the viral nef gene product was expressed. Resistance of infected cells to CTL killing correlated with nef-mediated downregulation of MHC class I and could be overcome by adding an excess of the relevant HIV-1 epitope as soluble peptide. Thus, Nef protected infected cells by reducing the epitope density on their surface. This effect of nef may allow evasion of CTL lysis by HIV-1-infected cells.  相似文献   

17.
18.
We have previously shown that vaccines expressing virus-derived cytotoxic-T-lymphocyte (CTL) epitopes as short minigenes can confer effective protection against virus challenges, and here we extend these studies to the bacterium Listeria monocytogenes. Host defense against this important human pathogen appears largely T cell mediated, and a nonamer CTL epitope from the listeriolysin O (LLO) protein has been identified in BALB/c mice. We have synthesized this nonamer as a minigene, expressed it in a recombinant vaccinia virus (VV-list), and used this to immunize mice. Memory CTLs cultured from VV-list-immunized mice specifically lyse target cells pulsed with a nonamer peptide identified at LLO amino acid residues 91 to 99. Four weeks postimmunization, mice were challenged with L. monocytogenes. By day 6 following challenge with a sublethal dose of L. monocytogenes, mice immunized with VV-list showed a approximately 2,000- to 6,000-fold reduction in bacteria CFU in the spleen and liver. At this time point, with control mice, bacterial were readily detectable by Gram stain of the liver but were undetectable in the VV-list-immunized animals. Additionally, when a normally lethal dose of bacteria was given, death was delayed in VV-list-immunized animals. This study has demonstrated that a single immunization with a recombinant vaccinia virus bearing only nine amino acids from a bacterial pathogen can induce specific CTLs able to confer partial protection against bacterial challenge.  相似文献   

19.
Class II major histocompatibility complex (MHC)-deficient (H-2b) mice do not express I-A or I-E molecules and, as a result, do not develop CD4 cells. Thus, they represent the ideal model for examining the importance of CD4 cells and MHC class II molecules in resistance to infection with Leishmania major and the capacity of MHC class I-restricted T cells to mediate resistance to L. major. Class II MHC-deficient mice and control (C57BL/6, normal and nude) mice were infected with L. major. Although MHC class II-deficient mice were able to control infection more effectively than nude mice, cutaneous lesions on the mice eventually progressed, and parasite replication became uncontrolled. These results suggest that CD4 cells and MHC class II molecules are essential for resistance to L. major and that in the absence of these cells and molecules, such mice can transiently control infection with L. major but are unable to resolve such infections.  相似文献   

20.
The emergence of drug resistance to chemotherapeutic agents is a major cause of treatment failure in cancer therapy. Therefore, much effort has been aimed at circumventing or reversing this undesired effect. Recently, we found that tumor cell lines selected for their multidrug-resistant phenotype can also exhibit increased levels of TAP mRNA and MHC class I proteins. This raised the question of whether drug-resistant tumors are more readily recognized by MHC-restricted CTLs. In this report, we show that five of five MHC class I+ tumor cell lines grown in medium containing Adriamycin developed into variants that expressed higher levels of MHC class I than did their corresponding parental cell lines. This was not observed with a MHC class I- cell line. No similar association was noted for changes in the expression of either HER-2 or intercellular adhesion molecule 1 protein. We also found that MHC class I+ drug-selected variants were more readily lysed by MHC-restricted, tumor-associated CTLs than were the drug-sensitive parental cell lines. When the drug-selected variants were cocultured with the same CTLs to eliminate tumor cells expressing higher levels of MHC-I (MHC-Ihi), the CTL-resistant tumor cells exhibited a drug sensitivity profile similar to that of the parental cell lines that were not exposed to Adriamycin. These findings suggest that certain chemotherapeutic drugs may increase the immunogenicity of some tumors, and that CTL immunotherapy may help reverse drug resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号