首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The objectives were to evaluate the effects of feeding diets with 2 levels of negative dietary cation-anion differences (DCAD) during the last 42 or 21 d of gestation on performance and metabolism in dairy cows. The hypothesis was that extending feeding from 21 to 42 d and reducing the DCAD from ?70 to ?180 mEq/kg of dry matter (DM) would not be detrimental to performance. Holstein cows at 230 d of gestation were blocked by parity prepartum (48 entering their second lactation and 66 entering their third or greater lactation) and 305-d milk yield, and randomly assigned to 1 of 4 treatments arranged as a 2 × 2 factorial. The 2 levels of DCAD, ?70 or ?180 mEq/kg of DM, and 2 feeding durations, the last 21 d (short) or the last 42 d (long) prepartum resulted in 4 treatments, short ?70 (n = 29), short ?180 (n = 29), long ?70 (n = 28) and long ?180 (n = 28). Cows in the short treatments were fed a diet with DCAD of +110 mEq/kg of DM from ?42 to ?22 d relative to calving. After calving, cows were fed the same diet and production and disease incidence were evaluated for 42 d in milk, whereas reproduction and survival was evaluated for 305 d in milk. Blood was sampled pre- and postpartum for quantification of metabolites and minerals. Reducing the DCAD linearly decreased prepartum DM intake between ?42 and ?22 d relative to calving (+110 mEq/kg of DM = 11.5 vs. ?70 mEq/kg of DM = 10.7 vs. ?180 mEq/kg of DM = 10.2 ± 0.4), and a more acidogenic diet in the last 21 d of the dry period reduced intake by 1.1 kg/d (?70 mEq/kg of DM = 10.8 vs. ?180 mEq/kg of DM = 9.7 ± 0.5 kg/d). Cows fed the ?180 mEq/kg of DM diet had increased concentrations of ionized Ca in blood on the day of calving (?70 mEq/kg of DM = 1.063 vs. ?180 mEq/kg of DM = 1.128 ± 0.020 mM). Extending the duration of feeding the diets with negative DCAD from 21 to 42 d reduced gestation length by 2 d (short = 277.2 vs. long = 275.3 d), milk yield by 2.5 kg/d (short = 40.4 vs. long = 37.9 ± 1.0 kg/d) and tended to increase days open because of reduced pregnancy per artificial insemination (short = 35.0 vs. long = 22.6%). Results suggest that increasing the duration of feeding diets with negative DCAD from 21 to 42 d prepartum might influence milk yield and reproduction of cows in the subsequent lactation, although yields of 3.5% fat- and energy-corrected milk did not differ with treatments. Reducing the DCAD from ?70 to ?180 mEq/kg of DM induced a more severe metabolic acidosis, increased ionized Ca concentrations prepartum and on the day of calving, and decreased colostrum yield in the first milking, but had no effects on performance in the subsequent lactation. Collectively, these data suggest that extending the feeding of an acidogenic diet beyond 21 d is unnecessary and might be detrimental to dairy cows, and a reduction in the DCAD from ?70 to ?180 mEq/kg of DM is not needed.  相似文献   

2.
Thiazolidinediones (TZD) are potent synthetic ligands for peroxisome proliferator-activated receptor-γ that have been shown previously to reduce plasma nonesterified fatty acids and increase peripartal dry matter intake (DMI) in dairy cows. Data from Holstein cows (n = 36) entering their second or greater lactation were used to determine whether late prepartum administration of TZD would affect periparturient metabolism, milk production, and ovarian activity. Cows were administered 0, 2.0, or 4.0 mg of TZD/kg of BW by intrajugular infusion once daily from 21 d before expected parturition until parturition. Plasma samples were collected daily from 22 d before expected parturition through 21 d postpartum and twice weekly from wk 4 through 9 postpartum. In response to increasing TZD dosage, plasma nonesterified fatty acid concentrations decreased linearly during the postpartum period (d 0 to +21: 348, 331, 268 ± 31 μEq/L, respectively). Plasma concentrations of glucose were highest in cows administered 4.0 mg of TZD/kg of BW during the peripartum and postpartum periods (d −7 to +7: 57.9, 57.8, 61.1 ± 0.8 mg/dL and d 0 to +21: 51.6, 49.3, 54.7 ± 1.1 mg/dL, respectively). Plasma concentrations of β-hydroxybutyrate were increased during the peripartum period by TZD administration (9.6, 9.9, 10.2 ± 0.3 mg/dL) but were not affected during the postpartum period. Plasma insulin was not affected by treatment during any time period. Postpartum liver triglyceride content was decreased linearly (11.0, 10.4, 4.2 ± 1.6%) and glycogen content was increased linearly (2.16, 2.38, 2.79 ± 0.19%) by prepartum TZD administration. Prepartum TZD administration linearly increased DMI during the peripartum period (d −7 to +7: 16.1, 17.2, 17.3 ± 0.5 kg/d). Cows administered TZD prepartum maintained higher postpartum body condition scores than control cows (wk 1 through 9: 2.77, 2.89, 3.02 ± 0.05). There was no effect of prepartum TZD on milk yield; however, yields of 3.5% fat-corrected milk (52.2, 54.6, 48.0 ± 1.6 kg/d) and most other milk components were decreased in cows that received 4.0 mg of TZD/kg of BW prepartum. Prepartum TZD administration linearly decreased the number of days to first ovulation (29.3, 28.3, 19.0 ± 3.6 d). These results suggest that prepartum administration of TZD improves metabolic health and DMI of periparturient dairy cows and may decrease reliance on body fat reserves during early lactation.  相似文献   

3.
The current study was conducted to investigate the effects of 5,6-dimethylbenzimidazole (DMB) supplementation to the feed during the transition period and early lactation on the vitamin B12 supply, lactation performance, and energy balance in postpartum cows. Twenty-four prepartum Holstein dairy cows were divided into 12 blocks based on their parity and milk yield at the last lactation and were then randomly allocated to 1 of 2 treatments: a basal diet without DMB (control) or a treatment diet that contained 1.5 g of DMB/d per cow. The study started at wk 3 before the expected calving day and ended at wk 8 postpartum. The feed intake and the lactation performance were measured weekly after calving. Blood parameters were measured on d ?10, 0, 8, 15, 29, 43, and 57 relative to the calving day. Body weight was measured on the calving day and on d 57 after calving. The yields of milk, protein, and lactose in cows fed DMB were higher than in the control throughout the whole postpartum stage. On wk 8 postpartum, the vitamin B12 content in the milk and sera was greater in cows fed DMB than in the control. The overall body weight loss from wk 1 to 8 postpartum was less in cows fed DMB than in the control. The plasma content of nonesterified fatty acids and β-hydroxybutyric acid was significantly lower in cows fed DMB than in the control throughout the whole experimental stage. In conclusion, dietary DMB fed during the transition period and early lactation improved the vitamin B12 supply, milk production, and energy balance of postpartum dairy cows.  相似文献   

4.
Eight multiparous periparturient Holstein cows fitted with ruminal cannula were used in a split plot design to evaluate the effects of monensin on plasma glucose metabolism. Diets were top-dressed daily with 0 mg/cow of monensin (control) or 300 mg/cow of monensin (MON) both pre- and postpartum. Plasma glucose kinetic parameters on d ?13 ± 2.0 and 19 ± 1.6 relative to parturition were determined by using stable isotopes. Na-1-13C3-Propionate (labeled propionate) was infused into the rumen to measure glucose synthesis originating from ruminal propionate, and U-13C-glucose (labeled glucose) was injected into the jugular vein to determine total glucose kinetics. A sampling period of 480 min following labeled glucose injection was implemented. A compartmental analysis was employed to determine steady state glucose kinetic parameters. To develop a steady state glucose model, the Windows version of SAAM software (WinSAAM) was used. A 4-compartment model was adequate to comprehensively describe plasma glucose metabolism. The main model compartments consisted of propionate and plasma glucose. The time frame of the 480-min sampling period post-tracer glucose infusion allowed accurate quantification of glucose metabolism. The model estimated that glucose input from sources other than ruminal propionate decreased with MON, from 2.26 to 1.09 g/min postpartum. Gluconeogenesis, expressed as the propionate contribution to the plasma glucose pool, increased in cows fed MON (22 vs. 31%), whereas glucose oxidation, expressed as the glucose disposal rate, significantly decreased (1.67 vs. 0.92 g/min). In conclusion, MON may improve the energy status of transition cows by (1) improving the efficiency of propionate to produce glucose and (2) decreasing glucose oxidation in body tissues.  相似文献   

5.
The effect of increasing the postpartum metabolizable protein (MP) supply on performance and mammary metabolism was studied using 8 Holstein cows in a complete randomized design. At parturition, cows were assigned to abomasal infusion of water (CTRL) or casein (CAS). Arterial and epigastric venous blood samples were taken 14 d before expected parturition and at 4, 15, and 29 d in milk (DIM). To compensate previously estimated deficiency of essential AA and to avoid oversupply, casein protein infusion was graduated with 696 ± 1, 490 ± 9, and 212 ± 10 g/d at 4, 15 and 29 DIM, respectively. Dry matter intake was unaffected by CAS. Compared with CTRL, MP supply was greater at 4 DIM with CAS but did not differ by 29 DIM. Milk yield was greater with CAS (+7.2 ± 1.3 kg/d from 1 to 29 DIM). Milk protein yield was greater with CAS at 4 DIM and averaged 1,664 ± 39 g/d compared with 1,212 ± 86 g/d for CTRL, but did not differ at 29 DIM (1,383 ± 48 g/d). The ratio of MP total supply to requirement was numerically greater at 4 DIM for CAS compared with CTRL, indicating less postpartum protein deficiency. In contrast, a greater net energy deficiency tended to be induced with CAS, but the greater milk yield allowed a large part of mobilized fat to be secreted in milk. Arterial concentration of total essential AA increased sharply after parturition for CAS compared with slight decreases for CTRL. The patterns of arterial concentrations combined with arterial-mammary venous concentration differences indicated that Lys, Leu, and Tyr were the first-limiting AA at 4 DIM with CTRL. Mammary plasma flow was unaffected by treatment, indicating similar perfusion of mammary tissue. The greater milk yield with CAS was associated with greater mammary uptake of individual essential AA, tendencies to greater uptake of glucose, lactate, and β-hydroxybutyrate, whereas uptakes of volatile fatty acids were unaffected. Despite similar MP supply by 29 DIM, milk and lactose yields were greater with CAS indicating a persistent response to increased postpartum MP supply. In conclusion, the postpartum MP deficiency can have a substantial negative effect in dairy cows as the major outcome of increasing the postpartum MP supply was increased milk, milk protein, and lactose yield, as well as an enhanced MP balance. Potential positive effects for other body functions than milk synthesis are discussed. Future investigations are needed to delineate how to transfer the effect into practical feeding strategies.  相似文献   

6.
《Journal of dairy science》2021,104(11):11646-11659
Our aim was to evaluate the effects of a low or high dietary phosphorus (P) concentration during the dry period, followed by either a high or low dietary P concentration during the first 8 wk of lactation, on plasma Ca concentrations, feed intake, and lactational performance of dairy cattle. Sixty pregnant multiparous Holstein Friesian dairy cows were assigned to a randomized block design with repeated measurements and dietary treatments arranged in a 2 × 2 factorial fashion. The experimental diets contained 3.6 (Dry-HP) or 2.2 (Dry-LP) g of P/kg of dry matter (DM) during the dry period, and 3.8 (Lac-HP) or 2.9 (Lac-LP) g of P/kg of DM during 56 d after calving period. In dry cows, plasma Ca concentrations were 3.3% greater when cows were fed 2.2 instead of 3.6 g of P/kg of DM. The proportion of cows being hypocalcemic (plasma Ca concentrations <2 mM) in the first week after calving was lowest with the low-P diets both during the dry period and lactation. Plasma Ca concentrations in wk 1 to 8 after calving were affected by dietary P level in the dry period and in the lactation period, but no interaction between both was present. Feeding Dry-LP instead of Dry-HP diets resulted in 4.1% greater plasma Ca values, and feeding Lac-LP instead of Lac-HP diets resulted in 4.0% greater plasma Ca values. After calving, plasma inorganic phosphate (Pi) concentrations were affected by a 3-way interaction between sampling day after calving, and dietary P levels during the dry period and lactation. From d 1 to d 7 postpartum, cows fed Lac-HP had increased plasma Pi concentrations, and the rate appeared to be greater in cows fed Dry-LP versus Dry-HP. In contrast, plasma Pi concentrations decreased from d 1 to d 7 postpartum in cows fed Lac-LP, and this decrease was at a higher rate for cows fed Dry-HP versus Dry-LP. After d 7, plasma Pi concentrations remained rather constant at 1.5 to 1.6 mM when cows received Lac-HP, whereas with Lac-LP plasma Pi concentrations reached stable levels (i.e., 1.3–1.4 mM) at d 28 after calving. Milk production, DM intake, and milk concentrations of P, Ca, fat, protein, and lactose were not affected by any interaction nor the levels of dietary P. It is concluded that the feeding of diets containing 2.2 g of P/kg of DM during the last 6 wk of the dry period and 2.9 g of P/kg of DM during early lactation increased plasma Ca levels when compared with greater dietary P levels. These low-P diets may be instrumental in preventing hypocalcemia in periparturient cows and do not compromise DM intake and milk production. Current results suggest that P requirements in dairy cows during dry period and early lactation can be fine-tuned toward lower values than recommended by both the National Research Council and the Dutch Central Bureau for Livestock Feeding. Caution however is warranted to extrapolate current findings to entire lactations because long-term effects of feeding low-P diets containing 2.9 of g/kg of DM on production and health needs further investigation.  相似文献   

7.
The present experiment was undertaken to determine the interactions between dietary supplements of folic acid and rumen-protected methionine on lactational performance and on indicators of folate metabolism during one lactation. Fifty-four multiparous Holstein cows were assigned to 9 blocks of 6 cows each according to their previous milk production. Within each block, 3 cows were fed a diet calculated to supply methionine as 1.75% metabolizable protein, equivalent to 70% of methionine requirement, whereas the 3 other cows were fed the same diet supplemented with 18 g of a rumen-protected methionine supplement. Within each diet, the cows received 0, 3, or 6 mg/d of folic acid per kg of body weight. Rumen-protected methionine increased milk total solid concentration but not yield. Supplementary folic acid increased crude protein and casein concentrations in milk of cows fed no supplementary methionine and the effect increased as lactation progressed; it also decreased milk lactose concentration. Folic acid supplements had the opposite effects on milk crude protein, casein, and lactose concentrations in cows fed rumen-protected methionine. Milk and milk component yields and dry matter intake were unchanged. Folic acid supplementation increased serum folates and this response was greater at 8 wk of lactation. It decreased serum cysteine in cows fed rumen-protected methionine, whereas it had no effect in cows fed no supplementary methionine. The highest serum concentrations of cysteine but the lowest of vitamin B(12) were observed at 8 wk of lactation. Serum clearance of folic acid following an i.v. injection of folic acid was slower at 8 wk of lactation. During this period, the high concentrations of serum folates and cysteine, the low serum concentrations of vitamin B(12) and methionine, and the slow serum clearance of folates strongly suggest that the vitamin B(12) supply was inadequate and interfered with folate use. It could explain the limited lactational response to supplementary folic acid observed in the present experiment.  相似文献   

8.
Multiparous Holstein cows (n = 40) were used in a randomized complete block design to determine the effects of feeding Ca and Na salts (1:1, wt/wt) of propionate and Ca salts of long-chain fatty acids (LCFA) on transition cow performance. All cows were fed the same basal diet once daily for ad libitum intake. Treatments (g/d) were 320 cornstarch (CS) as a control, 120 propionate (PRO), 120 propionate and 93 LCFA (PF1), and 178 propionate and 154 LCFA (PF2). Treatments were hand-mixed into the upper one-third of the TMR from 2 wk pre- through 3 wk postpartum. Intakes were recorded from 21 d pre- through 21 d postpartum. Energy density and crude protein were 1.54 and 1.65 Mcal/kg and 14.4 and 18.8% for pre- and postpartum diets, respectively. All cows received a common diet from 22 to 70 days in milk (DIM). Milk composition was analyzed on d 7, 14, and 21. Blood was sampled at 14, 7, and 2 d prepartum and 2, 7, 14, and 21 DIM. Pre- and postpartal dry matter intake (DMI) averaged 11.9 and 16.4 kg/d, respectively, and did not differ among treatments. A diet x week interaction for postpartal DMI was observed as cows fed PF2 consumed 2 kg/d less DM during wk 2 relative to other treatments. Milk yields from 22 to 70 DIM were 48.8, 48.5, 47.8, and 51.3 kg/d for CS, PRO, PF1, and PF2, respectively, and were not significantly affected by treatments. Milk true protein (3.32 vs. 3.16%) was increased and MUN (12.5 vs. 14.4 mg/dL) was decreased for CS relative to other treatments. Milk fat yield from cows fed PRO tended to be greater than those fed PF1 (1.58 vs. 1.29 kg/d). Plasma glucose, insulin, and beta-hydroxybutyrate were not affected by treatments. The PF2 treatment tended to decrease NEFA in plasma relative to PF1 over all times measured (492 and 670 muEq/L) and significantly decreased plasma NEFA relative to those fed PF1 postpartum (623 and 875 muEq/L). Relative to PF1, feeding propionate and LCFA at the higher level in this experiment improved energy balance postpartum as evidenced by decreased concentrations of plasma NEFA.  相似文献   

9.
This study was conducted to evaluate the effects of chestnut tannins (CT) on performance and antioxidative status of transition dairy cows. Twenty multiparous Chinese Holstein cows in late gestation were paired according to expected calving date and randomly assigned either to a diet supplemented with CT (CNT, 10 g of CT/kg of diet, dry matter basis) or to an unsupplemented control (CON) diet from 3 wk prepartum to 3 wk postpartum. Blood samples were taken on d −21, 1, 7, and 21 relative to calving for analysis of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), total antioxidant capacity (T-AOC), and malondialdehyde (MDA). Liver samples were taken by puncture biopsy on d 1 and 21 relative to calving for analysis of SOD, GSH-Px, and MDA. Data were analyzed for a completely randomized block design with repeated measures. The addition of CT had no significant effects on dry matter intake, body weight, body condition score, milk yield, 3.5% fat-corrected milk yield, and milk composition but did decrease milk MDA and somatic cell score in transition dairy cows. Dry matter intake decreased from d −21 to 0 and increased from d 1 to 21 relative to calving across treatments. During the experimental period, body weight and body condition score decreased, whereas milk MDA and somatic cell score increased across treatments. A time effect was also observed for plasma MDA, which peaked on d 1 relative to calving and remained higher than that on d −21 relative to calving across treatments. Addition of CT decreased MDA concentrations in plasma and liver. Neither time nor CT × time effects were observed for SOD and T-AOC in plasma and SOD and GSH-Px in liver; a time effect was observed for plasma GSH-Px, which peaked on d 1 relative to calving and remained higher than those on d −21 relative to calving across treatments. Addition of CT increased SOD, GSH-Px, and T-AOC activities in plasma and SOD and GSH-Px activities in liver. In conclusion, addition of CT might inhibit lipid peroxidation and increase antioxidant enzymes activities in plasma and liver of transition dairy cows. Supplementation of CT may be a feasible means to improve the antioxidative status of transition dairy cows.  相似文献   

10.
Forty cows and twenty heifers were used to study the effects of dietary energy density during late gestation and early lactation on lactation performance and ruminal parameters. A 2 x 2 factorial arrangement of treatments was used. During prepartum (-28 d to calving), animals were fed a low energy density diet [DL; 1.58 Mcal of net energy for lactation (NE(L))/kg, 40% neutral detergent fiber (NDF) and 38% nonfiber carbohydrate (NFC)] or a high energy diet (DH; 1.70 Mcal NE(L)/kg, 32% NDF and 44% NFC). After calving, half of the cows from each prepartum treatment group were assigned to a low energy density diet (L; 1.57 Mcal NE(L)/kg, 30% NDF and 41% NFC) or a high energy density diet (H; 1.63 Mcal NE(L)/kg, 25% NDF and 47% NFC) until d 20 postpartum. After d 20, all cows were fed H until d 70. Animals fed DH had 19.8% greater dry matter intake (DMI; % of body weight) and 21.5% greater energy intake than animals fed DL prepartum and the response was greater for cows compared to heifers. Animals fed DH had lower ruminal pH compared to animals fed DL, but no major changes in volatile fatty acid concentrations were observed. Effects of dietary energy density during prepartum on postpartum production responses were dependent on parity. Primiparous cows fed DL had higher 3.5% fat-corrected milk yield and milk fat production and percentage during the first 10 wk of lactation than those fed DH. Prepartum diet did not affect lactation performance of multiparous cows. Cows fed H had higher DMI and energy intake for the first 20 d of lactation compared to cows fed L. Diets did not affect DMI after the third wk of lactation. Milk production increased faster for cows fed H compared to cows fed L. Animals fed DL-L sequence of treatments tended to have the lowest energy intake during the first 10 wk of lactation. Prepartum treatments did not affect ruminal fermentation characteristics postpartum. Cows fed H had lower ruminal pH and higher propionate concentrations than cows fed L. No prepartum x postpartum interactions were observed for ruminal fermentation parameters. The effects of DH on prepartum DMI did not carry over to the postpartum period or influence early postpartum production. Increasing concentrate content of the diet immediately postpartum instead of delaying the increase until d 21 postpartum is associated with a higher rate of increase.in milk production and higher DMI.  相似文献   

11.
Twenty-four multiparous Holstein cows (775 ± 24 kg body weight; 3.4 ± 0.11 body condition score) were used in a randomized complete block design experiment to determine the impact of increased ruminal butyrate from the fermentation of lactose on metabolism and lactation. Dietary treatments were either a corn-based control diet (CON) or a diet containing lactose at 15.7% of diet dry matter (LAC). Experimental diets were fed from 21 d before expected calving through 21 d in milk (DIM). Blood was sampled at −21, −14, −7, −2, 2, 7, 14, and 21 DIM, rumen fluid at −21, −7, and 7 DIM, and liver tissue via biopsy at 7 and 14 DIM. Pre- and postpartum dry matter intake (DMI) through 28 DIM averaged 12.8 and 17.7 kg/d, respectively, and did not differ between treatments; however, cows fed LAC did not exhibit a prepartum decrease in DMI. Milk yield was unaffected by treatments and averaged 45.7 kg/d during the first 70 DIM. Plasma glucose, insulin, and non-esterified fatty acids were not affected by dietary treatments. Feeding LAC increased the ruminal proportion of butyrate both pre- (11.3 vs. 9.2 ± 0.45%) and postpartum (13.0 vs. 10.3 ± 0.67%). Likewise, circulating plasma β-hydroxybutyrate was increased both pre- (6.1 vs. 4.2 ± 0.31 mg/dL) and postpartum (14.6 vs. 8.34 ± 1.7 mg/dL) when feeding LAC compared with CON. Liver lipid content was decreased (8.6. vs. 14.7 ± 1.5% of wet weight) in cows fed LAC relative to those fed CON, whereas liver glycogen was not affected by dietary treatments. Feeding lactose to transition dairy cows increased the proportion of butyrate in the rumen and β-hydroxybutyrate in plasma and decreased liver lipid but did not affect lactation performance.  相似文献   

12.
Objectives were to determine the effects of an injectable formulation of calcitriol on Ca concentration, risk of clinical diseases, and performance in dairy cows. Cows were blocked by lactation number (1 vs. >1) and calving sequence and, within block, assigned randomly within 6 h of calving to receive subcutaneously vehicle only (CON, n = 450) or 200 (CAL200, n = 450) or 300 μg of 1α,25-dihydroxyvitamin D3 (CAL300, n = 450). Cows were fed the same acidogenic diet prepartum. Blood was sampled before treatment administration and again during the first 11 d postpartum and analyzed for concentrations of ionized Ca (iCa), total Ca (tCa), Mg (tMg), and P (tP), β-hydroxybutyrate, carboxylated osteocalcin (cOC), and undercarboxylated osteocalcin (uOC). Cows were evaluated for diseases in the first 60 d postpartum. Reproduction and survival were monitored for the first 300 d postpartum. Calcitriol increased concentration of blood iCa (CON = 1.12 vs. CAL200 = 1.23 vs. CAL300 = 1.27 mM), plasma tCa (CON = 2.29 vs. CAL200 = 2.44 vs. CAL300 = 2.46 mM), and plasma tP (CON = 1.72 vs. CAL200 = 2.21 vs. CAL300 = 2.28 mM), and differences were observed during the first 5 d postpartum for iCa and tCa, and the first 7 d postpartum for tP. Concentrations of tMg were lower in calcitriol-treated cows than in CON cows (CON = 0.81 vs. CAL200 = 0.78 vs. CAL300 = 0.75 mM), and differences were observed during the first 5 d postpartum. Calcitriol increased plasma concentrations of cOC (CON = 14.5 vs. CAL200 = 23.0 vs. CAL300 = 19.8 ng/mL) and uOC (CON = 1.6 vs. CAL200 = 3.4 vs. CAL300 = 2.6 ng/mL). Prevalence of subclinical hypocalcemia was less in calcitriol-treated cows (CON = 19.0 vs. CAL200 = 4.7 vs. CAL300 = 9.3%); however, benefits on health were only observed in overconditioned cows (n = 270/1,350). Calcitriol reduced incidence of retained placenta (CON = 14.3 vs. CAL200 = 5.1 vs. CAL300 = 5.9%), puerperal metritis (CON = 12.7 vs. CAL200 = 6.1 vs. CAL300 = 2.5%), and morbidity (CON = 72.1 vs. CAL200 = 57.4 vs. CAL300 = 56.9%) in cows with BCS greater than 3.50, but no benefit on health was observed in cows with BCS equal to or less than 3.50 at parturition. Milk yield did not differ among treatments. Pregnancy at first AI did not differ, but pregnancy rate after the first AI was slower for calcitriol-treated cows because of reduced insemination rate and pregnancy per AI. We found that CAL200 reduced death but increased culling in cows without calving problems. Collectively, results indicate that treatment with calcitriol at parturition was effective in improving concentrations of iCa, tCa, and tP, which reduced the risk of hypocalcemia. Pregnancy rate was reduced by calcitriol treatment, and benefits on health performance were limited to overconditioned cows. Thus, treatment of all cows is not supported, and proper identification of cohorts of cows that benefit from postpartum interventions that increase blood calcitriol or calcium is needed.  相似文献   

13.
Low postpartum blood calcium remains one of the largest constraints to postpartum feed intake, milk yield, and energy balance in transitioning dairy cows. Supplemental dietary anions decrease the dietary cation-anion difference (DCAD) and reduce the risk for postpartum hypocalcemia. Prepartum management strategies aiming to minimize social stress and diet changes have resulted in a need to explore the effects of extended exposure to a negative DCAD (>21 d) diet. Holstein and Holstein-cross dairy cows (n = 60) were assigned to 1 of 3 treatments 42 d before expected calving to evaluate effects of supplying anions for 21 or 42 d during the dry period on energy status, postpartum production, and Ca homeostasis. Treatments included (1) a control diet (CON; DCAD = 12 mEq/100 g of DM), (2) a 21-d negative DCAD diet (21-ND; DCAD = 12 and −16 mEq/100 g of DM), and (3) a 42-d negative DCAD diet (42-ND; DCAD = −16 mEq/100 g of DM). Cows fed CON were fed positive DCAD prepartum for 42 d. Cows fed 21-ND received the positive DCAD (12 mEq/100 g of DM) diet for the first 21 d of the dry period and the anionic diet (−16 mEq/100 g of DM) from d 22 until calving. Cows fed 42-ND received the anionic diet for the entire dry period. Control and anionic diets were formulated by using 2 isonitrogenous protein mixes: (1) 97.5% soybean meal and (2) 52.8% BioChlor (Church & Dwight Co. Inc.), 45.8% soybean meal. Supplementing anions induced a mild metabolic acidosis, reducing urine pH for 21-ND and 42-ND compared with CON. Prepartum DMI was not different among treatments. Postpartum DMI was higher for 21-ND compared with CON (20.8 vs. 18.1 ± 1.1 kg/d), and 42-ND had similar DMI compared with 21-ND. During the first 56 d of lactation 21-ND had greater average milk production compared with CON (44.8 vs. 39.2 ± 2.1 kg/d). Average milk production by 42-ND was similar to 21-ND. Postpartum total blood Ca concentration was greater for 42-ND. Cows fed anionic diets prepartum tended to have lower lipid accumulation in the liver after calving compared with CON. These data suggest low-DCAD diets fed for 21 or 42 d during the dry period can have positive effects on postpartum DMI, Ca homeostasis, and milk production.  相似文献   

14.
Twenty-four multiparous Holstein cows were used to determine the effects of dietary fat and glucose precursors on energy status and lactation. The treatment group (T) received 409 g/d (DM basis) of a combination of calcium salts of fatty acids, calcium propionate, and propylene glycol. The control group (C) received 409 g/d of a mixture of calcium salts of fatty acids and ground barley from 14 +/- 0.9 g/d before until 21 d after calving. Dry matter intake was greater (16.1 vs. 13.6 +/- 1.3 kg/d) for T than C during the last week prepartum and did not decrease for T from the previous week, whereas, in C, DM intakes decreased by 3.2 kg/d. Production of milk and milk fat did not differ. There was a tendency for lower protein and increased lactose concentrations in milk from T cows. Milk fat percentage was lower in T at d 7 (5.5 vs. 6.4 +/- 0.5%) and 28 (4.4 vs. 5.5 +/- 0.5%) of lactation. Liver lipid content was numerically lower (7.9 vs. 9.2 +/- 0.9%) and glycogen content was significantly higher (2.4 vs. 2.0 +/- 0.1%) in T vs. C cows on d 7 of lactation. Concentrations of nonesterified fatty acids were lower in blood of T cows on d 2 and 7 of lactation. Over all time points, blood glucose concentrations were higher in T cows pre- (70.75 vs. 62.1 +/- 1.3 mg/dL) and postpartum (60.1 vs. 56.2 +/- 1.1 mg/dL). Insulin concentrations in blood were greater for T (397 vs. 314 +/- 48 pg/mL) both pre- and postpartum. Feeding glucose precursors in combination with rumen inert lipids, compared with feeding barley in combination with the lipids for 2 wk before parturition and 3 wk postpartum helped avoid prepartum feed intake depression and increased blood glucose and insulin and decreased blood NEFA.  相似文献   

15.
Pre- and postpartum diets varying in energy and fiber were studied for effects on subclinical laminitis in Holstein cows. Also, ruminal acidosis was examined relative to sole hemorrhages and ulcers. Cows (n = 98) were assigned to a 2 x 2 factorial arrangement of treatments in a randomized complete block. Diets high in net energy of lactation (NE(L)) and low fiber were classified as high NE(L), whereas low NE(L) and higher fiber were defined as low NE(L). Two diets were fed for 3 wk before calving and 2 others fed for 3 wk postpartum resulting in 4 treatment combinations: high NE(L), low NE(L); high NE(L), high NE(L); low NE(L), low NE(L); and low NE(L), high NE(L). Levels of NE(L) (Mcal/kg DM), percentage of acid detergent fiber, and percentage of neutral detergent fiber for low NE(L) vs. high NE(L) prepartum diets, were 1.51, 30.2, 47.2 vs. 1.65, 23.4, 39.8, respectively, and 1.70, 22.4, 36.8 vs. 1.77, 17.5, 31.4 for low NE(L) vs. high NE(L) lactating diets, respectively. A single diet was fed after 21 d in milk (DIM). Measures of hoof discoloration, hemorrhage, and/or ulcer formation were done at about 45 d before calving, and near 28 and 70 DIM. Rumenocentesis was performed 14 d before calving and at 8, 22, and 70 DIM. Hoof scores among treatments were similar at 28 DIM. The low NE(L), high NE(L) group had less desirable hoof scores than high NE(L), high NE(L), or low NE(L), low NE(L) groups from 55 to 75 DIM. Rumen pH did not differ by treatment before calving. The lowest postpartum rumen pH was significantly lower and rates of ruminal acidosis (pH < or = 5.8) at 8 and 22 DIM were higher for groups fed high NE(L) after calving. No direct relationship between low postpartum rumen pH and hoof scores on individual cows was found. Low NE(L) before calving and high NE(L) right after calving may increase risk of subclinical laminitis if not carefully managed.  相似文献   

16.
A 9-wk trial was conducted to study the performance of 24 Holstein cows during the transition period (3 wk prepartum to 6 wk postpartum). Cows were assigned to either a control or liquid-flavored (0.52 mL/kg of feed) total mixed ration in a randomized complete block design. The diets contained corn silage, alfalfa haylage, cottonseed, and a grain mix based on ground corn and soybean meal. Cows were fed to ensure 10% orts, and the diet provided (on a dry matter basis) 13% crude protein, 32% acid detergent fiber, 44% neutral detergent fiber, and 1.54 Mcal/kg of NEL prepartum and 17.5% crude protein, 30% acid detergent fiber, 40% neutral detergent fiber, and 1.57 Mcal/kg of NEL postpartum. An additional 2.3 kg of alfalfa hay was fed during the first 5 d postpartum. Weekly means of dry matter intake (DMI), milk yield, milk protein, milk fat, SNF, somatic cell counts, and body weight (BW) were analyzed using a repeated measures procedure. There was no effect of treatment on these variables, and least squares means were 16.9 and 15.7 kg/d for DMI, 38 and 35.3 kg/d for milk yield, 3.10 and 3.11% for milk protein, 3.69 and 3.74% for milk fat, 8.37 and 8.16% for SNF, 1.99 x 10(5) and 4.33 x 10(5) for somatic cell count, and 631 and 651 kg for BW for cows fed control and flavored diets, respectively. Individual cow daily DMI data were fitted to an exponential model describing pre- and postpartum feed consumption [DMI = a - b x e(-c x t), where DMI was measured in kg, a = asymptotic DMI, b = potential fractional increase in DMI, c = fractional rate of increase in DMI, and t = days prior to calving or days in milk]. Fractional rates of increase in DMI were similar: 0.139 and 0.123/d for control and flavored diets, respectively. Data for both groups were separately analyzed using multiple regression with 3.5% fat-corrected milk as the dependent variable and BW and DMI as independent variables. More BW was mobilized per unit increase in 3.5% fat-corrected milk in cows fed the control than in cows fed the flavored diet. Cows fed the control diet tended to be in more negative energy balance during early lactation than cows fed the flavored diet. It was concluded that feeding flavor improved energy balance of cows in early lactation and may reduce the risk of health or reproductive problems.  相似文献   

17.
Thirty-three Holstein cows averaging 687 kg of body weight were allotted 6 wk before the expected date of parturition to 11 groups of 3 cows blocked within parity for similar calving dates to determine the effects of feeding different sources of fatty acids on blood parameters related to fatty liver and profile of fatty acids in plasma and liver. Cows were fed lipid supplements from 6 wk before the expected date of parturition until d 28 of lactation. Cows within each block were assigned to 1 of 3 isonitrogenous and isoenergetic dietary supplements: control with no added lipids (CO); unsaturated lipids supplied as whole flaxseed (FL; 3.3 and 11.0% of the dry matter in prepartum and postpartum diets, respectively); and saturated lipids supplied as Energy Booster (EB; 1.7 and 3.5% of the DM in prepartum and postpartum diets, respectively). Diets EB and FL had similar ether extract concentrations. Multiparous cows fed EB had lower dry matter intake and milk production, higher concentrations of nonesterified fatty acids and β-hydroxybutyrate in plasma and triglycerides (TG) and total lipids in liver, and lower concentrations of plasma glucose and liver glycogen than those fed FL and CO. Production of 4% fat-corrected milk was similar among treatments. Multiparous cows fed FL had the highest liver concentrations of glycogen on wk 2 and 4 after calving and lowest concentrations of TG on wk 4 after calving. Liver C16:0 relative percentages in multiparous cows increased after calving whereas those of C18:0 decreased. Relative percentages of liver C16:0 were higher in wk 2 and 4 postpartum for multiparous cows fed EB compared with those fed CO and FL; those of C18:0 were lower in wk 4 postpartum for cows fed EB compared with those fed CO and FL. Liver C18:1 relative percentages of multiparous cows increased after calving and were higher in wk 4 for cows fed EB compared with those fed CO and FL. The inverse was observed for liver C18:2 relative percentages. In general, diets had more significant effects on plasma concentrations of nonesterified fatty acids, β-hydroxybutyrate, and glucose and liver profiles of fatty acids, TG, total lipids, and glycogen of multiparous than primiparous cows. These data suggest that feeding a source of saturated fatty acids increased the risk of fatty liver in the transition cow compared with feeding no lipids or whole flaxseed. Feeding flaxseed compared with no lipids or a source of saturated fatty acids from 6 wk before calving could be a useful strategy to increase liver concentrations of glycogen and decrease liver concentrations of TG after calving, which may prevent the development of fatty liver in the transition dairy cow.  相似文献   

18.
The working hypothesis was that postpartum anovulatory intervals (PPAI) of grazing dairy cows are shortened by inclusion of concentrates that increase the nonstructural carbohydrate content of the transition diet. Dietary treatments were arranged as a 2 × 2 factorial, with 68 multiparous cows assigned to isoenergetic diets (114 MJ of metabolizable energy/cow per day) of pasture and pasture silage (PreP) or pasture and pasture silage supplemented with 3 kg of dry matter/cow per day a corn- and barley-based concentrate for 36 d prepartum (PreC). After calving, cows within each prepartum diet group were managed on isoenergetic diets (179 MJ of metabolizable energy/cow per day) of either pasture and pasture silage (PostP) or pasture and pasture silage supplemented with 5 kg of dry matter/cow per day a corn- and barley-based concentrate (PostC) for at least 35 d and until reestablishment of ovulatory cycles. Relative to day of calving (d 0), blood samples were collected at least weekly from d −28 to 35 and milk samples were collected twice weekly for progesterone determination to diagnose ovulatory status. The main variable of interest was PPAI, defined as the interval between calving and the first detected increase in milk progesterone (>3 ng/mL), followed by a pattern of progesterone concentrations consistent with onset of an ovulatory cycle. Subsequent mating records, pregnancy testing, and recalving data were also examined. Prepartum diet did not affect reproduction. The PPAI was 8 d shorter and the 6-wk pregnancy rate was 17% greater in PostC cows compared with PostP cows. Measured indicators of metabolic state and energy balance were poorly related to PPAI. The results support the existence of nutritional signals associated with nonstructural carbohydrates in the postpartum diet, independent of energy balance; these signals benefit the physiological mechanisms underlying the timing of first ovulation and possibly subsequent breeding performance.  相似文献   

19.
We assessed whether high energy intake during the early dry period [144% of metabolizable energy (ME) requirements/d] followed by a gradual restriction of energy intake in the close-up dry period (119% of ME/d; HEI) impaired whole-body insulin sensitivity compared with a controlled energy intake (100% of ME/d; CEI) throughout the 6-wk dry period. Multiparous Ayrshire dairy cows (n = 16) were blocked by body weight, body condition score, and expected date of parturition and were used in a randomized complete block design until 10 d after parturition. Cows were fed either HEI or CEI diets based on grass silage during the first 3 wk of the dry period and grass silage supplemented with a commercial concentrate (30% of ME intake) during the final 3 wk of gestation. After calving, all cows were fed grass silage ad libitum and an increasing amount of commercial concentrate (maximum 9 kg at d 10 postpartum). Intravenous glucose tolerance tests (IVGTT) and intravenous insulin challenges were performed ?10 ± 5 d (n = 15) and +10 ± 1 d (n = 14) relative to parturition. Following glucose injection, we did not find any treatment effects on glucose and insulin responses. The prepartal nonesterified fatty acid (NEFA) response of the HEI group was blunted, basal NEFA and the decrement of NEFA were smaller, and the area under the response curve (AUC) of NEFA was less negative in HEI cows than in CEI cows. The NEFA response reversed after parturition; the NEFA AUC of the HEI group was more negative than that of the CEI group. We did not find similar responses after insulin injection. Across the treatments, NEFA AUC correlated strongly with the basal NEFA concentration during the IVGTT pre- and postpartum. Calculated and model-based indices characterizing the overall glucose tolerance and β-cell function and the insulin sensitivity were higher after parturition than during the dry period. Consistent with the lower basal insulin, the acute insulin release after the glucose infusion was smaller in postpartal IVGTT than in prepartal IVGTT. The results suggest that whole-body insulin sensitivity of the cows increased after parturition. However, the role of peripheral insulin sensitivity in the regulation of glucose partitioning seems to be minor relative to the major change in insulin secretion and clearance during the periparturient period.  相似文献   

20.
Six periparturient Holstein cows fitted with ruminal cannulas and permanent indwelling catheters in the hepatic portal vein, hepatic vein, mesenteric vein, and an artery were used to study the effects of abomasal glucose infusion on splanchnic and whole-body glucose metabolism. The experimental design was a split plot, with cow as the whole plot, treatment as the whole-plot factor, and days in milk (DIM) as the subplot factor. Cows were assigned to 1 of 2 treatments: the control (no infusion) or infusion (1,500 g/d of glucose infused into the abomasum from the day of calving). Cows were sampled at 12 d prepartum and at 4, 15, and 29 DIM. To study portal-drained visceral uptake of arterial glucose, [U-13C]glucose was continuously infused into the jugular vein on sampling days. Postpartum, voluntary dry matter intake and milk yield increased at a lower rate with the infusion compared with the control. The net portal flux of glucose increased with the infusion compared with the control, and 67 ± 5% of the infused glucose was recovered as increased portal flux of glucose. The net hepatic flux of glucose was lower with the infusion compared with the control; however, the net hepatic flux of glucose per kilogram of dry matter intake was not affected by treatment. The arterial concentrations of glucose and insulin decreased and concentrations of nonesterified fatty acids increased from prepartum to 4 DIM with the control, but these effects were not observed with the infusion. The arterial concentration of β-hydroxybutyrate decreased more from prepartum to 4 DIM with the infusion, compared with the control. Uptake of arterial [U-13C]glucose in the portal-drained viscera was affected neither by the infusion nor by the DIM and averaged 2.5 ± 0.2%. The whole-body glucose supply changed to be less dependent on the recycling of lactate (Cori cycle) with the infusion. It was concluded that small intestinal glucose absorption is an efficient source of glucose to the peripheral tissues of dairy cows in very early lactation. At least 67% of the available glucose was recovered in the portal vein without affecting hepatic gluconeogenesis. Infused cows produced less milk and had a lower feed intake, indicating that an improved glucogenic status in very early lactation impaired metabolic adaptations to lactation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号