首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
Gas-flushed packaging is commonly used for cheese shreds and cubes to prevent aggregation and loss of individual identity. Appearance of a white haze on cubed cheese is unappealing to consumers, who may refrain from buying, resulting in lost revenue to manufacturers. The objective of this study was to determine whether gas flushing of Cheddar cheese contributes to the occurrence of calcium lactate crystals (CLC). Cheddar cheese was manufactured using standard methods, with addition of starter culture, annatto, and chymosin. Two different cheese milk compositions were used: standard (lactose:protein = 1.47, protein:fat = 0.90, lactose = 4.8%) and ultrafiltered (UF; lactose:protein = 1.23, protein:fat = 0.84, lactose = 4.8%), with or without adjunct Lactobacillus curvatus. Curds were milled when whey reached 0.45% titratable acidity, and pressed for 16 h. After aging at 7.2°C for 6 mo, cheeses were cubed (1 × 1 × 4 cm) and either vacuum-packaged or gas-flushed with carbon dioxide, nitrogen, or a 50:50 mixture of carbon dioxide and nitrogen, then aged for an additional 3 mo. Heavy crystals were observed on surfaces of all cubed cheeses that were gas-flushed, but not on cheeses that were vacuum-packaged. Cheeses without Lb. curvatus exhibited l(+)-CLC on surfaces, whereas cheeses with Lb. curvatus exhibited racemic mixtures of l(+)/d(−)-CLC throughout the cheese matrices. The results show that gas flushing (regardless of gas composition), milk composition, and presence of nonstarter lactic acid bacteria, can contribute to the development of CLC on cheese surfaces. These findings stress the importance of packaging to cheese quality.  相似文献   

2.
A sanitized cheese plant was swabbed for the presence of nonstarter lactic acid bacteria (NSLAB) biofilms. Swabs were analyzed to determine the sources and microorganisms responsible for contamination. In pilot plant experiments, cheese vats filled with standard cheese milk (lactose:protein = 1.47) and ultrafiltered cheese milk (lactose:protein = 1.23) were inoculated with Lactococcus lactis ssp. cremoris starter culture (8 log cfu/mL) with or without Lactobacillus curvatus or Pediococci acidilactici as adjunct cultures (2 log cfu/mL). Cheddar cheeses were aged at 7.2 or 10°C for 168 d. The raw milk silo, ultrafiltration unit, cheddaring belt, and cheese tower had NSLAB biofilms ranging from 2 to 4 log cfu/100 cm2. The population of Lb. curvatus reached 8 log cfu/g, whereas P. acidilactici reached 7 log cfu/g of experimental Cheddar cheese in 14 d. Higher NSLAB counts were observed in the first 14 d of aging in cheese stored at 10°C compared with that stored at 7.2°C. However, microbial counts decreased more quickly in Cheddar cheeses aged at 10°C compared with 7.2°C after 28 d. In cheeses without specific adjunct cultures (Lb. curvatus or P. acidilactici), calcium lactate crystals were not observed within 168 d. However, crystals were observed after only 56 d in cheeses containing Lb. curvatus, which also had increased concentration of d(−)-lactic acid compared with control cheeses. Our research shows that low levels of contamination with certain NSLAB can result in calcium lactate crystals, regardless of lactose:protein ratio.  相似文献   

3.
The occurrence of unappetizing calcium lactate crystals in Cheddar cheese is a challenge and expense to manufacturers, and this research was designed to understand their origin. It was hypothesized that nonstarter lactic acid bacteria (NSLAB) affect calcium lactate crystallization (CLC) by producing D(-)-lactate. This study was designed to understand the effect of NSLAB growth and aging temperature on CLC. Cheeses were made from milk inoculated with Lactococcus lactis starter culture, with or without Lactobacillus curvatus or L. helveticus WSU19 adjunct cultures. Cheeses were aged at 4 or 13 degrees C for 28 d, then half of the cheeses from 4 and 13 degrees C were transferred to 13 and 4 degrees C, respectively, for the remainder of aging. The form of lactate in cheeses without adjunct culture or with L. helveticus WSU19 was predominantly L(+)-lactate (> 95%, wt/wt), and crystals were not observed within 70 d. While initial lactate in cheeses containingL. curvatus was only L(+)-lactate, the concentration of D(-)-lactate increased during aging. After 28 d, a racemic mixture of D/L-lactate was measured in cheeses containing L. curvatus; at the same time, CLC was observed. The earliest and most extensive CLC occurred on cheeses aged at 13 degrees C for 28 d then transferred to 4 degrees C. These results showed that production of D(-)-lactate by NSLAB, and aging temperature affect CLC in maturing Cheddar cheese.  相似文献   

4.
Glycolysis and related reactions during cheese manufacture and ripening   总被引:2,自引:0,他引:2  
Fermentation of lactose to lactic acid by lactic acid bacteria is an essential primary reaction in the manufacture of all cheese varieties. The reduced pH of cheese curd, which reaches 4.5 to 5.2, depending on the variety, affects at least the following characteristics of curd and cheese: syneresis (and hence cheese composition), retention of calcium (which affects cheese texture), retention and activity of coagulant (which influences the extent and type of proteolysis during ripening), the growth of contaminating bacteria. Most (98%) of the lactose in milk is removed in the whey during cheesemaking, either as lactose or lactic acid. The residual lactose in cheese curd is metabolized during the early stages of ripening. During ripening lactic acid is also altered, mainly through the action of nonstarter bacteria. The principal changes are (1) conversion of L-lactate to D-lactate such that a racemic mixture exists in most cheeses at the end of ripening; (2) in Swiss-type cheeses, L-lactate is metabolized to propionate, acetate, and CO2, which are responsible for eye formation and contribute to typical flavor; (3) in surface mold, and probably in surface bacterially ripened cheese, lactate is metabolized to CO2 and H2O, which contributes to the increase in pH characteristic of such cheeses and that is responsible for textural changes, (4) in Cheddar and Dutch-type cheeses, some lactate may be oxidized to acetate by Pediococci. Cheese contains a low level of citrate, metabolism of which by Streptococcus diacetylactis leads to the production of diacetyl, which contributes to the flavor and is responsible for the limited eye formation characteristic of such cheeses.  相似文献   

5.
6.
Previous researchers have observed that surface crystals of calcium lactate sometimes develop on some Cheddar cheese samples but not on other samples produced from the same vat of milk. The causes of within-vat variation in crystallization behavior have not been identified. This study compared the compositions of naturally smoked Cheddar cheese samples that contained surface crystals with those of samples originating from the same vat that were crystal-free. Six pairs of retail samples (crystallized and noncrystallized) produced at the same cheese plant on different days were obtained from a commercial source. Cheese samples were 5 to 6 mo old at the time of collection. They were then stored for an additional 5 to 13 mo at 4°C to ensure that the noncrystallized samples remained crystal-free. Then, the crystalline material was removed and collected from the surfaces of crystallized samples, weighed, and analyzed for total lactic acid, l(+) and d(−) lactic acid, Ca, P, NaCl, moisture, and crude protein. Crystallized and noncrystallized samples were then sectioned into 3 concentric subsamples (0 to 5 mm, 6 to 10 mm, and greater than 10 mm depth from the surface) and analyzed for moisture, NaCl, titratable acidity, l(+) and d(−) lactic acid, pH, and total and water-soluble calcium. The data were analyzed by ANOVA according to a repeated measures design with 2 within-subjects variables. The crystalline material contained 52.1% lactate, 8.1% Ca, 0.17% P, 28.5% water, and 8.9% crude protein on average. Both crystallized and noncrystallized cheese samples contained significant gradients of decreasing moisture from center to surface. Compared with noncrystallized samples, crystallized samples possessed significantly higher moisture, titratable acidity, l(+) lactate, and water soluble calcium, and significantly lower pH and NaCl content. The data suggest that formation of calcium lactate crystals may have been influenced by within-vat variation in salting efficacy in the following manner. Lower salt uptake by some of the cheese curd during salting may have created pockets of higher moisture and thus higher lactose within the final cheese. When cut into retail-sized chunks, the lower salt, higher moisture samples contained more lactic acid and thus lower cheese pH, which shifted calcium from the insoluble to the soluble state. Lactate and soluble calcium contents in these samples became further elevated at the cheese surface because of dehydration during smoking, possibly triggering the formation of calcium lactate crystals.  相似文献   

7.
A curd-washing step is used in the manufacture of Colby cheese to decrease the residual lactose content and, thereby, decrease the potential formation of excessive levels of lactic acid. The objective of this study was to investigate the effect of different washing methods on the Ca equilibrium and rheological properties of Colby cheese. Four different methods of curd-washing were performed. One method was batch washing (BW), where cold water (10°C) was added to the vat, with and without stirring, where curds were in contact with cold water for 5 min. The other method used was continuous washing (CW), with or without stirring, where curds were rinsed with continuously running cold water for approximately 7 min and water was allowed to drain immediately. Both methods used a similar volume of water. The manufacturing pH values were similar in all 4 treatments. The insoluble (INSOL) Ca content of cheese was measured by juice and acid-base titration methods and the rheological properties were measured by small amplitude oscillatory rheology. The levels of lactose in cheese at 1 d were significantly higher in CW cheese (0.06-0.11%) than in BW cheeses (∼0.02%). The levels of lactic acid at 2 and 12 wk were significantly higher in CW cheese than in BW cheeses. No differences in the total Ca content of cheeses were found. Cheese pH increased during ripening from approximately 5.1 to approximately 5.4. A decrease in INSOL Ca content of all cheeses during ripening occurred, although a steady increase in pH took place. The initial INSOL Ca content as a percent of total Ca in cheese ranged from 75 to 78% in all cheeses. The INSOL Ca content of cheese was significantly affected by washing method. Stirring during manufacturing did not have a significant effect on the INSOL Ca content of cheese during ripening. Batch-washed cheeses had significantly higher INSOL Ca contents than did CW cheeses during the first 4 wk of ripening. The maximum loss tangent values (meltability index) of CW cheese at 1 d and 1 wk were significantly higher compared with those of BW cheeses. In conclusion, different curd washing methods have a significant effect on the levels of lactose, lactic acid, meltability, and INSOL Ca content of Colby cheese during ripening.  相似文献   

8.
Half-fat Cheddar cheese (∼15%, w/w, fat) was manufactured on three occasions from milk pasteurised at 72, 77, 82 or 87 °C for 26 s, and analysed over a 270 day ripening period. Increasing milk pasteurisation temperature significantly increased the levels of moisture (from ∼45% at 72 °C to 50% at 87 °C), total lactate, and D(−)-lactate in cheese over the 270 day ripening period. Conversely, the cheese pH decreased significantly on increasing pasteurisation temperature. Increasing the pasteurisation temperature did not significantly affect the populations of starter or non-starter lactic acid bacteria during maturation. The use of higher pasteurisation temperatures would appear particularly amenable to exploitation as a means of producing high-moisture (e.g., 40–41%), short-ripened, mild-flavoured Cheddar or Cheddar-like cheeses.  相似文献   

9.
Improved cheese flavor has been attributed to the addition of adjunct cultures, which provide certain key enzymes for proteolysis and affect the dynamics of starter and nonstarter cultures. Infrared microspectroscopy provides unique fingerprint-like spectra for cheese samples and allows for rapid monitoring of cheese composition during ripening. The objective was to use infrared microspectroscopy and multivariate analysis to evaluate the effect of adjunct cultures on Swiss cheeses during ripening. Swiss cheeses, manufactured using a commercial starter culture combination and 1 of 3 adjunct Lactobacillus spp., were evaluated at d 1, 6, 30, 60, and 90 of ripening. Cheese samples (approximately 20 g) were powdered with liquid nitrogen and homogenized using water and organic solvents, and the water-soluble components were separated. A 3-μL aliquot of the extract was applied onto a reflective microscope slide, vacuum-dried, and analyzed by infrared microspectroscopy. The infrared spectra (900 to 1,800 cm−1) produced specific absorption profiles that allowed for discrimination among different cheese samples. Cheeses manufactured with adjunct cultures showed more uniform and consistent spectral profiles, leading to the formation of tight clusters by pattern-recognition analysis (soft independent modeling of class analogy) as compared with cheeses with no adjuncts, which exhibited more spectral variability among replicated samples. In addition, the soft independent modeling of class analogy discriminating power indicated that cheeses were differentiated predominantly based on the band at 1,122 cm−1, which was associated with S-O vibrations. The greatest changes in the chemical profile of each cheese occurred between d 6 and 30 of warm-room ripening. The band at 1,412 cm−1, which was associated with acidic AA, had the greatest contribution to differentiation, indicating substantial changes in levels of proteolysis during warm-room ripening in addition to propionic acid, acetic acid, and eye formation. A high-throughput infrared microspectroscopy technique was developed that can further the understanding of biochemical changes occurring during the ripening process and provide insight into the role of adjunct nonstarter lactic acid bacteria on the complex process of flavor development in cheeses.  相似文献   

10.
Cheddar cheese ripening involves the conversion of lactose to glucose and galactose or galactose-6-phosphate by starter and nonstarter lactic acid bacteria. Under ideal conditions (i.e., where bacteria grow under no stress of pH, water activity, and salt), these sugars are mainly converted to lactic acid. However, during ripening of cheese, survival and growth of bacteria occurs under the stressed condition of low pH, low water activity, and high salt content. This forces bacteria to use alternate biochemical pathways resulting in production of other organic acids. The objective of this study was to determine if the level and type of organic acids produced during ripening was influenced by calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), lactose at pressing (2.4 vs. 0.78%), and S/M (6.4 vs. 4.8%) were manufactured. The cheeses were analyzed for organic acids (citric, orotic, pyruvic, lactic, formic, uric, acetic, propanoic, and butyric acids) and residual sugars (lactose, galactose) during 48 wk of ripening using an HPLC-based method. Different factors influenced changes in concentration of residual sugars and organic acids during ripening and are discussed in detail. Our results indicated that the largest decrease in lactose and the largest increase in lactic acid occurred between salting and d 1 of ripening. It was interesting to observe that although the lactose content in cheese was influenced by several factors (Ca and P, residual lactose, and S/M), the concentration of lactic acid was influenced only by S/M. More lactic acid was produced in low S/M treatments compared with high S/M treatments. Although surprising for Cheddar cheese, a substantial amount (0.2 to 0.4%) of galactose was observed throughout ripening in all treatments. Minor changes in the levels of citric, uric, butyric, and propanoic acids were observed during early ripening, whereas during later ripening, a substantial increase was observed. A gradual decrease in orotic acid and a gradual increase in pyruvic acid content of the cheeses were observed during 12 mo of ripening. In contrast, acetic acid did not show a particular trend, indicating its role as an intermediate in a biochemical pathway, rather than a final product.  相似文献   

11.
Freezing and long-term frozen storage had minimal impact on the rheology and proteolysis of soft cheese made from caprine milk. Plain soft cheeses were obtained from a grade A goat dairy in Georgia and received 4 storage treatments: fresh refrigerated control (C), aged at 4°C for 28 d; frozen control (FC), stored at −20°C for 2 d before being thawed and aged in the same way as C cheese; and 3-mo frozen (3MF), or 6-mo frozen (6MF), stored at −20°C for 3 or 6 mo before being thawed and aged. Soft cheeses had fragile textures that showed minimal change after freezing or over 28 d of aging at 4°C. The only exceptions were the FC cheeses, which, after frozen storage and aging for 1 d at 4°C, were significantly softer than the other cheeses, and less chewy than the other frozen cheeses. Moreover, after 28 d of aging at 4°C, the FC cheeses tended to have the lowest viscoelastic values. Slight variation was noted in protein distribution among the storage treatment, although no significant proteolysis occurred during refrigerated aging. The creation and removal of ice crystals in the cheese matrix and the limited proteolysis of the caseins showed only slight impact on cheese texture, suggesting that frozen storage of soft cheeses may be possible for year-round supply with minimal loss of textural quality.  相似文献   

12.
The objective of this study was to compare the effects of vacuum-condensed (CM) and ultrafiltered (UF) milk on some compositional and functional properties of Cheddar cheese. Five treatments were designed to have 2 levels of concentration (4.5 and 6.0% protein) from vacuum-condensed milk (CM1 and CM2) and ultrafiltered milk (UF1 and UF2) along with a 3.2% protein control. The samples were analyzed for fat, protein, ash, calcium, and salt contents at 1 wk. Moisture content, soluble protein, meltability, sodium dodecyl sulfate-PAGE, and counts of lactic acid bacteria and nonstarter lactic acid bacteria were performed on samples at 1, 18, and 30 wk. At 1 wk, the moisture content ranged from 39.2 (control) to 36.5% (UF2). Fat content ranged from 31.5 to 32.4% with no significant differences among treatments, and salt content ranged from 1.38 to 1.83% with significant differences. Calcium content was higher in UF cheeses than in CM cheeses followed by control, and it increased with protein content in cheese milk. Ultrafiltered milk produced cheese with higher protein content than CM milk. The soluble protein content of all cheeses increased during 30 wk of ripening. Condensed milk cheeses exhibited a higher level of proteolysis than UF cheeses. Sodium dodecyl sulfate-PAGE showed retarded proteolysis with increase in level of concentration. The breakdown of alphas1- casein and alphas1-I-casein fractions was highest in the control and decreased with increase in protein content of cheese milk, with UF2 being the lowest. There was no significant degradation of beta-casein. Overall increase in proteolytic products was the highest in control, and it decreased with increase in protein content of cheese milk. No significant differences in the counts of lactic starters or nonstarter lactic acid bacteria were observed. Extent as well as method of concentration influenced the melting characteristics of the cheeses. Melting was greatest in the control cheeses and least in cheese made from condensed milk and decreased with increasing level of milk protein concentration. Vacuum condensing and ultrafiltration resulted in Cheddar cheeses of distinctly different quality. Although both methods have their advantages and disadvantages, the selection of the right method would depend upon the objective of the manufacturer and intended use of the cheese.  相似文献   

13.
María Mercedes Milesi 《LWT》2007,40(8):1427-1433
A new miniature cheese model obtained under controlled microbiological conditions was proposed, characterized and tested for reproducibility. Optimal heat treatment of cheesemilk was defined, as well as maximal ripening time. Miniature cheeses were obtained with batch pasteurized milk (65 °C, 30 min) and ripened at 5 °C. Lactic and nonlactic microbial populations were monitored by plate counts. Proteolysis was assessed by nitrogen fractions, electrophoresis and liquid chromatography, and a sniffing test was applied to evaluate aroma. Coliform bacteria decreased during ripening but moulds and yeasts increased up to 104 cfu/g after 60 d, which defined the end of ripening period. Starter population remained constant during all ripening (109 cfu/g), while nonstarter lactic acid bacteria increased from ∼102 to 104 cfu/g. Soluble nitrogen levels at pH 4.6, in trichloracetic acid (0.73 mol/l) and in phosphotungtic acid (0.009 mol/l) were 151, 67, and 10 g/1000 g of the total nitrogen, respectively, after 60 d of ripening, which are usual values for soft cheeses. Proteolytic patterns as measured by electrophoresis were also similar to those of standard cheeses, as well as the aroma of the products. Peptide profiles revealed that the areas of most peaks increased with ripening time. The proposed model showed to be suitable for the production of mini cheese specimens for laboratory testing of cultures and enzymes in similar conditions to their real environment in the food matrix.  相似文献   

14.
15.
Commercial milk protein concentrate (MPC) was used to standardize whole milk for reduced-fat Cheddar cheesemaking. Four replicate cheesemaking trials of three treatments (control, MPC1, and MPC2) were conducted. The control cheese (CC) was made from standardized milk (casein-to-fat ratio, C/F approximately 1.7) obtained by mixing skim milk and whole milk (WM); MPC1 and MPC2 cheeses were made from standardized milk (C/F approximately 1.8) obtained from mixing WM and MPC, except that commercial mesophilic starter was added at the rate of 1% to the CC and MPC1 and 2% to MPC2 vats. The addition of MPC doubled cheese yields and had insignificant effects on fat recoveries (approximately 94% in MPC1 and MPC2 vs. approximately 92% in CC) but increased significantly total solids recoveries (approximately 63% in CC vs. 63% in MPC1 and MPC2). Although minor differences were noted in the gross composition of the cheeses, both MPC1 and MPC2 cheeses had lower lactose contents (0.25 or 0.32%, respectively) than in CC (0.60%) 7 d post manufacture. Cheeses from all three treatments had approximately 10(9) cfu/g initial starter bacteria count. The nonstarter lactic acid bacteria (NSLAB) grew slowly in MPC1 and MPC2 cheeses during ripening compared to CC, and at the end of 6 mo of ripening, numbers of NSLAB in the CC were 1 to 2 log cycles higher than in MPC1 and MPC2 cheeses. Primary proteolysis, as noted by water-soluble N contents, was markedly slower in MPC1 and MPC2 cheeses compared to CC. The concentrations of total free amino acids were in decreasing order CC > MPC2 > MPC1 cheeses, suggesting slower secondary proteolysis in the MPC cheeses than in CC. Sensory analysis showed that MPC cheeses had lower brothy and bitter scores than CC. Increasing the amount of starter bacteria improved maturity in MPC cheese.  相似文献   

16.
This study investigated population dynamics of starter, adjunct, and nonstarter lactic acid bacteria (NSLAB) in reduced-fat Cheddar and Colby cheese made with or without a Lactobacillus casei adjunct. Duplicate vats of cheese were manufactured and ripened at 7 degrees C. Bacterial populations were monitored periodically by plate counts and by DNA fingerprinting of cheese isolates with the random amplified polymorphic DNA technique. Isolates that displayed a unique DNA fingerprint were identified to the species level by partial nucleotide sequence analysis of the 16S rRNA gene. Nonstarter biota in both cheese types changed over time, but populations in the Colby cheese showed a greater degree of species heterogeneity. The addition of the L. casei adjunct to cheese milk at 10(4) cfu/ml did not completely suppress "wild" NSLAB populations, but it did appear to reduce nonstarter species and strain diversity in Colby and young Cheddar cheese. Nonetheless, nonstarter populations in all 6-mo-old cheeses were dominated by wild L. casei. Interestingly, the dominant strains of L. casei in each 6-mo-old cheese appeared to be affected more by adjunct treatment and not cheese variety.  相似文献   

17.
The occurrence of l(+)-lactate crystals in hard cheeses continues to be an expense to the cheese industry. Salt tolerance of the starter culture and the salt-to-moisture ratio (S:M) in cheese dictate the final pH of cheese, which influences calcium lactate crystal (CLC) formation. This research investigates these interactions on the occurrence of CLC. A commercial starter was selected based on its sensitivity to salt, less than and greater than 4.0% S:M. Cheddar cheese was made by using either whole milk (3.25% protein, 3.85% fat) or whole milk supplemented with cream and ultrafiltered milk (4.50% protein, 5.30% fat). Calculated amounts of salt were added at milling (pH 5.40 ± 0.02) to obtain cheeses with less than 3.6% and greater than 4.5% S:M. Total and soluble calcium, total lactic acid, and pH were measured and the development of CLC was monitored in cheeses. All cheeses were vacuum packaged and gas flushed with nitrogen gas and aged at 7.2°C for 15 wk. Concentration of total lactic acid in high S:M cheeses ranged from 0.73 to 0.80 g/100 g of cheese, whereas that in low S:M cheeses ranged from 1.86 to 1.97 g/100 g of cheese at the end of 15 wk of aging because of the salt sensitivity of the starter culture. Concentrated milk cheeses with low and high S:M exhibited a 30 to 28% increase in total calcium (1,242 and 1,239 mg/100 g of cheese, respectively) compared with whole milk cheeses with low and high S:M (954 and 967 mg/100 g of cheese, respectively) throughout aging. Soluble calcium was 41 to 35% greater in low S:M cheeses (low-salt whole milk cheese and low-salt concentrated milk cheese; 496 and 524 mg/100 g of cheese, respectively) compared with high S:M cheeses (high-salt whole milk cheese and high-salt concentrated milk cheese; 351 and 387 mg/100 g of cheese, respectively). Because of the lower pH of the low S:M cheeses, CLC were observed in low S:M cheeses. However, the greatest intensity of CLC was observed in gas-flushed cheeses made with milk containing increased protein concentration because of the increased content of calcium available for CLC formation. These results show that the occurrence of CLC is dependent on cheese milk concentration and pH of the cheese, which can be influenced by S:M and cheese microflora.  相似文献   

18.
Lactobacillus casei cells were immobilized on fruit (apple and pear) pieces and the immobilized biocatalysts were used separately as adjuncts in probiotic cheese making. In parallel, cheese with free L. casei cells and cheese only from renneted milk were prepared. The produced cheeses were ripened at 4 to 6°C and the effect of salting and ripening time on lactose, lactic acid, ethanol concentration, pH, and lactic acid bacteria viable counts were investigated. Fat, protein, and moisture contents were in the range of usual levels of commercial cheeses. Reactivation in whey of L. casei cells immobilized on fruit pieces after 7 mo of ripening showed a higher rate of pH decrease and lower final pH value compared with reactivation of samples withdrawn from the remaining mass of the cheese without fruit pieces, from cheese with free L. casei, and rennet cheese. Preliminary sensory evaluation revealed the fruity taste of the cheeses containing immobilized L. casei cells on fruit pieces. Commercial Feta cheese was characterized by a more sour taste, whereas no significant differences concerning cheese flavor were reported by the panel between cheese containing free L. casei and rennet cheese. Salted cheeses scored similar values to commercial Feta cheese, whereas unsalted cheese scores were significantly lower, but still acceptable to the sensory panelists.  相似文献   

19.
The nonstarter lactic acid bacteria Lactobacillus plantarum CC3M8, Lactobacillus paracasei CC3M35, and Lactobacillus casei LC01, previously isolated from aged Caciocavallo Pugliese cheese or used in cheesemaking, were used as adjunct cultures (AC) or attenuated (by sonication treatment) adjunct cultures (AAC) for the manufacture of Caciocavallo Pugliese cheese on an industrial scale. Preliminary studies on the kinetics of growth and acidification and activities of several enzymes of AAC were characterized in vitro. As shown by the fluorescence determination of live versus dead or damaged cells and other phenotype features, attenuation resulted in a portion of the cells being damaged and a portion of the cells being capable of growing with time. Compared with the control cheese (without adjunct cultures) and the cheese with AAC, the addition of AC resulted in a lower pH after manufacture, which altered the gross composition of the cheese. As shown by plate count and confirmed by random amplification of polymorphic DNA-PCR, the 3 species of nonstarter lactobacilli persisted during ripening but the number of cultivable cells varied between AC and AAC. Slight differences were found between cheeses regarding primary proteolysis. The major differences between cheeses were the accumulation of free amino acids and the activity levels of several enzymes, which were highest in the Caciocavallo Pugliese cheeses made with the addition of AAC. As shown by triangle test, the sensory properties of the cheese made with AAC at 45d did not differ from those of the control Caciocavallo Pugliese cheese at 60d of ripening. In contrast, the cheese made with AC at 45d differed from both the Caciocavallo Pugliese cheese without adjuncts and the cheese made with AAC. Attenuated adjunct cultures are suitable for accelerating the ripening of Caciocavallo Pugliese cheese without modifying the main features of the traditional cheese.  相似文献   

20.
《LWT》2004,37(2):247-253
Organic acids of cheeses made from raw (RA), pasteurized (PA; 72°C, 15 s) or pressure-treated (PR; 500 MPa, 15 min, 20°C) goats’ milk were qualitatively and quantitatively assessed during ripening. Nine organic acids (citric, pyruvic, malic, lactic, formic, acetic, uric, propionic and butyric) were analysed in each sample by HPLC.Milk treatment did not affect the total organic acids content of 1-day-old cheeses, which increased steadily from day 1 to day 60. At the end of ripening, RA and PR milk cheeses both exhibited higher concentration of organic acids than in those made from PA milk.Lactic acid was found in higher concentration in PR milk cheese from 30 days of ripening. The RA milk cheese, that showed the highest nonstarter lactic acid bacteria counts, were characterized by an elevated amount of propionic and acetic acids. These cheeses also were negatively correlated with both pyruvic and citric acid contents. The PA milk cheese showed a high level of malic acid, and was clearly differentiate from RA and PR milk cheeses by its low level of butyric acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号