首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Saturated and unsaturated fatty acid supplements (FS) were evaluated for effects on yield of milk and milk components, concentration of milk components including milk fatty acid profile, and energy balance. Eight ruminally and duodenally cannulated cows and 8 noncannulated cows were used in a replicated 4 × 4 Latin square design experiment with 21-d periods. Treatments were control and a linear substitution of 2.5% fatty acids from saturated FS (SAT; prilled, hydrogenated free fatty acids) for partially unsaturated FS (UNS; calcium soaps of long-chain fatty acids). The SAT treatment did not change milk fat concentration, but UNS linearly decreased milk fat in cannulated cows and tended to decrease milk fat in noncannulated cows compared with control. Milk fat depression with UNS corresponded to increased concentrations of trans-10, cis-12 conjugated linoleic acid and trans C18:1 fatty acids in milk. Milk fat profile was similar for SAT and control, but UNS decreased concentration of short- and medium-chain FA. Digestible energy intake tended to decrease linearly with increasing unsaturated FS in cannulated and noncannulated cows. Increasing unsaturated FS linearly increased empty body weight and net energy gain in cannulated cows, whereas increasing saturated FS linearly increased plasma insulin. Efficiency of conversion of digestible energy to milk tended to decrease linearly with increasing unsaturated FS for cannulated cows only. Addition of SAT provided little benefit to production and energy balance, whereas UNS decreased energy intake and milk energy yield.  相似文献   

2.
The relationships between pretrial milk yield and effects of dietary forage-to-concentrate ratio on dry matter intake (DMI), digestion, and milk yield were evaluated using 32 Holstein cows in a crossover design with two 16-d periods. Cows were 197 +/- 55 (mean +/- SD) days in milk at the beginning of the experiment. Milk yield averaged 33.9 kg/d and ranged from 16.5 to 55.0 kg/d for the 4 d before initiation of treatments. Treatments were diets with forage-to-concentrate ratios of 67:33 and 44:56. Forages were alfalfa silage and corn silage, each at 50% of forage dry matter (DM). Neutral detergent fiber (NDF) concentrations of high-forage and low-forage diets were 30.7 and 24.3% of DM, respectively. Dry matter intake was 1.7 kg/d higher for cows fed the low-forage diet. Milk yield was 2.3 kg/d greater on low forage than on high forage, but 3.5% fat-corrected milk yield and yield of milk fat were not different between treatments. Individual DMI response to the low-forage diet relative to the high-forage diet (low-high) was positively and linearly related to pretrial fat-corrected milk yield, but fat-corrected milk yield response demonstrated a quadratic relationship with pretrial fat-corrected milk yield. Milk yield responded more positively to low forage among low- and high-producing cows than among moderate-producing cows. Energy partitioned to body reserves and to milk, and passage rate of indigestible NDF, also responded to dietary forage level in quadratic relationships with pretrial milk energy output. Individual responses of intake, production, and fiber digestion to a change in forage-to-concentrate ratio were dependent on production level.  相似文献   

3.
The effects of dietary palmitic and stearic acids on feed intake, yields of milk and milk components, and feed efficiency of dairy cows were evaluated in an experiment with a crossover arrangement of treatments with a covariate period. Cows with a wide range of milk production (38 to 65 kg/d) were used to determine if response to fat supplementation varied according to production level. Thirty-two Holstein cows (143 ± 61 d in milk) were assigned randomly to a treatment sequence within level of milk production. Treatments were diets supplemented (2% of diet dry matter) with palmitic acid (PA; 97.9% C16:0) or stearic acid (SA; 97.4% C18:0). Treatment periods were 21 d and cows were fed a nonfat supplemented diet for 14 d immediately before the first treatment period. The final 4 d of each period were used for sample and data collection. Milk production measured during the covariate period (preliminary milk yield) was used as the covariate. No interactions were detected between treatment and preliminary milk yield for the production response variables measured. Compared with SA, the PA treatment increased milk fat concentration (3.66 vs. 3.55%) and yield (1.68 vs. 1.59 kg/d), and 3.5% fat-corrected milk yield (47.5 vs. 45.6 kg/d). Treatment did not affect dry matter intake, milk yield, milk protein yield, body weight, or body condition score. Milk protein concentration was lower for PA compared with SA treatment (3.24 vs. 3.29%). The PA treatment increased feed efficiency (3.5% fat-corrected milk yield/dry matter intake) compared with SA (1.48 vs. 1.40). The increase in milk fat yield by PA was entirely accounted for by a 24% increase in 16-carbon fatty acid output into milk. Yields of de novo (3.2%) and preformed fatty acids (2.9%) were only slightly decreased by PA relative to SA. The PA treatment increased plasma concentration of nonesterified fatty acids (96.3 vs. 88.2 μEq/L) and glucose (56.6 vs. 55.7 mg/dL) compared with SA, but insulin and β-hydroxybutyrate were not altered by the treatments. Results demonstrate that palmitic acid is more effective than stearic acid in improving milk fat concentration and yield as well as efficiency of feed conversion to milk. Responses were independent of production level and without changes in body condition score or body weight. Further studies are required to test the consistency of these responses across different types of diets.  相似文献   

4.
《Journal of dairy science》2022,105(9):7446-7461
Biohydrogenation-induced milk fat depression (MFD) is a reduction in milk fat synthesis caused by bioactive fatty acids (FA) produced during altered ruminal microbial metabolism of unsaturated FA. The methionine analog 2-hydroxy-4-(methylthio)butanoate (HMTBa) has been shown to reduce the shift to the alternate biohydrogenation pathway and maintain higher milk fat yield in high-producing cows fed diets lower in fiber and higher in unsaturated FA. The objective of this experiment was to verify the effect of HMTBa on biohydrogenation-induced MFD and investigate associated changes in rumen environment and fermentation. Twenty-two rumen cannulated high-producing Holstein cows [168 ± 66 d in milk; 42 ± 7 kg of milk/d (mean ± standard deviation)] were used in a randomized design performed in 2 blocks (1 = 14 cows, 2 = 8 cows). Treatments were control (corn carrier) and HMTBa (0.1% of diet dry matter). The experiment included a 7-d covariate period followed by 3 phases that fed diets with increasing risk of MFD. The diet during the covariate and low-risk phase (7 d) was 32% neutral detergent fiber with no additional oil. The diet during the moderate-risk phase (17 d) was 29% neutral detergent fiber with 0.75% soybean oil. Soybean oil was increased to 1.5% for the last 4 d. The statistical model included the random effect of block and time course data were analyzed with repeated measures including the random effect of cow and tested the interaction of treatment and time. There was no effect of block or interaction of block and treatment or time. There was no overall effect of treatment or treatment by time interaction for dry matter intake, milk yield, and milk protein concentration and yield. Overall, HMTBa increased milk fat percent (3.2 vs. 3.6%) and yield (1,342 vs. 1,543 g/d) and there was no interaction of treatment and dietary phase. Additionally, HMTBa decreased the concentration of trans-10 18:1 in milk fat and rumen digesta. Average total ruminal concentration of volatile FA across the day and total-tract dry matter and fiber digestibility were not affected by HMTBa, but HMTBa increased average rumen butyrate and decreased propionate concentration and increased total protozoa abundance. Additionally, HMTBa increased the fractional rate of α-linoleic acid clearance from the rumen following a bolus predominantly driven by a difference in the first 30 min. Plasma insulin was decreased by HMTBa. In conclusion, HMTBa prevented the increase in trans FA in milk fat associated with MFD through a mechanism that is independent of total volatile FA concentration, but involves modification of rumen biohydrogenation. Decreased propionate and increased butyrate and ruminal protozoa may also have functional roles in the mechanism.  相似文献   

5.
The effects of feeding rumen-inert fat sources on production responses of lactating dairy cows have been well reported but less thoroughly described in lactating dairy buffalo. The objective of this study was to investigate the effect of oil and 2 different rumen-inert fat sources on dry matter intake, milk yield, milk composition, and milk fatty acid (FA) profile in Nili Ravi buffalo. Twelve multiparous mid-lactating Nili Ravi buffaloes received 4 treatments in a 4 × 4 Latin square design with a period length of 21 d. The treatments were (1) the basal diet without supplementation of oil or fats (CTRL), (2) the basal diet supplemented with canola oil (CO), (3) the basal diet supplemented with calcium salts of palm FA (Ca-FA), and (4) the basal diet supplemented with high palmitic acid (PA). Dry matter intake was decreased by 4.4% in the CO compared with Ca-FA and PA. Milk yield and milk fat yield were increased by 7.8 and 14.3%, respectively, in CO, Ca-FA, and PA compared with the CTRL. Milk fat content increased by 7.5%, whereas milk fat yield tended to increase with the supplementation of Ca-FA and PA compared with CO. No effect on milk yield and milk composition was observed in Ca-FA versus PA treatments. The yield of medium-chain FA was increased by Ca-FA and PA versus CO. The CO treatment increased the yield of long-chain FA compared with Ca-FA and PA treatments. Plasma glucose level was higher in CO, Ca-FA, and PA compared with the CTRL. In conclusion, feeding rumen-inert fats in the lactating buffalo diet proved to be a useful strategy to increase the 3.5% fat-corrected milk yield due to the higher milk fat content in this study.  相似文献   

6.
Thirty-one Holstein cows (six ruminally cannulated) were used to evaluate milk fatty acids (FA) composition and conjugated linoleic acid (CLA) content on three dietary treatments: 1) total mixed rations (TMR), 2) pasture (Avena sativa L.) plus 6.7 kg DM/d of corn-based concentrate (PCorn), and 3) pasture plus PCorn with 0.8 kg DM/d of Ca salts of unsaturated FA replacing 1.9 kg DM/d of corn (PFat). No differences were found in total (22.4 kg/d) or pasture (18.5 kg/d) dry matter intake, ruminal pH, or total volatile fatty acids concentrations. Fat supplementation did not affect pasture neutral detergent fiber digestion. Milk production did not differ among treatments (19.9 kg/d) but 4% fat-corrected milk was lower for cows fed the PFat compared to cows fed the TMR (16.1 vs. 19.5 kg/d) primarily because of the lower milk fat percentage (2.56 vs. 3.91%). Milk protein concentration was higher for cows fed the TMR than those on both pasture treatments (3.70 vs. 3.45%). Milk from the cows fed the PCorn had a lower content of short- (11.9 vs. 10.4 g/100 g) and medium-chain (56.5 vs. 47.6 g/100 g) FA, and a higher C18:3 percentage (0.07 vs. 0.57 g/100 g) compared with TMR-fed. Cows fed the PFat had the lowest content of short- (8.85 g/100 g) and medium-chain (41.0 g/100 g) FA, and the highest of long-chain FA (51.4 g/100 g). The CLA content was higher for cows in PCorn treatment (1.12 g/100 g FA) compared with cows fed the TMR (0.41 g/100 g FA), whereas the cows fed the PFat had the highest content (1.91 g/100 g FA). Pasture-based diets increased the concentrations of long-chain unsaturated FA and CLA in milk fat. The partial replacement of corn grain by Ca salts of unsaturated FA in grazing cows accentuated these changes. However, those changes in milk FA composition were related to a depression in milk fat.  相似文献   

7.
The objective of this experiment was to evaluate productive and reproductive effects of replacing solvent-extracted soybean meal (SSBM) with extruded soybean meal (ESBM) in a total mixed ration for early-lactation dairy cows. Thirty-four Holstein cows (12 primiparous and 22 multiparous) were used in a randomized complete block design experiment with 17 cows per treatment. Feeding was ad libitum for 5 to 10% refusals. A fresh-cow diet was fed the first 21 d in milk followed by a lactation diet from 22 to 60 d in milk. Milk and dry matter intake data were collected throughout the experiment, and samples were collected for blood chemistry and amino acid profile, nutrient digestibility, nitrogen utilization, and enteric methane emission using the GreenFeed system (C-Lock Inc., Rapid City, SD). Dry matter intake, milk yield, and feed efficiency were not different between SSBM and ESBM. Energy-corrected milk yield and efficiency were also not different between diets. Diet had no effect on milk composition, except that milk true protein yield was decreased by ESBM. Enteric methane emission, yield, and intensity were not different between SSBM and ESBM. Because of its greater fat content, ESBM triggered expected changes in milk fatty acid (FA) profile: decreased sum of C16, saturated, and odd- and branched-chain FA and increased sum of preformed FA, polyunsaturated, and trans FA. The ESBM diet increased or tended to increase some essential amino acids in plasma. In this study, ESBM did not affect dry matter intake and did not improve lactational performance or onset of ovarian function in early-lactation dairy cows, and it decreased milk protein yield, possibly due to greater unsaturated FA intake compared with SSBM.  相似文献   

8.
《Journal of dairy science》2019,102(11):9842-9856
The objective of our study was to evaluate the effects of altering the dietary ratio of palmitic (C16:0) and oleic (cis-9 C18:1) acids on nutrient digestibility, energy partitioning, and production responses of lactating dairy cows. Cows were blocked by milk yield and assigned to 3 groups (12 cows per group) in a main plot: low (45.2 ± 1.7 kg/d), medium (53.0 ± 1.6 kg/d), and high (60.0 ± 1.9 kg/d). Within each production group, a truncated Latin square arrangement of fatty acid (FA) treatments was used in 2 consecutive 35-d periods. The FA treatments supplemented at 1.5% of diet dry matter were (1) 80:10 (80% C16:0 + 10% cis-9 C18:1), (2) 73:17 (73% C16:0 + 17% cis-9 C18:1), (3) 66:24 (66% C16:0 + 24% cis-9 C18:1), and (4) 60:30 (60% C16:0 + 30% cis-9 C18:1). Treatment × production group interactions were observed for yields of milk, fat-corrected milk, energy-corrected milk, milk fat, milk protein, and milk lactose and energy partitioned to milk. Increasing cis-9 C18:1 in FA treatments reduced fat-corrected milk, energy-corrected milk, and milk energy output in low-producing cows but increased these in high-producing cows. Increasing cis-9 C18:1 in FA treatments did not affect milk yield, milk protein yield, and milk lactose yield in low- and medium-producing cows but increased these in high-producing cows. Regardless of production level, there was no effect of treatments on dry matter intake; however, increasing cis-9 C18:1 in FA treatments increased body weight change and body condition score change. Increasing cis-9 C18:1 in FA treatments increased total FA digestibility due to a linear increase in 16- and 18-carbon FA digestibilities. Interactions between FA treatments and production level were observed for the yield of milk fat and milk FA sources. In low-producing cows, increasing cis-9 C18:1 in FA treatments decreased milk fat yield due to a decrease in de novo and mixed milk FA without changes in preformed milk FA. In contrast, in high-producing cows, increasing cis-9 C18:1 in FA treatments increased milk fat yield due to an increase in de novo and preformed milk FA. Our results indicate that high-producing dairy cows (averaging 60 kg/d) responded better to a fat supplement containing more cis-9 C18:1, whereas low-producing cows (averaging 45 kg/d) responded better to a supplement containing more C16:0.  相似文献   

9.
Previous research has shown that replacing up to 5% [of dietary dry matter (DM)] corn with cane molasses can partially alleviate milk fat depression when cows are fed high-concentrate, low-fiber rations containing dried distillers grains with solubles. The primary objective of this study was to determine whether dietary molasses alters milk fatty acid (FA) profile or improves solids-corrected milk yield in the context of a more typical lactation diet. A secondary objective was to assess production responses to increasing rumen-degradable protein supply when molasses was fed. Twelve primiparous and 28 multiparous Holstein cows (196 ± 39 d in milk) were blocked by parity and assigned to 4 pens. Pens were randomly allocated to treatment sequence in a 4 × 4 Latin square design, balanced for carryover effects. Treatment periods were 21 d, with 17 d for diet adaptation and 4 d for sample and data collection. Treatments were a control diet, providing 20% dried distillers grains with solubles (DM basis), 35% neutral detergent fiber, 30% starch, and 5% ether extract; a diet with 4.4% cane molasses replacing a portion of the corn grain; a diet with 2.9% molasses supplement containing 32% crude protein on a DM basis; and a diet with 5.8% (DM basis) molasses supplement. Animal-level data were analyzed using mixed models, including the fixed effect of treatment and the random effects of period, pen, period × pen interaction, and cow within pen to recognize pen as the experimental unit. Diets did not alter DM intake, milk production, milk component concentration or yield, feed efficiency (DM intake/milk yield), body weight change, or milk somatic cell count. Milk stearic acid content was increased by the diet containing 5.8% molasses supplement compared with the control diet and the diet containing 2.9% molasses supplement, but the magnitude of the effect was small (12.27, 11.75, and 11.69 ± 0.29 g/100 g of FA). Production data revealed a dramatic effect of period on milk fat content and yield. Milk fat content decreased during the course of the experiment (least squares means = 3.16, 2.81, 2.93, and 2.64 ± 0.09% for periods 1 to 4, respectively), as did milk fat yield (1.20, 1.03, 0.98, and 0.79 ± 0.05 kg/d). Exchanging molasses-based products for corn at 2.9 to 5.8% of dietary DM did not influence productivity and had minute effects on milk FA profile. The limited responses in this study may have been influenced by dietary unsaturated FA content or the advancing stage of lactation of cows in the study.  相似文献   

10.
Deoiled soy lecithin is a feed additive enriched in phospholipids. Our study evaluated the effects of dietary deoiled soy lecithin supplementation on (1) milk production and composition, (2) plasma and milk fatty acid (FA) content and yield, and (3) apparent FA digestibility and absorption in lactating dairy cows fed fractionated palm fat. In a split-plot Latin square design, 16 Holstein cows (160 ± 7 days in milk; 3.6 ± 1.2 parity) were randomly allocated to a main plot receiving a corn silage and alfalfa haylage-based diet with palm fat containing either moderate (MPA) or high palmitic acid (HPA) content at 1.75% of ration dry matter (72 or 99% palmitic acid, respectively; n = 8/palm fat diet). On each palm fat diet, deoiled soy lecithin was top-dressed at 0, 0.12, 0.24, or 0.36% of ration dry matter in a replicated 4 × 4 Latin square design. Following a 14-d covariate period, lecithin supplementation spanned 14 d, with milk and blood collected during the final 3 d. Milk composition and pooled plasma markers were measured. The statistical model included the fixed effects of palm fat type, lecithin dose, period, and the interaction between palm fat type and lecithin dose. The random effect of cow nested within palm fat group was also included. Lecithin linearly decreased dry matter intake. In cows fed HPA, lecithin feeding reduced milk fat content and tended to decrease milk fat yield. Although no changes in milk yield were observed, a quadratic reduction in 3.5% fat-corrected milk was observed with increasing lecithin dose. Lecithin linearly increased energy-corrected milk efficiency in cows fed MPA. Lecithin supplementation also decreased milk urea nitrogen, relative to unsupplemented cows. The proportion of 16-carbon FA in milk fat decreased linearly with lecithin dose, whereas 18-carbon FA increased linearly. Lecithin reduced de novo FA (<16-carbon) content and tended to increase preformed FA (>16-carbon) content in a linear manner. Compared with MPA, HPA diets reduced apparent total and 16-carbon FA digestibility and absorption. Deoiled soy lecithin feeding did not modify FA digestibility or absorption. Our observations suggest that soy lecithin feeding modifies rumen digestion to reduce dry matter intake and change milk composition.  相似文献   

11.
The objectives were to evaluate the effects of source of fatty acids (FA) on embryo quality of dairy cows. A total of 154 Holstein cows were assigned randomly to 1 of 2 sources of FA supplemented at 2% of the dietary dry matter as calcium salts of either palm oil (PO) or linoleic and trans-octadecenoic acids (LTFA) from 25 d prepartum to 80 d in milk (DIM). Cows were presynchronized beginning at 30 ± 3 DIM and then subjected to the Ovsynch protocol beginning on d 39 ± 3 postpartum. Timed artificial insemination was performed 12 h after the final GnRH of the Ovsynch protocol with semen from a single sire of proven fertility. The uteri of cows were nonsurgically flushed at 5 d after artificial insemination for collection of embryos-oocytes. Ovaries were examined by ultrasonography throughout the synchronization protocol. Blood was sampled and plasma was analyzed for concentrations of metabolites and hormones. The body condition score and yields of milk and milk components were measured throughout the first 90 DIM. Treatment did not affect concentrations of nonesterified FA, β-hydroxybutyrate, glucose, and progesterone in plasma. Body condition was similar between treatments. Milk production was similar between treatments, but concentrations of fat in milk and yields of fat and 3.5% fat-corrected milk decreased in cows fed LTFA, whereas concentration of true protein increased. Source of dietary FA did not influence ovulatory responses, diameter of the ovulatory follicle, and diameter of the corpus luteum during synchronization. Embryo-oocyte recovery relative to the number of corpora lutea did not differ between treatments. Fertilization tended to increase in cows fed LTFA compared with cows fed PO. Feeding LTFA improved the proportion of excellent-, good-, and fair-quality embryos, and embryos from cows fed LTFA had a greater number of blastomeres than embryos from cows fed PO. Feeding a more unsaturated source of FA improved fertilization and embryo development in lactating dairy cows, despite similar indicators of metabolic status.  相似文献   

12.
Forty-five multiparous Holstein cows were assigned to one of 3 treatments in a randomized complete block design. The objective was to evaluate the effects of sodium monensin (M) and propylene glycol (PPG) during the prepartum period on performance and metabolic parameters during the late dry and first 9 wk postpartum for cows receiving M postpartum. Treatments were: control (C), M in a controlled-release capsule to deliver 335 +/- 33 mg/d for approximately 100 d, and 300 mL/d of PPG drenched orally. Treatments started at 35 and 21 d prior to the expected date of calving for cows receiving M and PPG, respectively. To ensure that all treatments would be restricted to the prepartum period, C and PPG cows received a M controlled-release capsule in the first 24 h after calving. Prepartum propylene glycol administration increased concentrations of glucose and insulin, and decreased beta-hydroxybutyrate and nonesterified fatty acids in plasma prepartum. Milk production was similarly affected by treatments. However, prepartum M treated cows tended to produce more 3.5% fat-corrected milk compared with control, but similar to PPG. Milk fat content and yield tended to be greater for cows that received M prepartum than for C cows, while PPG cows were similar to M and C. Prepartum administration of M decreased milk protein content, but no effect was observed on protein yield.  相似文献   

13.
Thirteen multiparous Holstein cows were used in a crossover design that tested the effect of lysolecithin in diets differing in neutral detergent fiber (NDF) and unsaturated fatty acid (FA) concentrations. Experimental periods were 20 d in length and included two 10-d phases. A standard fiber and lower fat diet was fed the first 10 d (30.5% NDF, no added oil, lower-risk phase) and a lower NDF and higher oil diet was fed during the second 10 d (29.0% NDF and 2% oil from whole soybeans and soybean oil, high-risk phase). Treatments were control and 10 g/d of lysolecithin (LYSO) extended in a ground corn carrier. Milk was sampled on d 0, 5, and 10 of each phase for determination of fat and protein concentration and FA profile. We found no effect of treatment or treatment by time interaction for dry matter intake, milk yield, or milk protein concentration. A treatment by time interaction was observed for milk fat concentration and yield. Milk fat concentration was higher in LYSO on d 5 of the lower-risk phase, but decreased progressively in both treatments during the high-risk phase. Milk fat yield was not different among treatments during the lower-risk phase, but was lower in LYSO on d 15 and tended to be lower on d 20 during the high-risk phase. Concentrations of milk de novo FA decreased and preformed FA increased during the high-risk phase, but we found no effect of treatment or treatment by time interactions. We noted an effect of time, but no treatment or treatment by time interactions for milk trans FA isomers. Briefly, trans-11 C18:1 and cis-9,trans-11 conjugated linoleic acid progressively decreased as trans-10 C18:1 and trans-10,cis-12 conjugated linoleic acid progressively increased during the high-risk phase. The LYSO increased milk fat concentration when feeding a higher fiber and lower unsaturated FA diet, but decreased milk fat yield when feeding a lower fiber and higher unsaturated FA diet, although biohydrogenation pathways and capacity did not appear to be modified. The effect of lysolecithin on rumen fermentation warrants further investigation, but is not recommended when feeding lower fiber and higher unsaturated fat diets.  相似文献   

14.
Eight multiparous and 8 primiparous Holstein cows were used in a replicated 4 × 4 Latin square design with 4-wk periods to determine the effects on dairy cow performance of feeding corn germ (CG) compared with dried distillers grains with solubles (DDGS) or corn oil (CO). Four isolipidic dietary treatments were formulated: a control diet, a 14% corn germ diet (CGD), a 30% dry distillers grains with solubles diet (DGD), and a 2.5% corn oil diet (COD). All diets were formulated to contain 6.0% fat, with the fat in the control diet provided by a ruminally inert fat source. Dry matter intake was decreased by feeding the COD compared with the CGD; however, no difference in dry matter intake was observed among the control diet, the DGD, and the COD. Dietary treatments had no effect on milk yield, energy-corrected milk, or 4% fat-corrected milk. Feeding CG had no effect on milk fat percentage when compared with the control diet; however, milk fat percentage tended to decrease with DDGS and decreased with CO when compared with the CGD. Milk protein percentage decreased when cows were fed the COD compared with the control diet. Feeding CO tended to decrease milk fat yield compared with CG; however, dietary treatments had no effect on milk protein and lactose yield. Feed efficiency was not affected by dietary treatments and averaged 1.55 kg of energy-corrected milk/kg of dry matter intake. Feeding DDGS and CO increased the concentration of vaccenic and conjugated linoleic acid in milk fat. Concentrations of monounsaturated and polyunsaturated fatty acids in milk were increased in response to feeding the 3 corn coproducts. Fat from CG appears to be relatively protected in the rumen when compared with that from DDGS and CO and therefore will not affect the production of milk fat to the degree of the more available fat in DDGS and CO.  相似文献   

15.
The objective of this study was to evaluate whether providing chitosan (CHI) to cows fed diets supplemented with whole raw soybeans (WRS) would affect the nutrient intake and digestibility, ruminal fermentation and bacterial populations, microbial protein synthesis, N utilization, blood metabolites, and milk yield and composition of dairy cows. Twenty-four multiparous Holstein cows (141 ± 37.1 d in milk, 38.8 ± 6.42 kg/d of milk yield; mean ± SD) were enrolled to a 4 × 4 Latin square design experiment with 23-d periods. Cows were blocked within Latin squares according to milk yield, days in milk, body weight, and rumen cannula (n = 8). A 2 × 2 factorial treatment arrangement was randomly assigned to cows within blocks. Treatments were composed of diets with 2 inclusion rates of WRS (0 or 14% diet dry matter) and 2 doses of CHI (0 or 4 g/kg of dry matter, Polymar Ciência e Nutrição, Fortaleza, Brazil). In general, CHI+WRS negatively affected nutrient intake and digestibility of cows, decreasing milk yield and solids production. The CHI increased ruminal pH and decreased acetate to propionate ratio, and WRS reduced NH3-N concentration and acetate to propionate in the rumen. The CHI reduced the relative bacterial population of Butyrivibrio group, whereas WRS decreased the relative bacterial population of Butyrivibrio group, and Fibrobacter succinogenes, and increased the relative bacterial population of Streptococcus bovis. No interaction effects between CHI and WRS were observed on ruminal fermentation and bacterial populations. The CHI+WRS decreased N intake, microbial N synthesis, and N secreted in milk of cows. The WRS increased N excreted in feces and consequently decreased the N excreted in urine. The CHI had no effects on blood metabolites, but WRS decreased blood concentrations of glucose and increased blood cholesterol concentration. The CHI and WRS improved efficiency of milk yield of cows in terms of fat-corrected milk, energy-corrected milk, and net energy of lactation. The CHI increased milk concentration [g/100 g of fatty acids (FA)] of 18:1 trans-11, 18:2 cis-9,cis-12, 18:3 cis-9,cis-12,cis-15, 18:1 cis-9,trans-11, total monounsaturated FA, and total polyunsaturated FA. The WRS increased total monounsaturated FA, polyunsaturated FA, and 18:0 to unsaturated FA ratio in milk of cows. Evidence indicates that supplementing diets with unsaturated fat sources along with CHI negatively affects nutrient intake and digestibility of cows, resulting in less milk production. Diet supplementation with CHI or WRS can improve feed efficiency and increases unsaturated FA concentration in milk of dairy cows.  相似文献   

16.
Diet fermentability influences lactational responses to feeding corn distillers grains (CDG) to dairy cows. However, some measures of diet fermentability are inherently related to the concentration and characteristics of corn-based ingredients in the ration. Corn-based feeds have poor protein quality, unable to meet the essential AA requirements of lactating cows. We conducted a meta-analysis of treatment means (n = 44) from the scientific literature to evaluate responses in milk yield (MY) and milk true protein concentration and yield to dietary CDG. The test variable was the difference in response between the CDG diet mean and the control diet mean (0% CDG) within experiment. Fixed variables were CDG concentration of the diet [% of dietary dry matter (DM)] and crude protein (CP) concentration and fractions of CP based on origin (corn-based versus non-corn-based feeds) of control and CDG diets. Diets with CDG ranged from 4 to 42% CDG, DM basis. Non-corn-based dietary CP averaged 6.3 ± 3.32% of total DM. Milk yield and milk true protein yield responses to added CDG were maximized when approximately 8.5% of the total dietary DM was non-corn-based CP. Milk yield response peaked for higher-producing cows (>30.0 kg MY/cow per day) at 4.3% dietary corn-based CP, but decreased linearly for lower-producing cows (<30.0 kg MY/cow per day) as corn-based dietary CP increased. Milk true protein yield response decreased as corn-based dietary CP concentration increased but milk true protein concentration response was not decreased when CDG diets had more than 6.5% dietary non-corn-based CP. Overall, 8.5% dietary non-corn-based CP was necessary in lactation diets to maximize lactational responses to dietary CDG. The necessity of dietary non-corn-based CP to maximize milk and milk protein yields limits the amount of dietary corn-based CP, including that from CDG, which can be included in rations without overfeeding N.  相似文献   

17.
The objective of our study was to investigate the effects of sources of calcium salts of fatty acids (FA) on production, nutrient digestibility, energy balance, and carryover effects of early lactation grazing dairy cows. Treatment diets were offered from 3 to 16 wk postpartum (the treatment period), in which all cows grazed elephantgrass (Pennisetum purpureum ‘Cameroon’) and treatments were added to a concentrate supplement. The treatments were (1) control (concentrate without supplemental fat); (2) concentrate with calcium salts of soybean FA (CSSO); and (3) concentrate with calcium salts of palm FA (CSPO). From 17 to 42 wk postpartum (the carryover period), all cows received a common diet fed as a total mixed ration. During the treatment period, CSPO increased milk yield, milk fat yield, 3.5% fat-corrected milk, energy-corrected milk, and cumulative milk yield compared with control and CSSO. Treatment CSSO increased the yield of milk but did not affect 3.5% fat-corrected milk or energy-corrected compared with control. Also, CSSO decreased milk fat yield, dry matter intake, neutral detergent fiber digestibility, and body weight and body condition loss. Compared with control, both CSSO and CSPO increased feed efficiency (3.5% fat-corrected milk:dry matter intake), and CSPO increased feed efficiency compared with CSSO. When considering energy partitioning (as % energy intake), CSPO increased energy partitioning toward milk and increased energy mobilized from body reserves compared with control and CSSO. Furthermore, CSSO tended to reduce the mobilization of energy from body reserves compared with control. In the carryover period, no differences in milk composition were observed among treatments. A treatment by time interaction was observed during the carryover period for milk yield because cows on CSPO maintained higher production compared with control and CSSO cows until 30 wk postpartum; CSSO had a lower carryover effect sustaining higher milk yield compared with control until 25 wk postpartum. In conclusion, supplementation with CSPO was an effective strategy to increase energy intake and yields of milk and milk solids and it had a greater carryover effect. Supplementation with CSSO resulted in lower mobilization of reserves and less variation in body weight and body condition throughout lactation.  相似文献   

18.
This study evaluated the effects of increasing the physically effective neutral detergent fiber (peNDF) intake of lactating dairy cows fed high-concentrate diets supplemented with unsaturated fat on intake, eating behavior, diet sorting, chewing activity, total-tract digestibility, and milk production and composition. Diets contained 24% alfalfa hay (AH), 16% corn silage, 58% concentrate, and 2% yellow grease [dry matter (DM) basis], and dietary peNDF content was increased by varying the particle size (PS) of the AH. Nine multiparous cows averaging 87.8 ± 14.8 d in milk and weighing 653 ± 53 kg were randomly assigned to a triplicate 3 × 3 Latin square. During each 21-d period, cows were offered 1 of 3 total mixed rations that varied in PS of AH: fine, medium, and long, with a geometric mean particle length of 3.00, 3.57 and 3.87 mm, respectively. Increasing PS quadratically affected DM intake (DMI; 24.7, 25.4, and 23.7 kg/d, for fine, medium, and long, respectively), but cumulative DMI at 2, 4, and 6 h after feeding was similar across treatments, averaging 23.4, 35.6 and 46.4% of total DMI for the 3 time points, respectively. Increased peNDF intake did not affect feed sorting, but increased daily eating time, and eating and total chewing time per kilogram of DMI. Daily rumination time exhibited a quadratic response, with highest rumination time for the medium diet. Dietary PS had no effects on digestibility in the total tract, but we observed, for fine, medium, and long diets, quadratic responses in milk production (41.5, 43.3, and 40.4 kg/d), 4% fat-corrected milk production, and milk protein yield. Milk fat content decreased linearly with increasing PS, but milk fat content and fat:protein ratio were low for all treatments, likely due to adding unsaturated fat to a diet containing a high level of nonfiber carbohydrates (42.2% of DM). The composition, degree of saturation, and total conjugated linoleic acid content of fatty acids in milk fat were not affected by the change in peNDF content of the diet. The study indicates that a moderate increase in the PS of AH in diets containing unsaturated fat elevates peNDF intake and increases chewing activity, DMI, milk yield and milk fat production. However, the effects of dietary PS were quadratic, with maximum DMI and milk production observed with diets supplying 24% dietary peNDF (measured as the proportion of the ration retained on sieves >1.18 mm multiplied by dietary neutral detergent fiber content; DM basis).  相似文献   

19.
《Journal of dairy science》2021,104(12):12616-12627
Our objective was to determine whether abomasal infusions of increasing doses of oleic acid (cis-9 C18:1; OA) improved fatty acid (FA) digestibility and milk production of lactating dairy cows. Eight rumen-cannulated multiparous Holstein cows (138 d in milk ± 52) were randomly assigned to treatment sequence in a replicated 4 × 4 Latin square design with 18-d periods consisting of 7 d of washout and 11 d of infusion. Production and digestibility data were collected during the last 4 d of each infusion period. Treatments were 0, 20, 40, or 60 g/d of OA. We dissolved OA in ethanol before infusions. The infusate solution was divided into 4 equal infusions per day, occurring every 6 h, delivering the daily cis-9 C18:1 for each treatment. Animals received the same diet throughout the study, which contained (percent diet dry matter) 28% neutral detergent fiber, 17% crude protein, 27% starch, and 3.3% FA (including 1.8% FA from a saturated FA supplement containing 32% C16:0 and 52% C18:0). Infusion of OA did not affect intake or digestibility of dry matter and neutral detergent fiber. Increasing OA from 0 to 60 g/d linearly increased the digestibility of total FA (8.40 percentage units), 16-carbon FA (8.30 percentage units), and 18-carbon FA (8.60 percentage units). Therefore, increasing OA linearly increased absorbed total FA (162 g/d), 16-carbon FA (26.0 g/d), and 18-carbon FA (127 g/d). Increasing OA linearly increased milk yield (4.30 kg/d), milk fat yield (0.10 kg/d), milk lactose yield (0.22 kg/d), 3.5% fat-corrected milk (3.90 kg/d), and energy-corrected milk (3.70 kg/d) and tended to increase milk protein yield. Increasing OA did not affect the yield of mixed milk FA but increased yield of preformed milk FA (65.0 g/d) and tended to increase the yield of de novo milk FA. Increasing OA quadratically increased plasma insulin concentration with an increase of 0.18 μg/L at 40 g/d OA, and linearly increased the content of cis-9 C18:1 in plasma triglycerides by 2.82 g/100 g. In conclusion, OA infusion increased FA digestibility and absorption, milk fat yield, and circulating insulin without negatively affecting dry matter intake. In our short-term infusion study, most of the digestion and production measurements responded linearly, indicating that 60 g/d OA was the best dose. Because a quadratic response was not observed, improvements in FA digestibility and production might continue with higher doses of OA, which deserves further attention.  相似文献   

20.
We examined the effects of concentrate-to-forage ratio in dairy cow rations on milk-fat composition, with a specific focus on the structure of milk fat globules (MFG). Twenty-four Holstein cows, 153 d in milk, were assigned to 2 dietary treatments in a crossover design study. Treatments were (1) high-concentrate (65%), low-forage (35%; HCLF) diet and (2) low-concentrate (35%), high-forage (65%; LCHF) diet. The mean diameter of the MFG; plasma concentrations of insulin, glucose, and nonesterified fatty acids (FA); and the composition and concentrations of milk FA and polar lipids were determined. Concentrations of insulin were 56% higher, and those of nonesterified FA 46% lower, in the HCLF than in the LCHF diet. The milk yield was 8.5 kg/d higher and yields of fat, protein, and lactose were 180, 350, and 403 g/d higher, respectively, in the HCLF versus LCHF diet. Milk FA composition differed between treatments, with 1.5 and 1.0 percentage units higher saturated and polyunsaturated FA concentrations, respectively, in the HCLF versus LCHF diet. Mean MFG diameter tended to be smaller (0.2 μm) in the HCLF diet than in the LCHF diet, associated with increased daily phospholipids yield (34%), lower phosphatidylserine and higher phosphatidylcholine concentrations. In conclusion, the decreased milk and fat yields in the LCHF diet were associated with remodeling of the MFG membrane and with the secretion of larger MFG. Membrane remodeling of the mammary epithelium membranes seems to play a role in regulating MFG size.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号