首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Thirty-five multiparous Holstein cows were used to determine the role of mitochondrial carnitine palmitoyltransferase I (CPT I) in liver on peripartal adaptations of fatty acid metabolism. From dry-off to parturition, cows were fed a diet at either ad libitum (n = 17) or restricted intake (RI, 80% of calculated requirements for net energy; n = 18). After parturition, all cows were fed a lactation diet. At 4 d in milk (DIM), cows underwent a physical examination and were classified as healthy (n = 15) or having at least one periparturient disorder (PD; n = 17). Cows in the healthy group were assigned to either a control (n = 6) group or a ketosis induction (KI; n = 9) group. Cows with periparturient disorders were assigned to a third (PDC; n = 17) group. Cows in control and PDC groups were fed for ad libitum intake. Cows in KI were fed at 50% of their respective intake at d 4 postpartum starting from 5 DIM and continuing to signs of clinical ketosis or until 14 DIM; cows then were returned to ad libitum intake. Liver was biopsied at −30 d, 1 d, at signs of clinical ketosis or 14 d, and 28 d relative to parturition. Mitochondria were isolated by differential centrifugation. Activity of CPT I was 5.4 and 7.6 nmol of palmitoylcarnitine formed per min/mg of protein for ad libitum and RI, respectively, at −30 DIM. Sensitivity of CPT I to its inhibitor, malonyl CoA, did not differ between ad libitum and RI cows. Differences in CPT I activity between ad libitum and RI were no longer significant at 1 DIM. Postpartum CPT I activity and malonyl CoA sensitivity at 1 DIM, onset of clinical ketosis or 14 DIM, and 28 DIM were not affected by prepartum intake (ad libitum vs. RI), postpartum health status (healthy vs. PD), or ketosis induction status (control vs. KI vs. PDC). Activity of CPT I was positively correlated with liver total lipid, liver triglyceride, liver triglyceride to glycogen ratio, and serum nonesterified fatty acids. Activity of CPT I and dry matter intake were not correlated. Prepartum intake affected prepartum CPT I activity but not malonyl CoA sensitivity. Neither induction of primary ketosis nor periparturient disorders greatly affected CPT I activity or sensitivity, which indicates that alterations of CPT I may not be a major factor in the etiology of primary ketosis or other periparturient disorders.  相似文献   

2.
The objectives of this study were to determine the effects of far-off and close-up diets on prepartum metabolism, postpartum metabolism, and postpartum performance of multiparous Holstein cows. From dry-off to −25 d relative to expected parturition (far-off dry period), cows were fed a control diet to meet National Research Council (NRC) recommendations for net energy for lactation (NEL) at ad libitum intake (100NRC; n = 25) or a higher nutrient density diet, which was fed for either ad libitum intake to provide at least 150% of calculated NEL requirement (150NRC; n = 25) or at restricted intake to provide 80% of calculated NEL requirements (80NRC; n = 24). From −24 d relative to expected parturition until parturition (close-up period), cows were fed a diet that met or exceeded NRC nutrient recommendations at either ad libitum intake (n = 38) or restricted intake (n = 36) to provide 80% of the calculated NEL requirement. After parturition, all cows were fed a lactation diet and measurements were made through 56 d in milk (DIM). Prepartum metabolism was consistent with the plane of nutrition. During the first 10 DIM, far-off treatments had significant carryover effects on dry matter intake, energy balance, serum nonesterified fatty acid (NEFA) concentration, and serum β-hydroxybutyrate concentration. Cows with the lower energy balance during the far-off period (100NRC and 80NRC) had higher dry matter intake and energy balance and lower serum NEFA and β-hydroxybutyrate during the first 10 DIM. There were no effects of close-up diet and no interactions of far-off and close-up treatments. During the first 56 DIM, there were no residual effects of far-off or close-up diets on dry matter intake, milk yield or composition, body weight, body condition score, serum glucose and insulin concentrations, or muscle lipid concentration. Serum NEFA was higher for 150NRC than 80NRC; 100NRC was intermediate. Thus, the effects of far-off and close-up treatments on postpartum variables diminished as lactation progressed. Overfeeding during the far-off period had a greater negative impact on peripartum metabolism than did differences in close-up period nutrition.  相似文献   

3.
An experiment was conducted to determine the effect of prepartum plane of energy intake on metabolic profiles related to lipid metabolism and health in blood and liver. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A high energy diet [1.62 Mcal of net energy for lactation (NEL)/kg; 15% crude protein] was fed for either ad libitum intake or restricted intake to supply 150% (OVR) or 80% (RES) of energy requirements for dry cows in late gestation. To limit energy intake to 100% of National Research Council requirements at ad libitum intake, chopped wheat straw was included as 31.8% of dry matter for a control diet (CON; 1.21 Mcal of NEL/kg of dry matter; 14.2% crude protein). Regardless of parity group, OVR cows had greater concentrations of glucose, insulin, and leptin in blood prepartum compared with either CON or RES cows; however, dietary effects did not carry over to the postpartum period. Prepartum nonesterified fatty acids (NEFA) were lower in OVR cows compared with either CON or RES cows. Postpartum, however, OVR cows had evidence of greater mobilization of triacylglycerol (TAG) from adipose tissue as NEFA were higher than in CON or RES cows, especially within the first 10 d postpartum. Prepartum β-hydroxybutyrate (BHBA) was not affected by diet before parturition; however, within the first 10 d postpartum, OVR cows had greater BHBA than CON or RES cows. Prepartum diet did not affect liver composition prepartum; however, OVR cows had greater total lipid and TAG concentrations and lower glycogen postpartum than CON or RES cows. Frequency of ketosis and displaced abomasum was greater for OVR cows compared with CON or RES cows postpartum. Controlling or restricting prepartum energy intake yielded metabolic results that were strikingly similar both prepartum and postpartum, independent of parity group. The use of a bulky diet controlled prepartum energy intake in multiparous and primiparous cows, improved metabolic status postpartum, and reduced the incidence of health problems. When metabolic profiles are considered collectively, cows overfed energy prepartum exhibited an “overnutrition syndrome” with characteristics of clinical symptoms displayed by diabetic or obese nonruminant subjects. This syndrome likely contributed to metabolic dysfunction postpartum.  相似文献   

4.
An experiment was conducted to determine the effect of plane of energy intake prepartum on postpartum performance. Primiparous (n = 24) and multiparous (n = 23) Holsteins were randomly assigned by expected date of parturition to 1 of 3 prepartum energy intakes. A moderate energy diet [1.63 Mcal of net energy for lactation (NEL)/kg; 15% crude protein (CP)] was fed for either ad libitum intake (OVR) or restricted intake (RES) to supply 150 or 80% of National Research Council (2001) energy requirement, respectively, for dry cows in late gestation. To limit energy intake to 100% of NRC requirement at ad libitum dry matter intake (DMI), chopped wheat straw was included as 31.8% of dry matter (DM) in a control diet (CON; 1.21 Mcal of NEL/kg of DM; 14% CP). Multiparous and primiparous cows assigned to OVR gained body condition during the dry period [initial body condition score (BCS) = 3.3], but were not overconditioned by parturition (BCS = 3.5). Multiparous cows in the OVR group lost more BCS postpartum than multiparous RES or CON cows. Primiparous cows lost similar amounts of BCS among dietary treatment groups postpartum. Addition of chopped wheat straw to CON diets prevented a large decrease in DMI prepartum in both primiparous and multiparous cows. During the first 3 wk postpartum, DMI as a percentage of BW was lower for multiparous OVR cows than for multiparous RES cows. Prepartum diet effects did not carry over through the entire 8-wk lactation period. Because of greater mobilization of body stores, OVR cows had greater milk fat percentage and greater 3.5% fat-corrected milk yield during the first 3 wk postpartum. Multiparous cows assigned to OVR experienced a 55% decrease in energy balance and primiparous cows a 40% decrease in energy balance during the last 3 wk before parturition, compared with CON or RES cows that had little change. Multiparous cows fed OVR had a greater contribution of energy from body energy reserves to milk energy output than either CON or RES cows. Overfeeding energy prepartum resulted in large changes in periparturient energy balance. Even in the absence of overconditioning, a large change in DMI and energy balance prepartum influenced postpartum DMI and BCS loss, especially for multiparous cows. Chopped wheat straw was effective at controlling energy intake prepartum, although primiparous cows did not achieve predicted DMI. Even so, controlling or restricting energy intake in primiparous cows was not detrimental to lactational performance over the first 8 wk of lactation.  相似文献   

5.
Limit-feeding dry cows a high-energy diet may enable adequate energy intake to be sustained as parturition approaches, thus reducing the extent of negative energy balance after parturition. Our objective was to evaluate the effect of dry period feeding strategy on plasma concentrations of hormones and metabolites that reflect energy status. Multiparous Holstein cows (n = 18) were dried off 45 d before expected parturition, paired by expected calving date, parity, and previous lactation milk yield, and randomly assigned to 1 of 2 dry-period diets formulated to meet nutrient requirements at ad libitum or limited intakes. All cows were fed the same diet for ad libitum intake after parturition. Prepartum dry matter intake (DMI) for limit-fed cows was 9.4 kg/d vs. 13.7 kg/d for cows fed ad libitum. During the dry period, limit-fed cows consumed enough feed to meet calculated energy requirements, and ad libitum-fed cows were in positive calculated net energy for lactation (NEL) balance (0.02 vs. 6.37 Mcal/d, respectively). After parturition, milk yield, milk protein concentration, DMI, body condition score, and body weight were not affected by the prepartum treatments. Cows limit fed during the dry period had a less-negative calculated energy balance during wk 1 postpartum. Milk fat concentration and yield were greater for the ad libitum treatment during wk 1 but were lower in wk 2 and 3 postpartum. Plasma insulin and glucose concentrations decreased after calving. Plasma insulin concentration was greater in ad libitum-fed cows on d −2 relative to calving, but did not differ by dietary treatment at other times. Plasma glucose concentrations were lower before and after parturition for cows limit-fed during the dry period. Plasma nonesterified fatty acid concentrations peaked after parturition on d 1 and 4 for the limit-fed and ad libitum treatments, respectively, and were greater for limit-fed cows on d −18, −9, −5, and −2. Plasma tumor necrosis factor-α concentrations did not differ by treatment in either the pre- or postpartum period, but tended to decrease after parturition. Apart from a reduction in body energy loss in the first week after calving, limit feeding a higher NEL diet during the dry period had little effect on intake and milk production during the first month of lactation.  相似文献   

6.
Holstein cows (n = 72) entering second or later lactation were used to determine whether productive performance and dry matter intake (DMI) are affected by carbohydrate source in the prepartum diet and chromium-L-methionine (Cr-Met) supplementation throughout the periparturient period. Cows were fed either a TMR with the concentrate portion based on starch-based cereals [high nonfiber carbohydrate (NFC); 1.59 Mcal/kg of net energy for lactation (NEL), 14.4% crude protein (CP), 40.3% NFC] or a TMR with the concentrate portion based on nonforage fiber sources (low NFC; 1.54 Mcal/kg NEL, 14.5% CP, 33.6% NFC) from 21 d before expected parturition until parturition. After parturition all cows were fed a lactation TMR (1.74 Mcal/kg NEL, 16.5% CP, 40.0% NFC). The Cr-Met was supplemented once daily via gelatin capsule at dosages of 0, 0.03, or 0.06 mg of Cr/kg of metabolic body weight. Thus, treatments were in a 2 (carbohydrate source) x 3 (Cr-Met) factorial arrangement. Neither prepartum nor postpartum DMI was affected by prepartum dietary carbohydrate source. Administering increasing amounts of Cr-Met linearly increased milk yield and, subsequently, postpartum DMI. Prepartum carbohydrate source did not affect postpartum milk yield; however, cows fed the low NFC diet tended to yield milk with a lower content of total solids. These data indicate that prepartum carbohydrate source has little influence on performance during the immediate peripartal period, and that increases in milk yield for cows supplemented with Cr-Met are independent of prepartum dietary carbohydrate source.  相似文献   

7.
Our objective was to compare the effects of different prepartum dietary phosphorus concentrations on periparturient metabolism and performance. Forty-two late pregnant multiparous Holstein cows were fed 0.21, 0.31, or 0.44% P (dry basis) for 4 wk before expected calving. After parturition, all cows were fed a common lactation diet (0.40% P). In the prepartum period, cows fed 0.21% P had lower blood serum P concentrations compared with cows fed 0.31 or 0.44% P. However, serum P concentrations of all cows were within the normal range (4 to 8 mg/dL) until the day of calving when average concentrations dropped below 4 mg/dL. From 3 to 14 d postpartum, serum P of cows fed 0.21% P was greater than that of cows fed 0.31 or 0.44% P. No cows presented with or were treated for clinical hypophosphatemia in the periparturient period. Total serum Ca was lower before calving through 2 d postpartum for cows fed 0.44% P compared with those fed 0.21 or 0.31%. Prepartum dietary P treatments did not alter blood osteocalcin, hydroxyproline, and deoxypyridinoline, indicators of bone metabolism, or concentrations of parathyroid hormone or 1,25-dihydroxyvitamin D3. Energy-corrected milk yield and milk composition (first 28 d of lactation) were not affected by prepartum dietary P concentrations. It is concluded that feeding 0.21% P (34 g of P/cow daily) prepartum is adequate for periparturient multiparous Holstein cows with high metabolic demands and genetic potential for milk production. No adverse effects on periparturient health, dry matter intake, or 28-d lactation performance resulted.  相似文献   

8.
Previous research in our laboratory showed that dietary fat supplementation during the dry period was associated with decreased peripartum hepatic lipid accumulation. However, fat supplementation decreased dry matter (DM) intake and thereby confounded results. Consequently, 47 Holstein cows with body condition scores (BCS) ≤ 3.5 at dry-off were used to determine whether source or amount of energy fed to dry cows was responsible for the decreased hepatic lipid content. Moderate grain- or fat-supplemented diets [1.50 Mcal of net energy for lactation (NEL)/kg] were fed from dry-off (60 d before expected parturition) to calving at either ad libitum (160% of NEL requirement) or restricted (80% of NEL requirement) intakes. Postpartum, cows were fed a single lactation diet for ad libitum intake and performance was measured for 105 d. Prepartum intakes of DM and NEL were significantly lower for feed-restricted cows as designed. During the first 21 d postpartum, previously restricted cows had higher intakes of DM and NEL. Body weights and BCS were lower prepartum for restricted cows but groups converged to similar nadirs postpartum. Restricted-fed cows had lower concentrations of glucose and insulin and increased concentrations of NEFA in plasma during the dry period. Peripartum NEFA rose markedly for all treatments but were higher postpartum for cows previously fed ad libitum. Plasma concentrations of NEFA and BHBA remained lower in cows restricted-during the dry period. Postpartum concentrations of total lipid and triglyceride in liver were lower in cows previously feed-restricted. Across dietary treatments, activity of carnitine palmitoyltransferase (CPT) in hepatic mitochondria was lowest at − 21 d, highest at 1 d, and decreased at 21 and 65 d relative to parturition. The activity of CPT at d 1 tended to be higher for previously feed-restricted cows; thereafter, CPT activity declined more rapidly than in cows fed ad libitum. Nutrient intake during the dry period had more pronounced effects on peripartal lipid metabolism and DMI than did composition of the prepartum diet.  相似文献   

9.
Glycerol can alleviate the symptoms of ketosis when delivered as an oral drench. The addition of glycerol to the diet would eliminate the need for restraining cows for drenching yet deliver a glucogenic substrate, alleviate the fatty liver-ketosis complex, and improve lactational performance. For this study, 21 multiparous and 9 primiparous Holstein cows blocked by parity and expected calving date were used in a randomized block design to evaluate the effects of feeding glycerol from 14 d prepartum to 21 d in milk (DIM). Treatments (kg/d dry matter basis) were 0.86 of cornstarch (control), 0.43 cornstarch + 0.43 glycerol (LG), or 0.86 glycerol (HG), topdressed and hand-mixed into the upper one-third of the daily ration. All cows were fed a common diet from 22 to 70 DIM. Prepartum dry matter intake (DMI) was greater for cows fed the control diet compared with LG or HG (13.3, 10.8, and 11.3 +/- 0.50 kg/d, respectively). Prepartum plasma glucose, insulin, beta-hydroxybutyrate, nonesterified fatty acids, and ruminal profiles were not affected by treatments. Rumen fluid collected postpartum from cows fed LG and HG had greater total volatile fatty acids, greater molar proportions of propionate, and a decreased ratio of acetate to propionate. Furthermore, concentrations of butyrate tended to be greater in rumens of cows fed LG and HG. Postpartum concentrations of glucose in plasma were greatest for cows fed the control diet relative to LG and HG (66.0 vs. 63.1 and 58.4 mg/dL, respectively) and decreased sharply at 21 DIM, after treatments ended, for cows fed HG (diet x day interaction). Body weight and condition loss, plasma nonesterified fatty acids, and liver lipids during the first 21 DIM were similar among treatments. Postpartum DMI was not affected by treatments; however, a tendency was observed for a diet x day interaction for body weight, as cows fed LG gained more body weight from 21 to 70 DIM relative to cows fed HG. Yield of energy-corrected milk during the first 70 DIM tended to be greatest for cows fed the control diet. The LG and HG diets decreased urea nitrogen concentrations in milk relative to controls. Based upon prepartum DMI and concentrations of glucose and beta-hydroxybutyrate in blood postpartum, feeding glycerol to dairy cows at the levels used in this experiment increased indicators used to gauge the degree of ketosis in dairy cattle.  相似文献   

10.
Our objectives were to determine if dietary cation-anion difference (DCAD) and source of anions influence periparturient feed intake and milk production of dairy cattle during the transition period. Diets differed in DCAD (cationic or anionic) and anionic supplement. The 4 diets used prepartum were (1) control [DCAD +20 mEq/100 g of dry matter (DM)], (2) Bio-Chlor (DCAD −12 mEq/100 g of DM; Church & Dwight Co. Inc., Princeton, NJ), (3) Fermenten (DCAD −10 mEq/100 g of DM; Church & Dwight Co. Inc.), and (4) salts (DCAD −10 mEq/100 g of DM). Urine pH was lower for cows that consumed an anionic diet prepartum compared with control. Prepartum diet had no effect on prepartum dry matter intake (DMI) of multiparous or primiparous cows. Postpartum DMI and milk yield for multiparous cows fed anionic diets prepartum were greater compared with those fed the control diet. Postpartum DMI and milk yield of primiparous cows were similar for prepartum diets. Feeding prepartum anionic diets did not affect plasma Ca at or near calving. However, cows fed anionic diets began their decline in plasma Ca later than control cows. Postpartum β-hydroxybutyrate and nonesterified fatty acids were lower for primiparous cows fed prepartum anionic diets compared with those fed the control diet. Prepartum and postpartum plasma glucose concentrations were not affected by prepartum diet for all cows. Liver triglyceride differed for parity by day. Parities were similar at 21 d prepartum, but at 0 d and 21 d postpartum, levels were greater for multiparous cows. Results indicate that decreasing the DCAD of the diet during the prepartum period can increase postpartum DMI and milk production of multiparous cows without negatively affecting performance of primiparous cows.  相似文献   

11.
Thirty-two multiparous Holstein cows were used to investigate the effects of chromium-l-methionine (Cr-Met) supplementation and dietary grain source on performance and lactation during the periparturient period. Cows were fed a total mixed ration consisting of either a barley-based diet (BBD) or a corn-based diet (CBD) from 21 d before anticipated calving through 28 d after calving. The Cr-Met was supplemented at dosages of 0 or 0.08 mg of Cr/kg of metabolic body weight. The study was designed as a randomized complete block design with 2 (Cr-Met levels) × 2 (grain sources) factorial arrangement. There was no Cr effect on prepartum dry matter intake (DMI) or postpartum DMI, body weight (BW), net energy balance, and whole tract apparent digestibility of nutrients. Prepartum DMI as a percentage of BW tended to increase with Cr-Met. Supplemental Cr-Met tended to increase milk yield whereas milk protein percentage decreased. Pre- and postpartum DMI, BW, net energy balance, milk yield, and milk composition were not affected by substituting ground barley with ground corn. The addition of Cr-Met increased prepartum DMI and tended to increase postpartum DMI of the BBD but not the CBD. The change in prepartum DMI was smaller when the BBD was supplemented with Cr-Met but remained unchanged when the CBD was supplemented with Cr-Met. Yields of crude protein and total solids in milk and prepartum digestibility of DM and organic matter tended to increase when Cr-Met was added to the BBD but remained unchanged when added to the CBD. Periparturient cows failed to respond to the grain source of the diet, whereas they showed greater response in milk yield to diets supplemented with Cr-Met. In conclusion, the present results demonstrate that the beneficial effect of Cr-Met supplementation during the periparturient period to improve feed intake may depend on the grain source of the diet.  相似文献   

12.
This experiment was conducted to compare conventional (CON; 21 d) and shortened (SH; 10 d) close-up period, and evaluate the effect of shortened close-up period combined with feeding different metabolizable protein (MP) levels on dry matter (DM) intake, metabolic status, and performance of dairy cows. Forty-eight multiparous Holstein cows with similar parity, body weight (BW), and previous lactation milk yield were divided into 2 groups. The first group (n = 24) received the far-off diet from ?60 to ?21 d (CON), and the second group (n = 24) received same far-off diet from ?60 to ?10 d (SH) relative to expected parturition. Cows were then moved to individual stalls and randomly allocated to 1 of 3 close-up diets: low MP diet (LMP; MP = 79 g/kg of DM), medium MP diet (MMP; MP = 101 g/kg of DM), or high MP diet (HMP; MP = 118 g/kg of DM). Treatments were used in a 2 × 3 factorial arrangement with 2 lengths of close-up period (CON and SH) and 3 levels of MP (LMP, MMP, and HMP). All diets were fed for ad libitum intake during the close-up period. After calving, all cows received the same fresh cow diet. We found no interaction between close-up period length and MP levels for traits, except for postpartum serum fatty acids and β-hydroxybutyrate (BHB). The concentrations of postpartum serum fatty acids and BHB were higher on LMP than MMP and HMP diets in SH group. The cows of the SH group tended to produce less colostrum in the first milking than cows in CON group. The length of close-up period did not affect pre- and postpartum DM intake or energy balance of cows during the last week of prepartum, but cows of the CON group had greater BW changes during the last 3 wk before parturition than cows in SH group. Cows fed MMP and HMP diets consumed 1.2 and 1 kg more DM than for those fed LMP prepartum, respectively. The concentrations of prepartum BHB and Ca were higher for SH cows than CON group cows. Except for blood urea N concentration, no other blood metabolite in prepartum was affected by dietary MP. We found no effects of close-up period length or MP levels in the close-up diet on urinary pH, purine derivative excretion, and microbial N flow. Postpartum, milk yield was not affected by close-up period length, but cows in CON group tended to have higher 4% fat-corrected milk yield, had higher milk fat content and yield, had greater BW and body condition score loss, and higher energy negative balance than cows in the SH group. Cows fed MMP diet ate 1.8 kg more DM and yielded 3.37 kg more milk than those fed the LMP diet. Milk fat, protein, and lactose content, milk urea N, and somatic cell count were not affected by MP levels, but the yield of milk protein and lactose were higher on MMP diet than on LMP diet. Concentrations of postpartum serum fatty acids and BHB were decreased by shortening the close-up period length, but glucose, cholesterol, and triglyceride were similar between close-up groups. During the postpartum period, serum fatty acids, BHB, aminotransferase, and Ca concentrations were decreased by increasing the MP levels in the close-up diet. It appears from this data set that multiparous cows will benefit from a shortened close-up period, and feeding a moderate MP diet could improve DM intake, milk yield, and metabolic status of periparturient dairy cows.  相似文献   

13.
Effects of dietary energy density during late gestation and early lactation on metabolic status of periparturient cows were studied. Four weeks before expected calving, animals were fed a low (DL; 1.58 Mcal of NEL/kg) or high energy density diet (DH; 1.70 Mcal of NEL/kg). After calving, half of the cows from each prepartum treatment were assigned to a low (L; 1.57 Mcal of NEL/kg) or high energy density diet (H; 1.63 Mcal of NEL/kg) until d 20 postpartum. After d 20, all animals were fed H until d 70. Animals fed DH had a more positive energy balance during the prepartum period. Animals fed DH had higher plasma concentrations of glucose and insulin and lower concentrations of plasma nonesterified fatty acid (NEFA) on d −7 relative to calving compared with animals fed DL. No differences in blood concentrations of metabolites, insulin and liver triglycerides (TG) content were observed on d 1. Liver TG content at d 1 and 21 were more related to magnitude of change in energy intake prepartum than to energy intake in the last week of gestation. Cows fed H had higher concentrations of plasma glucose and insulin, but similar plasma NEFA during the postpartum period compared with cows fed L. Plasma concentrations of β-hydroxybutyrate (BHBA) and liver TG content on d 21 were 46 and 30% lower, respectively, for cows fed H compared with cows fed L. Interactions between prepartum and postpartum treatments indicated that negative effects of delaying higher concentrate feeding until d 21 postpartum can be partially offset by increasing concentrate in the diet before calving. Cows fed L had a higher increase in white line hemorrhage scores between prepartum and 10 wk postpartum compared with cows fed H. Energy density of prepartum diets had a minor influence on metabolic status of cows postpartum. A more favorable metabolic profile occurs when increasing the concentrate content of the diet immediately postpartum compared with delaying the increase until d 21 postpartum.  相似文献   

14.
Intake of net energy for lactation (NEL) is often the limiting factor for milk production and is affected by stage of lactation and dietary concentrations of forage and fat. Because of the mechanisms involved, interactions are likely between those 2 diet components and stage of lactation. We conducted an experiment with 72 Holstein cows starting at 21 and ending at 126 d in milk (DIM). Cows were fed diets (dry matter basis) with 40 or 60% forage (67% corn silage, 33% alfalfa silage) each with 0 or 2.25% added saturated free fatty acids. The high- and low-forage diets contained 25 and 17% forage neutral detergent fiber and 30 and 33% total neutral detergent fiber, respectively; the low-forage diets contained several byproducts. Diets with and without fat contained approximately 5.2 and 3.2% long-chain fatty acids, respectively. Feeding fat or low-forage diets increased NEL intake, but no interaction was observed. The increase in NEL intake by cows fed low-forage diets was caused by increased dry matter intake, and the increase in NEL intake by cows fed fat was caused by increased energy density of the diet. Interactions between fat and forage were observed for energy utilization. When high-forage diets were supplemented with fat, the increased NEL intake went toward body energy reserves as measured by higher body condition scores with no change in milk yield. However, when low-forage diets were supplemented with fat, milk yield increased (2.6 kg/d) with no change in body condition. The differential partitioning of NEL may have been caused by nutrients other than NEL limiting milk production in cows fed the high-forage diets. With low-forage diets, intake of other nutrients was greater (i.e., greater dry matter intake). At 35 DIM, dietary treatments had little effect on milk fatty acids composition but in later lactation (125 DIM), feeding supplemental fatty acids or feeding low-forage diets increased long-chain fatty acids and decreased short-chain fatty acids. However, treatment did not have marked effects on concentrations of total fat or protein in milk. The amount of forage in a diet influences cow responses to supplemental fat and should be considered when diets are formulated.  相似文献   

15.
《Journal of dairy science》2021,104(9):9886-9901
An experiment was conducted to determine the effects of low and high metabolizable protein (MP) diets when fed for ad libitum and controlled intake during the prepartum period on postpartum lactation performance and feeding behavior of dairy cows. Thirty-six multiparous Holstein cows were blocked by parity, expected calving date, and previous lactation milk yield at −21 d relative to expected calving and were randomly assigned to 1 of 4 close-up period dietary treatments providing low MP (LMP) or high MP (HMP) diets with controlled intake (CNI) or ad libitum intake (ALI). The concentrations of MP were 65 and 90 g/kg dry matter for LMP and HMP diets, respectively, whereas intake was controlled to supply 100 and 160% of the NRC (2001) energy requirements for CNI and ALI groups, respectively. The concentration of net energy for lactation (NEL) in the treatment diets was 1.50 Mcal/kg. All cows were fed a similar lactation diet after calving (1.50 Mcal/kg of NEL and 83.3 g/kg of MP). The HMP diet increased dry matter intake during the first 3 wk and tended to increase dry matter intake over the 9 wk of lactation. Meal size and eating rate increased in the ALI cows during the prepartum period. Meal frequency increased with the HMP diet during the postpartum period. Milk yield increased by 15.2% with the HMP diet over the 9 wk of lactation. The HMP diet increased energy-corrected milk (ECM) yield in CNI versus ALI cows, whereas the LMP diet increased ECM yield in ALI versus CNI cows over the 9 wk of lactation. The increase in ECM yield of LMP-ALI versus LMP-CNI cows was supported by greater body condition loss and serum β-hydroxybutyrate over the 9 wk of lactation. Taken together, these data indicate that prepartum controlled intake of a high protein diet can provide the benefits of both strategies.  相似文献   

16.
The objectives of this study were to investigate the effects of forage source [wheat straw (WS) or orchardgrass hay (OG)] and total amount of diet dry matter fed [ad libitum or restricted to 70% of predicted dry matter intake (DMI)] prepartum on postpartum performance. The study design was a 2 × 2 factorial design with 10 cows per treatment. Treatments were WS total mixed ration (TMR) ad libitum, OG TMR ad libitum, WS TMR restricted, and OG TMR restricted. The WS TMR (dry matter basis) contained 30% WS, 20.7% corn silage, 10.0% alfalfa hay, 18.2% ground corn, 16.8% soybean meal, and 4.3% molasses mineral mix (14.7% CP, 1.5 Mcal/kg of net energy for lactation, 37.0% neutral detergent fiber). The OG TMR contained 30% OG, 46.2% corn silage, 10.0% alfalfa hay, 9.5% soybean meal, and 4.3% molasses (14.2% CP, 1.5 Mcal/kg of net energy for lactation, 41.0% neutral detergent fiber). Cows received 1 lactation diet after calving (17.7% CP, 1.6 Mcal/kg of net energy for lactation, 27.3% neutral detergent fiber). Total diet DMI prepartum was higher for ad libitum than for restricted as designed, but forage source had no effect on DMI. Total tract apparent digestibilities of DM and NDF were greater for OG than for WS. Postpartum DMI expressed as a percentage of body weight for the first week of lactation was higher for ad libitum than for restricted diets. Postpartum DMI during the first 30 d of lactation was higher for OG than for WS, but no effect was observed for the amount fed prepartum. Milk yield during the first week of lactation was higher for OG than for WS; however, during the first 30 d, 3.5% fat-corrected milk yield and yield of milk fat were highest for OG TMR restricted and WS TMR ad libitum. Prepartum treatments had a limited effect on pre- and postpartum lipid metabolism; however, cows fed WS TMR ad libitum had the highest postpartum β-hydroxybutyrate. Eating behavior was observed by 10-min video scans of 24-h video surveillance for 5 d pre- and postpartum. Prepartum eating time and eating bouts tended to be greater by WS than for OG, and postpartum eating time per kilogram of neutral detergent fiber intake tended to be greater for WS than for OG. Results indicate that forage source and amount of DM fed prepartum affected postpartum performance and tended to alter the behavior of cows in tie-stall barns.  相似文献   

17.
Forty-eight Holstein cows, entering second or later lactation, were utilized to determine the effects of 2-hydroxy-4-(methylthio)-butanoic acid (HMB) on milk production, hepatic lipid metabolism, and gluconeogenesis during the periparturient period. Cows were fed one of 3 diets as TMR starting 21 d before expected calving. These diets contained 0 (the basal diet), 0.09 (+HMB), or 0.18 (++HMB)% HMB. From parturition to 84 DIM, cows were fed diets that contained 0, 0.13, or 0.20% HMB. Prepartum and postpartum dry matter intakes were similar among cows fed the basal diet, +HMB and ++HMB. There was a quadratic effect on milk yield such that cows fed +HMB had the greatest milk yield; yields of milk by cows fed the basal diet and ++HMB were similar. This led to trends for increased yields of 3.5% fat-corrected milk and total solids when cows were fed +HMB. Percentages of fat, protein, and total solids in milk were not affected by treatment. Despite differences in milk yield, calculated energy balance was not affected by treatment. Plasma concentrations of NEFA, beta-hydroxybutyrate, and glucose were not different among treatments. Liver triglyceride content was similar among treatments on d 1 postpartum and was increased for cows consuming +HMB on d 21 postpartum compared with the other dietary treatments. Capacities for metabolism of [1-14C]palmitate by liver slices in vitro were not affected by treatment; however, conversion of [1-14C]propionate to CO2 and glucose decreased as the amount of HMB consumed by cows increased on d 21 postpartum. Cows consuming +HMB had greater days to first ovulation compared with cows consuming the basal diet and ++HMB as measured by plasma progesterone concentrations. These data suggest that adding HMB to low Met diets to achieve a predicted Met supply of approximately 2.3% of metabolizable protein supply is beneficial for increasing milk production but does not appear to benefit hepatic energy metabolism during early lactation.  相似文献   

18.
Objectives were to examine the effects of feeding to alter body condition at calving on subsequent full lactation production performance and feed intake, on BW and periparturient blood traits, and on complete energy and N balances and ration digestibility during wk 6, 10, and 14 postpartum. Thirty pluriparous Holstein cows were assigned randomly to two energy intakes from wk 33 of previous lactation through the dry period to create either normal (7.2) or thin (5.8) mean body condition scores at calving (9 = fat, 1 = thin). The thin group was fed 0 kg hominy feed daily; the normal group was fed 2.7 kg daily to supplement forage DM available ad libitum during this period. When compared with the normal group, cows in the thin condition group exhibited less negative body fat balance (-206 vs. -507 g/d); similar milk yield, DM intake, N partitions, and nutrient digestibilities; and lower fat test (3.2 vs. 4.1%) during the balance measurements. Whole blood and serum traits were within normal physiological ranges. Full lactation measurements were similar between treatments except that milk fat percentage was lower and DM intake (as percentage of BW), was higher in the thin condition group. Although mean BW at calving was more (651 vs. 599 kg) for normal condition cows, condition scores and BW were not significantly different at 14 wk postpartum; BW curves indicated similar rates of recovery of weight thereafter. Cows considered underconditioned at parturition mobilized less body fat after calving, resulting in reduced milk fat concentration without significant effects on milk yield, protein, SNF, DM intake, or nutrient utilization.  相似文献   

19.
The objective of this research was to determine whether different dry matter intakes (DMI) or forage percentages prepartum would have an impact on postpartum performance. Multiparous Holstein cows (n = 41) received either high (H) or low (L) forage rations that were fed free choice (F) or restricted (R), i.e., HF, HR, LF, and LR. The L rations were higher in net energy of lactation and lower in neutral detergent fiber concentrations. After calving, all cows were fed the same ration ad libitum. Prepartum DMI were 8.0 for R versus 12.4 kg/d for F with LF greater than HF (14.1 vs. 10.7 kg/d). Prepartum treatments did not affect postpartum means for DMI, milk yield, milk protein percentage, body weight, body condition score, or plasma glucose concentrations (overall means 1 to 40 DIM were, respectively, 21.1 kg/d, 34.0 kg/d, 3.03%, 624 kg, 3.2, and 66 mg/dl). However, curves from 1 to 40 DIM showed that DMI and milk yield were slightly higher in early lactation in cows whose DMI had been restricted prepartum but mean milk fat percentage was lower (3.10 vs. 3.42%). Plasma NEFA were higher and insulin lower in H versus L before and after calving. High DMI prepartum, at best, showed no advantage over restricted feeding.  相似文献   

20.
The objectives of this study were to characterize the change in blood metabolites over time, and to evaluate the effect of dietary energy concentration on ketone body accumulation in periparturient cows. Twenty-eight multiparous Holstein cows were listed in order of their anticipated due dates and assigned randomly to 1 of 2 groups: with or without a transition diet. The control group received a nonlactating cow diet [1.54 Mcal/kg of net energy for lactation (NEL), 10.9% crude protein (CP), 53.1% neutral detergent fiber (NDF)] from 28 d before expected parturition, and a lactation diet (1.77 Mcal of NEL/kg, 16.8% CP, 29.9% NDF) after parturition. The treatment group received a transition diet (1.71 Mcal of NEL/kg, 16.8% CP, 35.2% NDF) from 17 d before parturition to 14 d after calving and was fed the same diets as cows in the control group during the third week of lactation. Blood from the coccygeal vein was sampled 3 times per week from 21 d before expected parturition to 21 d postpartum for analysis of glucose, nonesterified fatty acids (NEFA), β-hydroxybutyrate, acetoacetate, acetone, and glycerol. There were no significant differences in dry matter intake, milk yield, milk components, body weight change, and body condition score change during the postcalving period. Plasma concentrations of different ketone bodies changed in parallel, stayed relatively constant precalving, peaked after parturition, and then decreased but remained high compared with concentrations late in gestation. Plasma concentrations of NEFA and glycerol changed in a pattern similar to those of the ketone bodies. Feeding a transition diet resulted in a greater area under the curve (AUC) for glucose in the last 17 d of gestation, but in no effect within the first 21 d in milk. Acetoacetate AUC was greater for treatment cows than for control cows across the first 21 d in milk. The AUC of NEFA and glycerol between d 15 and 21 postpartum were greater for treatment cows than for control cows. Feeding a transition diet both before and after parturition was associated with greater mobilization of adipose tissue and greater exposure to ketone bodies in early lactation compared with abruptly changing to a lactation diet after parturition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号