首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We study the power of two models of faulty teachers in Valiant’s PAC learning model and Angluin’s exact learning model. The first model we consider is learning from an incomplete membership oracle introduced by Angluin and Slonim [D. Angluin, D.K. Slonim, Randomly fallible teachers: Learning monotone DNF with an incomplete membership oracle, Machine Learning 14 (1) (1994) 7–26]. In this model, the answers to a random subset of the learner’s membership queries may be missing. The second model we consider is random persistent classification noise in membership queries introduced by Goldman, Kearns and Schapire [S. Goldman, M. Kearns, R. Schapire, Exact identification of read-once formulas using fixed points of amplification functions, SIAM Journal on Computing 22 (4) (1993) 705–726]. In this model, the answers to a random subset of the learner’s membership queries are flipped.  相似文献   

2.
We investigate the complexity of learning for the well-studied model in which the learning algorithm may ask membership and equivalence queries. While complexity theoretic techniques have previously been used to prove hardness results in various learning models, these techniques typically are not strong enough to use when a learning algorithm may make membership queries. We develop a general technique for proving hardness results for learning with membership and equivalence queries (and for more general query models). We apply the technique to show that, assuming , no polynomial-time membership and (proper) equivalence query algorithms exist for exactly learning read-thrice DNF formulas, unions of halfspaces over the Boolean domain, or some other related classes. Our hardness results are representation dependent, and do not preclude the existence of representation independent algorithms.?The general technique introduces the representation problem for a class F of representations (e.g., formulas), which is naturally associated with the learning problem for F. This problem is related to the structural question of how to characterize functions representable by formulas in F, and is a generalization of standard complexity problems such as Satisfiability. While in general the representation problem is in , we present a theorem demonstrating that for "reasonable" classes F, the existence of a polynomial-time membership and equivalence query algorithm for exactly learning F implies that the representation problem for F is in fact in co-NP. The theorem is applied to prove hardness results such as the ones mentioned above, by showing that the representation problem for specific classes of formulas is NP-hard. Received: December 6, 1994  相似文献   

3.
Queries and Concept Learning   总被引:14,自引:2,他引:12  
Angluin  Dana 《Machine Learning》1988,2(4):319-342
We consider the problem of using queries to learn an unknown concept. Several types of queries are described and studied: membership, equivalence, subset, superset, disjointness, and exhaustiveness queries. Examples are given of efficient learning methods using various subsets of these queries for formal domains, including the regular languages, restricted classes of context-free languages, the pattern languages, and restricted types of propositional formulas. Some general lower bound techniques are given. Equivalence queries are compared with Valiant's criterion of probably approximately correct identification under random sampling.  相似文献   

4.
Classic Learning     
Frazier  Michael  Pitt  Leonard 《Machine Learning》1996,25(2-3):151-193
  相似文献   

5.
We introduce a new fault-tolerant model of algorithmic learning using an equivalence oracle and anincomplete membership oracle, in which the answers to a random subset of the learner's membership queries may be missing. We demonstrate that, with high probability, it is still possible to learn monotone DNF formulas in polynomial time, provided that the fraction of missing answers is bounded by some constant less than one. Even when half the membership queries are expected to yield no information, our algorithm will exactly identifym-term,n-variable monotone DNF formulas with an expectedO(mn 2) queries. The same task has been shown to require exponential time using equivalence queries alone. We extend the algorithm to handle some one-sided errors, and discuss several other possible error models. It is hoped that this work may lead to a better understanding of the power of membership queries and the effects of faulty teachers on query models of concept learning.  相似文献   

6.
We introduce an abstract model of exact learning via queries that can be instantiated to all the query learning models currently in use, while being closer to them than previous unifying attempts. We present a characterization of those Boolean function classes learnable in this abstract model, in terms of a new combinatorial notion that we introduce, the abstract identification dimension. Then we prove that the particularization of our notion to specific known protocols such as equivalence, membership, and membership and equivalence queries results in exactly the same combinatorial notions currently known to characterize learning in these models, such as strong consistency dimension, extended teaching dimension, and certificate size. Our theory thus fully unifies all these characterizations. For models enjoying a specific property that we identify, the notion can be simplified while keeping the same characterizations. From our results we can derive combinatorial characterizations of all those other models for query learning proposed in the literature. We can also obtain the first polynomial-query learning algorithms for specific interesting problems such as learning DNF with proper subset and superset queries.  相似文献   

7.
Learning conditional preference networks   总被引:2,自引:0,他引:2  
  相似文献   

8.
We introduce a combinatorial dimension that characterizes the number of queries needed to exactly (or approximately) learn concept classes in various models. Our general dimension provides tight upper and lower bounds on the query complexity for all sorts of queries, not only for example-based queries as in previous works.As an application we show that for learning DNF formulas, unspecified attribute value membership and equivalence queries are not more powerful than standard membership and equivalence queries. Further, in the approximate learning setting, we use the general dimension to characterize the query complexity in the statistical query as well as the learning by distances model. Moreover, we derive close bounds on the number of statistical queries needed to approximately learn DNF formulas.  相似文献   

9.
This note serves three purposes: (i) we provide a self-contained exposition of the fact that conjunctive queries are not efficiently learnable in the Probably-Approximately-Correct (PAC) model, paying clear attention to the complicating fact that this concept class lacks the polynomial-size fitting property, a property that is tacitly assumed in much of the computational learning theory literature; (ii) we establish a strong negative PAC learnability result that applies to many restricted classes of conjunctive queries (CQs), including acyclic CQs for a wide range of notions of acyclicity; (iii) we show that CQs (and UCQs) are efficiently PAC learnable with membership queries.  相似文献   

10.
Polynomial Time Learnability of Simple Deterministic Languages   总被引:1,自引:0,他引:1  
Ishizaka  Hiroki 《Machine Learning》1990,5(2):151-164
This paper is concerned with the problem of learning simple deterministic languages. The algorithm described in this paper is based on the theory of model inference given by Shapiro. In our setting, however, nonterminal membership queries, except for the start symbol, are not permitted. Extended equivalence queries are used instead. Nonterminals that are necessary for a correct grammar and their intended models are introduced automatically. We give an algorithm that, for any simple deterministic language L, outputs a grammar G in 2-standard form, such that L = L(G), using membership queries and extended equivalence queries. We also show that the algorithm runs in time polynomial in the length of the longest counterexample and the number of nonterminals in a minimal grammar for L.  相似文献   

11.
In this paper we consider an approach to passive learning. In contrast to the classical PAC model we do not assume that the examples are independently drawn according to an underlying distribution, but that they are generated by a time-driven process. We define deterministic and probabilistic learning models of this sort and investigate the relationships between them and with other models. The fact that successive examples are related can often be used to gain additional information similar to the information gained by membership queries. We show how this can be used to design on-line prediction algorithms. In particular, we present efficient algorithms for exactly identifying Boolean threshold functions and 2-term RSE, and for learning 2-term-DNF, when the examples are generated by a random walk on {0,1}n.  相似文献   

12.
Using as example the Soil and Water Assessment Tool (SWAT) model and a Southern Ontario Canada watershed, we conduct a set of experiments on calibration using a manual approach, a parallelized version of the shuffled complex evolution (SCE), Generalized Likelihood Uncertainty Estimation (GLUE), Sequential Uncertainty Fitting (SUFI-2) and compare to a simple parallel search on a finite set of gridded input parameter values invoking the probably approximately correct (PAC) learning hypothesis. We derive an estimation of the error in fitting and a prior estimate of the probability of success, based on the PAC hypothesis. We conclude that from the equivalent effort expended on initial setup for the other named algorithms we can already find directly a good parameter set for calibration. We further note that, in this algorithm, simultaneous co-calibration of flow and chemistry (total nitrogen and total phosphorous) is more likely to produce acceptable results, as compared to flow first, even with a simple weighted multiobjective approach. This approach is especially suited to a parallel, distributed or cloud computational environment.  相似文献   

13.
Negative Results for Equivalence Queries   总被引:1,自引:5,他引:1  
Angluin  Dana 《Machine Learning》1990,5(2):121-150
We consider the problem of exact identification of classes of concepts using only equivalence queries. We define a combinatorial property,approximate fingerprints, of classes of concepts and show that no class with this property can be exactly identified in polynomial time using only equivalence queries. As applications of this general theorem, we show that there is no polynomial time algorithm using only equivalence queries that exactly identifies deterministic or nondeterministic finite state acceptors, context free grammars, or disjunctive or conjunctive normal form boolean formulas.  相似文献   

14.
We investigate the parallel complexity of learning formulas from membership and equivalence queries. We show that many restricted classes of boolean functions cannot be efficiently learned in parallel with a polynomial number of processors.  相似文献   

15.
Goldsmith  Judy  Sloan  Robert H.  Turán  György 《Machine Learning》2002,47(2-3):257-295
The theory revision, or concept revision, problem is to correct a given, roughly correct concept. This problem is considered here in the model of learning with equivalence and membership queries. A revision algorithm is considered efficient if the number of queries it makes is polynomial in the revision distance between the initial theory and the target theory, and polylogarithmic in the number of variables and the size of the initial theory. The revision distance is the minimal number of syntactic revision operations, such as the deletion or addition of literals, needed to obtain the target theory from the initial theory. Efficient revision algorithms are given for three classes of disjunctive normal form expressions: monotone k-DNF, monotone m-term DNF and unate two-term DNF. A negative result shows that some monotone DNF formulas are hard to revise.  相似文献   

16.
In this paper we study the question how many queries are needed to halve a given version space. In other words: how many queries are needed to extract from the learning environment the one bit of information that rules out fifty percent of the concepts which are still candidates for the unknown target concept. We relate this problem to the classical exact learning problem. For instance, we show that lower bounds on the number of queries needed to halve a version space also apply to randomized learners (whereas the classical adversary arguments do not readily apply). Furthermore, we introduce two new combinatorial parameters, the halving dimension and the strong halving dimension, which determine the halving complexity (modulo a small constant factor) for two popular models of query learning: learning by a minimum adequate teacher (equivalence queries combined with membership queries) and learning by counterexamples (equivalence queries alone). These parameters are finally used to characterize the additional power provided by membership queries (compared to the power of equivalence queries alone). All investigations are purely information-theoretic and ignore computational issues.  相似文献   

17.
We consider two issues in polynomial-time exact learning of concepts using membership and equivalence queries: (1) errors or omissions in answers to membership queries, and (2) learning finite variants of concepts drawn from a learnable class.To study (1), we introduce two new kinds of membership queries: limited membership queries and malicious membership queries. Each is allowed to give incorrect responses on a maliciously chosen set of strings in the domain. Instead of answering correctly about a string, a limited membership query may give a special I don't know answer, while a malicious membership query may give the wrong answer. A new parameter Lis used to bound the length of an encoding of the set of strings that receive such incorrect answers. Equivalence queries are answered correctly, and learning algorithms are allowed time polynomial in the usual parameters and L. Any class of concepts learnable in polynomial time using equivalence and malicious membership queries is learnable in polynomial time using equivalence and limited membership queries; the converse is an open problem. For the classes of monotone monomials and monotone k-term DNF formulas, we present polynomial-time learning algorithms using limited membership queries alone. We present polynomial-time learning algorithms for the class of monotone DNF formulas using equivalence and limited membership queries, and using equivalence and malicious membership queries.To study (2), we consider classes of concepts that are polynomially closed under finite exceptions and a natural operation to add exception tables to a class of concepts. Applying this operation, we obtain the class of monotone DNF formulas with finite exceptions. We give a polynomial-time algorithm to learn the class of monotone DNF formulas with finite exceptions using equivalence and membership queries. We also give a general transformation showing that any class of concepts that is polynomially closed under finite exceptions and is learnable in polynomial time using standard membership and equivalence queries is also polynomial-time learnable using malicious membership and equivalence queries. Corollaries include the polynomial-time learnability of the following classes using malicious membership and equivalence queries: deterministic finite acceptors, boolean decision trees, and monotone DNF formulas with finite exceptions.  相似文献   

18.
A theory, in this context, is a Boolean formula; it is used to classify instances, or truth assignments. Theories can model real-world phenomena, and can do so more or less correctly. The theory revision, or concept revision, problem is to correct a given, roughly correct concept. This problem is considered here in the model of learning with equivalence and membership queries. A revision algorithm is considered efficient if the number of queries it makes is polynomial in the revision distance between the initial theory and the target theory, and polylogarithmic in the number of variables and the size of the initial theory. The revision distance is the minimal number of syntactic revision operations, such as the deletion or addition of literals, needed to obtain the target theory from the initial theory. Efficient revision algorithms are given for Horn formulas and read-once formulas, where revision operators are restricted to deletions of variables or clauses, and for parity formulas, where revision operators include both deletions and additions of variables. We also show that the query complexity of the read-once revision algorithm is near-optimal.  相似文献   

19.
In this paper, a brief introduction is given to some statistical aspects of PAC (probably approximately correct) learning theory. It is shown that there is a close connection between the principal results in PAC learning theory and those in empirical process theory, the latter being a well-established branch of probability theory. The main results in each area are summarized without proofs, and the reader is directed to appropriate sources in the literature.  相似文献   

20.
We investigate, within the PAC learning model, the problem of learning nonoverlapping perceptron networks (also known as read-once formulas over a weighted threshold basis). These are loop-free neural nets in which each node has only one outgoing weight. We give a polynomial time algorithm that PAC learns any nonoverlapping perceptron network using examples and membership queries. The algorithm is able to identify both the architecture and the weight values necessary to represent the function to be learned. Our results shed some light on the effect of the overlap on the complexity of learning in neural networks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号