首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
French dairy herds (n = 534) were enrolled in the National 'Zero Mastitis Objective' Program to highlight management practices characterizing very low somatic cell score (SCS) herds. The herds studied were stratified into 2 groups. The first group (LOW) included herds within the first 5 percentiles and the second group (MED) herds within the 50 to 55 percentiles of herds on the basis of mean SCS for the 36 mo preceding the program. Potential explanatory variables, collected through questionnaire surveys, were analyzed using multistep logistic regression models. Twenty-six variables were significant factors in the final models, in which 18 were considered as primary factors for very low SCS. The probability for a herd belonging to the LOW group was associated with: (1) regular use of teat spraying; (2) herdsman precise in his techniques; (3) less than 1 person-year used at activities other than dairy herd; (4) teat dipping after mammary infusion at dry off; (5) heifers kept in a calving pen around parturition; (6) cows locked in feed-line lockups after milking; (7) dry cows with prepartum Ca restriction; (8) heifers on a nondamp pasture; (9) cows culled when at least one damaged teat; (10) heifers at pasture not drinking water from a river; and (11) disinfecting teat ends with alcohol before intramammary infusion at dry off. The probability for a herd belonging to the MED group was associated with: (1) milking cows housed in a straw yard; (2) checking heifers for mastitis only beginning at 2-wk prepartum; (3) no mastitis treatment when at least one clot was observed in milk at successive milkings; (4) distance of herdsman's house to cowshed >300 m; (5) only dirty teats washed before milking; (6) free access of cows from pasture to cowshed during bad weather; and (7) more than 18% of spring calvings. The variables associated with very low SCS should be applied as part of a thorough mastitis-control program adapted to each herd.  相似文献   

2.
Mean daughter deviations for clinical mastitis among second-crop daughters were regressed on predicted transmitting abilities for clinical mastitis and lactation mean somatic cell score in first-crop daughters to validate the predictive ability of these traits as selection criteria for reduced incidence of clinical mastitis. A total of 321 sires had 684,897 second-crop daughters, while predicted transmitting abilities were calculated for 2159 sires, based on 495,681 records of first-crop daughters. Predictive ability, as a measure of efficiency of selection, was 23 to 43% higher for clinical mastitis than for lactation mean somatic cell score. Compared to single-trait selection, predictive ability improved 8 to 13% from utilizing information on both traits. The relative weight that should be assigned to standardized predicted transmitting abilities from univariate genetic analyses were 60 to 67% for clinical mastitis and 33 to 40% for lactation mean somatic cell score. No significant nonlinear genetic relationship between the two traits was found.  相似文献   

3.
The objectives of this study were to examine genetic associations between clinical mastitis and somatic cell score (SCS) in early first-lactation cows, to estimate genetic correlations between SCS of cows with and without clinical mastitis, and to compare genetic evaluations of sires based on SCS or clinical mastitis. Clinical mastitis records from 15 d before to 30 d after calving and first test-day SCS records (from 6 to 30 d after calving) from 499,878 first-lactation daughters of 2,043 sires were analyzed. Results from a bivariate linear sire model analysis of SCS in cows with and without clinical mastitis suggest that SCS is a heterogeneous trait. Heritability of SCS was 0.03 for mastitic cows and 0.08 for healthy cows, and the genetic correlation between the 2 traits was 0.78. The difference in rank between sire evaluations based on SCS of cows with and without clinical mastitis varied from −994 to 1,125, with mean 0. A bivariate analysis with a threshold-liability model for clinical mastitis and a linear Gaussian model for SCS indicated that heritability of liability to clinical mastitis is at least as large as that of SCS in early lactation. The mean (standard deviation) of the posterior distribution of heritability was 0.085 (0.006) for liability to clinical mastitis and 0.070 (0.003) for SCS. The posterior mean (standard deviation) of the genetic correlation between liability to clinical mastitis and SCS was 0.62 (0.03). A comparison of sire evaluations showed that genetic evaluation based on SCS was not able to identify the best sires for liability to clinical mastitis. The association between sire posterior means for liability to clinical mastitis and sire predicted transmitting ability for SCS was far from perfect.  相似文献   

4.
French dairy herds were selected on a national basis through the "Zero Mastitis Objective" Program (ZMP) to display hygiene and milking practices characterizing very low somatic cell score (SCS) herds. The herds selected were stratified in 2 groups. The first group (LOW) included 187 herds within the first 5 percentiles of herds regarding mean SCS for the 36 mo preceding ZMP (36-mo SCS). The second group (MED) included 117 herds within the 50 to 55th percentile of herds regarding 36-mo SCS. Mean milk SCS was 3.09 in the MED herds vs. 1.99 in the LOW herds, which corresponded to 265,000 and 135,000 cells/mL respectively. Moreover, LOW and MED herds did not change from one SCS category to another during ZMP. Potentially explanatory variables, collected by formally trained dairy management experts through observations from attendance at milking and farm visits, were analyzed using multistep logistic regression models. According to final model and expert observations, the probability for a herd to belong to the LOW group was maximized when: 1) winter cleanliness of dry cow shed was good; 2) use of teat spraying was carried out; and 3) California Mastitis Tests were performed at milking. Moreover, the herd probability of belonging to the MED group was maximized when: 1) air admission at teat cup attachment was observed during milking; 2) winter cleanliness of dry cow shed was poor; and 3) the milker spent time during milking to feed calves. Finally, the study highlighted milking and hygiene variables and attitudes appearing as key practices to control herd SCS through precise and safe milking and more attention paid to individual animals and cleanliness of dry cow shed.  相似文献   

5.
Several selection criteria for reducing incidence of mastitis were developed from a random regression sire model for test-day somatic cell score (SCS). For comparison, sire transmitting abilities were also predicted based on a cross-sectional model for lactation mean SCS. Only first-crop daughters were used in genetic evaluation of SCS, and the different selection criteria were compared based on their correlation with incidence of clinical mastitis in second-crop daughters (measured as mean daughter deviations). Selection criteria were predicted based on both complete and reduced first-crop daughter groups (261 or 65 daughters per sire, respectively). For complete daughter groups, predicted transmitting abilities at around 30 d in milk showed the best predictive ability for incidence of clinical mastitis, closely followed by average predicted transmitting abilities over the entire lactation. Both of these criteria were derived from the random regression model. These selection criteria improved accuracy of selection by approximately 2% relative to a cross-sectional model. However, for reduced daughter groups, the cross-sectional model yielded increased predictive ability compared with the selection criteria based on the random regression model. This result may be explained by the cross-sectional model being more robust, i.e., less sensitive to precision of (co)variance components estimates and effects of data structure.  相似文献   

6.
Five chromosomes were selected for joint quantitative trait loci (QTL) analyses for clinical mastitis (CM) and somatic cell score (SCS) in 3 breeds: Finnish Ayrshire (FA), Swedish Red and White (SRB), and Danish Red (DR). In total, 19 grandsires and 672 sons in FA, 19 grandsires and 499 sons in SRB, and 8 grandsires and 258 sons in DR were used in the study. These individuals were genotyped with the 61 microsatellite markers used in any of the previous QTL scans on the selected chromosomes. Within-family QTL analyses based on linear regression models were carried out for CM and SCS to identify the segregating sires for each region. On the segregating families, joint single-trait and 2-trait analyses were performed using variance components models. The analyses confirmed that QTL affecting CM or SCS, or both, segregate on Bos taurus autosomes (BTA) 9, 11, 14, and 18, whereas a QTL on BTA29 could not be confirmed. Our results indicate that there may be at least 2 linked QTL on BTA9, one that primarily affects CM and a second that primarily affects SCS. On chromosomes BTA11, 14, and 18, the joint analyses were only significant for SCS.  相似文献   

7.
Periparturient cows go through a period of immune suppression often marked by immune cell dysfunction. Further exacerbation of this dysfunction through early-lactation excessive energy deficit (EED) has been associated with increased susceptibility to infectious conditions such as mastitis. Our objective was to explore the association of milk somatic cell score (SCS) and clinical mastitis (CM) diagnosis in cows identified with EED, diagnosed using each of the following: blood and milk β-hydroxybutyrate (BHB), milk predicted blood nonesterified fatty acid (mpbNEFA) concentrations, or milk de novo fatty acid (FA) relative percentages (rel %). We analyzed data collected from 396 multiparous Holstein cows from 2 New York farms in a prospective cohort study. Coccygeal vessel blood samples and composite milk samples were collected twice weekly from 3 to 18 days in milk (DIM) for a total of 4 time points per cow (T1, T2, T3, T4). Blood was analyzed using a hand-held meter, and milk was analyzed using Fourier-transform mid-infrared spectrometry for milk BHB and mpbNEFA concentrations, milk de novo FA rel %, and somatic cell count. Excessive energy deficit was diagnosed as blood BHB ≥ 1.2 mmol/L, milk BHB ≥ 0.14 mmol/L, mpbNEFA ≥ 0.55 mmol/L, or de novo FA ≤ 22.7 rel %, depending on the model. Clinical mastitis cultures were collected from 4 to 60 DIM by on-farm personnel. Incidence of hyperketonemia as determined by blood BHB was 13.4%, and incidence of CM was 23.9%. Separate repeated-measures ANOVA models were developed for each EED diagnostic analyte for parity groups 2, 3, and ≥4 to assess differences in SCS; t-test analyses were similarly used to assess the association of each diagnostic analyte with CM at each time point. For all diagnostic analytes, apart from milk BHB, cows diagnosed with EED tended to have lower SCS than their non-EED counterparts. This was especially apparent at T1 for all parity groups, and at T2, T3, and T4 for blood BHB and mpbNEFA. For EED diagnosis via mpbNEFA, mean SCS were lower in parity ≥4, with a difference in mean SCS between EED and non-EED animals of 0.7 SCS units, equating to a somatic cell count in EED animals approaching half that of non-EED (EED = 67,000 cells/mL, non-EED = 107,000 cell/mL). No important relationships were observed between CM diagnosis and blood BHB, milk BHB, or mpbNEFA. For de novo FA rel %, reductions in this analyte were noted before CM diagnosis at all time points. Although the relationship between EED and CM is still unclear, our findings suggest that cows in EED, diagnosed using blood BHB or mpbNEFA during the first 18 DIM, have a tendency toward lower SCS compared with their non-EED counterparts.  相似文献   

8.
Clinical mastitis (CM) and lactation mean somatic cell score (LSCS) were analyzed with a bivariate linear sire model. Nearly 1.4 million primiparous cows of Norwegian Dairy Cattle from 2043 sires were used. The heritability estimates were 0.03 for CM and 0.11 for LSCS. The estimates of genetic and residual correlations between the 2 traits were 0.53 and 0.10, respectively. It is postulated that the genetic correlation probably is highly population-specific.  相似文献   

9.
Correlated selection responses in lactation mean somatic cell score (LSCS) were estimated for groups of cows selected for high protein yield and low mastitis frequency, respectively. Selection for increased milk production resulted in an unfavorable correlated response for LSCS, whereas direct selection against clinical mastitis resulted in a favorable correlated selection response. After 6 cow generations, the genetic difference between the high protein yield group and the low mastitis group was 0.3 units LSCS, equivalent to a difference in somatic cell count of approximately 15,000, assuming deviations from a population mean LSCS of 4.1.  相似文献   

10.
We examined consistency of the relationship between intramammary infection (IMI) and somatic cell score (SCS) across several classes of cow, herd, and sampling time variables. Microbial cultures of composite milk samples were performed by New York Quality Milk Production Services from 1992 to 2004. SCS was from the most recent Dairy Herd Improvement test before IMI sampling. Records were analyzed from 79,308 cows in 1,124 commercial dairy herds representing a broad range of production systems. Three binary dependent variables were presence or absence of contagious IMI, environmental IMI, and all IMI. Independent variables in the initial models were SCS, SCS2, lactation number, days in milk, sample day milk yield, use of coliform mastitis vaccine, participant type (required by regulation or voluntary), production system (type of housing, milking system, and herd size), season of sampling, year of sampling, and herd; also the initial models included interactions of SCS and SCS2 with other independent variables, except herd and milk yield. Interaction terms characterize differences in the IMI-SCS relationship across classes of the independent variables. Models were derived using the Glimmix macro in SAS (SAS Institute Inc., Cary, NC) with a logistic link function and employing backward elimination. The final model for each dependent variable included all significant independent variables and interactions. Simplified models omitted SCS2 and all interactions with SCS. Interactions of SCS with days in milk, use of coliform mastitis vaccine, participant type, season, and year were not significant in any of the models. Interaction of SCS with production system was significant for the all IMI model, whereas interaction of SCS with lactation number was significant for the environmental and all IMI models. Each 1-point increase in SCS (or doubling of somatic cell count) was associated with a 2.3, 5.5, and 9.1% increase in prevalence of contagious, environmental, and all IMI, respectively. Empirical receiver operator characteristic curves and areas under the curve were derived for final and simplified models. The areas under the curve for simplified and final models within each type of IMI differed by 0.009 or less. We concluded that the relationship of IMI with SCS was generally stable over time and consistent across seasons, production systems, and cow factors.  相似文献   

11.
The objective of this study was to determine if an association existed among body condition score (BCS), body weight (BW), and udder health, as indicated by somatic cell score (SCS) and cases of clinical mastitis (CM). The data consisted of 2,635 lactations from Holstein-Friesian (n = 523) and Jersey (n = 374) cows in a seasonal calving pasture-based research herd between the years 1986 and 2000, inclusive. Increased BCS at calving was associated with reduced SCS in first- and second-parity cows, and greater SCS in cows of third parity or greater. This relationship persisted for most BCS traits throughout lactation. Body weight was positively associated with SCS, although the effect was greater in Jersey cows than in Holstein-Friesians. Increased BCS and BW loss in early lactation were associated with lower SCS and a reduced probability of a high test-day SCC. Body condition score was not significantly related to CM with the exception of a curvilinear relationship between the daily rate of BCS change to nadir and CM in early lactation. Several BW variables were positively associated with a greater likelihood of CM. Nevertheless, most associations with udder health lacked biological significance within the ranges of BCS and BW generally observed on-farm. Results are important in assuring the public that modern dairy systems, where cows are subjected to substantial amounts of BCS mobilization in early lactation, do not unduly compromise cow udder health.  相似文献   

12.
Bulk milk somatic cell count (BMSCC), individual cow somatic cell count (ICSCC), and incidence rate of clinical mastitis (IRCM) are all udder health parameters. So far, no studies have been reported on the effect of season on BMSCC, IRCM, and ICSCC in the same herds and period over multiple years. The objectives of this study were to determine the seasonal pattern over a 4-yr period of 1) BMSCC, 2) elevated ICSCC, 3) IRCM, and 4) pathogen-specific IRCM. Bulk milk somatic cell count, ICSCC, and pathogen-specific clinical mastitis data were recorded in 300 Dutch dairy farms. For the analyses of BMSCC, ICSCC, and IRCM, a mixed, a transitional, and a discrete time survival analysis model were used, respectively. Sine and cosine were included in the models to investigate seasonal patterns in the data. For all parameters, a seasonal effect was present. Bulk milk somatic cell count peaked in August to September in all 4 years. The probability of cows getting or maintaining a high ICSCC was highest in August and May, respectively. Older and late-lactation cows were more likely to develop or maintain a high ICSCC. Incidence rate of clinical mastitis was highest in December to January, except for Streptococcus uberis IRCM, which was highest in August. Totally confined herds had a higher Escherichia coli IRCM in summer than in winter. Compared with the major mastitis pathogens, the seasonal differences in IRCM were smaller for the minor pathogens. Distinguishing between Strep. uberis, Streptococcus dysgalactiae, Streptococcus agalactiae, and other streptococci is essential when identifying Streptococcus spp. because each of them has a unique epidemiology. Streptococcus uberis IRCM seemed to be associated with being on pasture, whereas E. coli IRCM was more housing-related.  相似文献   

13.
Associations were estimated between pathogen-specific cases of clinical mastitis (CM) and somatic cell count (SCC) patterns based on deviations from the typical curve for SCC during lactation and compared with associations between pathogen-specific CM and lactation average SCC. Data from 274 Dutch herds recording CM over an 18-mo period were used. Pathogens found were Staphylococcus aureus, coagulase-negative staphylococci, Escherichia coli, Streptococcus dysgalactiae, Streptococcus uberis, streptococci other than Strep. dysgalactiae and Strep. uberis, and culture-negative samples. The dataset contained 245,595 test-day records on SCC, recorded in 24,012 lactations of 19,733 cows of different parities. Pattern definitions were based on three or five consecutive test-day records. The patterns differentiated between a short or longer period of increased SCC and also between lactations with and without recovery. Logistic regression was applied to identify associations between presence of patterns and occurrence of pathogens. Occurrence of overall CM in a lactation is equally or even more accurately predicted by the presence of SCC in that lactation, than by a lactation average SCC of more than 200,000 cells/mL. Patterns can also distinguish between chances of risk for specific mastitis-causing pathogens. Clinical E. coli mastitis was significantly associated with the presence of a short peak in SCC, whereas Staph. aureus was associated with long increased SCC. Streptococcus dysgalactiae was not strongly associated with any of the defined patterns of peaks in SCC, and no single unambiguous pattern was found for Strep. uberis.  相似文献   

14.
The effect of non-aureus staphylococci (NAS) in bovine mammary health is controversial. Overall, NAS intramammary infections (IMI) increase somatic cell count (SCC), with an effect categorized as mild, mostly causing subclinical or mild to moderate clinical mastitis. However, based on recent studies, specific NAS may affect the udder more severely. Some of these apparent discrepancies could be attributed to the large number of species that compose the NAS group. The objectives of this study were to determine (1) the SCC of quarters infected by individual NAS species compared with NAS as a group, culture-negative, and major pathogen-infected quarters; (2) the distribution of NAS species isolated from quarters with low SCC (<200,000 cells/mL) and high SCC (≥200,000 cells/mL), and clinical mastitis; and (3) the prevalence of NAS species across quarters with low and high SCC. A total of 5,507 NAS isolates, 3,561 from low SCC quarters, 1,873 from high SCC quarters, and 73 from clinical mastitis cases, were obtained from the National Cohort of Dairy Farms of the Canadian Bovine Mastitis Research Network. Of quarters with low SCC, high SCC, or clinical mastitis, 7.6, 18.5, and 4.3% were NAS positive, respectively. The effect of NAS IMI on SCC was estimated using mixed-effect linear regression; prevalence of NAS IMI was estimated using Bayesian analyses. Mean SCC of NAS-positive quarters was 70,000 cells/mL, which was higher than culture-negative quarters (32,000 cells/mL) and lower than major pathogen-positive quarters (129,000 to 183,000 cells/mL). Compared with other NAS species, SCC was highest in quarters positive for Staphylococcus capitis, Staphylococcus gallinarum, Staphylococcus hyicus, Staphylococcus agnetis, or Staphylococcus simulans. In NAS-positive quarters, Staphylococcus xylosus (12.6%), Staphylococcus cohnii (3.1%), and Staphylococcus equorum (0.6%) were more frequently isolated from quarters with low SCC than other NAS species, whereas Staphylococcus sciuri (14%) was most frequently isolated from clinical mastitis cases. Finally, in NAS-positive quarters, Staphylococcus chromogenes, S. simulans, Staphylococcus epidermidis, and Staphylococcus haemolyticus were isolated with similar frequency from among low SCC and high SCC quarters and clinical mastitis cases. Staphylococcus chromogenes, S. simulans, S. xylosus, S. haemolyticus, S. epidermidis, S. agnetis, Staphylococcus arlettae, S. capitis, S. gallinarum, S. sciuri, and Staphylococcus warneri were more prevalent in high than in low SCC quarters. Because the NAS are a large, heterogeneous group, considering them as a single group rather than at the species, or even subspecies level, has undoubtedly contributed to apparent discrepancies among studies as to their distribution and importance in IMI and mastitis.  相似文献   

15.
Feeding practices, ration composition, and body condition scores (BCS) were assessed in an observational case-contrast study of Norwegian dairy herds with low (n = 98) and high (n = 94) mastitis infection rates. Differences between the 2 groups of herds were associated with feeding practices and amount of roughage. More herds in the low-infection group were fed a reduced amount of roughage at drying off, and reduced rations during the dry period resulted in lower BCS at calving. Cows in the low-infection herds had significantly lower BCS in the last month before calving and the first month of lactation than cows in the high-infection herds. The significant associations between mastitis infection rates and BCS, frequency of concentrate feeding, and amount of roughage at drying off and during the dry period indicated that feeding practices may have an important influence on the risk of mastitis in Norwegian dairy cows.  相似文献   

16.
Data from 274 Dutch herds recording clinical mastitis (CM) over an 18-mo period were used to investigate the effect of pathogen-specific CM on the lactation curve for somatic cell count (SCC). Analyzed pathogens were Staphylococcus aureus, coagulase-negative staphylococci, Escherichia coli, Streptococcus dysgalactiae, Streptococcus uberis, other streptococci, and the culture-negative samples. The dataset contained 178,754 test-day records on SCC, recorded in 26,411 lactations of 21,525 cows of different parities. In lactations without both clinical and subclinical mastitis, SCC was high shortly after parturition, decreased to a minimum at 50 days in milk (DIM), and increased slowly toward the end of the lactation. Effects of CM on lactation curves for SCC differed among the pathogens isolated. Before a case of clinical E. coli mastitis occurred, SCC was close to the SCC of lactations without both clinical and subclinical mastitis, and after the case of CM had occurred, SCC returned rather quickly to a low level again. Similar curves were found for lactations with cases of CM associated with culture-negative samples. Before a case of clinical Staph. aureus mastitis occurred, average SCC was already high, and it remained high after the occurrence. Effects of CM associated with Strep. dysgalactiae, Strep. uberis, and other streptococci on the lactation curve for SCC were comparable. They showed a continuous increase in SCC until the case of pathogen-specific CM occurred, and afterwards SCC stayed at a higher level. Using SCC test-day records, these typical characteristics of each pathogen may be used to find more effective indicators of CM.  相似文献   

17.
Mastitis is one of the most negative factors involved in the economy of dairy goat farms. The effect of selenium on mammary gland resistance to infectious diseases has been demonstrated. This work evaluates the efficacy of a slow-release Se salt (barium selenate) to reduce the incidence of clinical mastitis in goats reared on Se-deficient areas. Six hundred milking goats of the Malagueña breed, from 4 commercial dairy farms located in a Se-deficient area, were randomly allotted to 2 groups: treated group (given a subcutaneous injection of barium selenate at a dose of 1 mg of Se/kg of body weight 15 d before mating) and control group (no supplement). During the lactation the does were monitored to assess the occurrence of clinical mastitis by physical examination, California Mastitis Test performance, and microbiological study. The Se content of the ration consumed previously by the animals did not meet the requirements for dairy goats. The Se injection significantly increased glutathione peroxidase activity in the treated group and had evident beneficial effects in the subsequent lactation. The somatic cell count and the incidence of clinical mastitis were significantly lower in the treated group than in the control group. However, no significant differences were found for milk composition. Thus, in Se-deficient areas, the supplementation with Se of any source in programs for prevention of clinical mastitis and improvement of milk quality is strongly recommended.  相似文献   

18.
The objective of this study was to determine the relationships among severity and duration of clinical mastitis during first and second lactation and sire transmitting abilities for somatic cell score, udder type traits, productive life, and protein yield. Recording of clinical episodes began at first parturition for 1704 Holstein cows (in six Pennsylvania herds and one Nebraska herd) and continued into second lactation for 1055 of these cows. A total of 456 cows (sired by 168 bulls) had at least one clinical episode during first lactation, and 230 cows (sired by 100 bulls) had at least one clinical episode during second lactation. A severity code from 1 (normal milk) to 5 (acute systemic mastitis) was assigned daily (for up to 30 d after detection) to all quarters that had clinical mastitis. Only the severity codes for the first clinical episode to occur during first and second lactation are considered here. The initial and maximum severity codes, as well as the natural logarithms of both the sum of severity codes that were above normal (> 1) and the total days severity codes were above normal were regressed on herd (a classification variable), age at first calving, days in milk at clinical detection, and sire transmitting abilities taken one at a time. Linear and nonlinear effects were estimated for sire transmitting abilities. Separate analyses were conducted on dependent variables that considered severity and duration of clinical mastitis from: all organisms, coagulase-negative staphylococci, coliform species, streptococci other than Streptococcus agalactiae, and the most common environmental organisms (coliform species and streptococci other than Streptococcus agalactiae). Daughters of sires that transmit the lowest somatic cell score had the least severe and shortest clinical episodes from environmental organisms during first lactation. Selection for lower somatic cell score may reduce the severity and duration of clinical episodes from environmental organisms during first lactation.  相似文献   

19.
The aim of this study was to investigate whether quantitative trait loci (QTL) affecting the risk of clinical mastitis (CM) and QTL affecting somatic cell score (SCS) exhibit pathogen-specific effects on the incidence of mastitis. Bacteriological data on mastitis pathogens were used to investigate pathogen specificity of QTL affecting treatments of mastitis in first parity (CM1), second parity (CM2), and third parity (CM3), and QTL affecting SCS. The 5 most common mastitis pathogens in the Danish dairy population were analyzed: Streptococcus dysgalactiae, Escherichia coli, coagulase-negative staphylococci, Staphylococcus aureus, and Streptococcus uberis. Data were analyzed using 2 approaches: an independence test and a generalized linear mixed model. Three different data sets were used to investigate the effect of data sampling: all samples, only samples that were followed by antibiotic treatment, and samples from first-crop daughters only. The results showed with high certainty that 2 QTL affecting SCS exhibited pathogen specificity against Staph. aureus and E. coli, respectively. The latter result might be explained by a pleiotropic QTL that also affects CM2 and CM3. Less certain results were found for QTL affecting CM. A QTL affecting CM1 was found to be specific against Strep. dysgalactiae and Staph. aureus, a QTL affecting CM2 was found to be specific against E. coli, and finally a QTL affecting CM3 was found to be specific against Staph. aureus. None of the QTL analyzed was found to be specific against coagulase-negative staphylococci and Strep. uberis. Our results show that particular mastitis QTL are highly likely to exhibit pathogen-specificity. However, the results should be interpreted carefully because the results are sensitive to the sampling method and method of analysis. Field data were used in this study. These kind of data may be heavily biased because there is no standard procedure for collecting milk samples for bacteriological analysis in Denmark. Furthermore, using only the mean SCS from d 10 to 180 after parturition may lead to truncated effects of SCS-QTL when samples collected after d 180 are used. Additionally, repeated samples were used, which could boost the difference in incidence of pathogens between daughters of sires inheriting the positive and negative QTL allele, respectively. However, the magnitude of these effects in this study is unclear.  相似文献   

20.
The aim of this study was to define alternative traits of somatic cell count (SCC) that can be used to decrease genetic susceptibility to clinical and subclinical mastitis (CM and SCM, respectively). Three kinds of SCC traits were evaluated: 1) lactation-averages of SCC, 2) traits derived from the proportion of test-day SCC above 150,000 cells/mL, and 3) patterns of peaks in SCC. Genetic parameters for these SCC traits and their genetic correlation with CM and SCM were estimated; CM and SCM were scored as binary traits. Two data sets (A and B) depending on CM recording were available. After editing, subset A contained 28,688 lactations from 21,673 cows in 394 herds. Subset B contained 56,726 lactations of 30,145 cows in 272 herds. Variance components for sire and permanent animal effects were estimated. Estimated heritabilities for all mastitis traits were around 0.03. Heritabilities for SCC traits ranged from 0.01 for patterns of peaks in SCC to 0.13 for lactation-average SCC. Genetic correlations between SCC traits and CM or SCM ranged from 0.55 to 0.93 for CM and from 0.55 to 0.98 for SCM. High genetic correlations were estimated between CM and SCC averaged over 250 d in milk (0.87), and between SCM and presence of test-day SCC >150,000 cells/mL (0.98) in subset A. In subset B, a high genetic correlation was estimated between CM and an SCC peak with a quick recovery (0.93) and between SCM and SCC averaged between 151 and 400 d (0.95). Partial genetic correlations were calculated to investigate the additional information of the alternative SCC traits, compared with lactation-average SCC. They showed that some traits remain informative for CM and others for SCM. Therefore, use of information from a combination of different SCC traits may be more successful in improving overall udder health than the traditional single SCC measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号