首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Wang F  Zhang X  Luo J  Guo H  Zeng SS  Ren F 《Journal of food science》2011,76(3):E248-E253
The changes in proteolysis, calcium (Ca) equilibrium, and functional properties of natural Cheddar cheeses during ripening and the resultant processed cheeses were investigated. For natural Cheddar cheeses, the majority of the changes in pH 4.6 soluble nitrogen as a percentage of total nitrogen (pH 4.6 SN/TN) and the soluble Ca content occurred in the first 90 d of ripening, and subsequently, the changes were slight. During ripening, functional properties of natural Cheddar cheeses changed, that is, hardness decreased, meltability was improved, storage modulus at 70 °C (G'T=70) decreased, and the maximum tan delta (TDmax) increased. Both pH 4.6 SN/TN and the soluble Ca were correlated with changes in functional properties of natural Cheddar cheeses during ripening. Kendall's partial correlation analysis indicated that pH 4.6 SN/TN was more significantly correlated with changes in hardness and TDmax. For processed cheeses manufactured from natural Cheddar cheeses with different ripening times, the soluble Ca content did not show significant difference, and the trends of changes in hardness, meltability, G'T=70, and TDmax were similar to those of natural Cheddar cheeses. Kendall's partial correlation analysis suggested that only pH 4.6 SN/TN was significantly correlated with the changes in functional properties of processed cheeses.  相似文献   

2.
ABSTRACT:  Cheddar cheese ripened at 8 °C was sampled at 7, 14, 28, 56, 112, and 168 d and subsequently used for the manufacture of processed cheese. The cheddar cheese samples were analyzed throughout ripening for proteolysis while the textural and rheological properties of the processed cheeses (PCs) were studied. The rate of proteolysis was the greatest in the first 28 d of cheddar cheese ripening but began to slow down as ripening progressed from 28 to 168 d. A similar trend was observed in changes to the texture of the PC samples, with the greatest decrease in hardness and increase in flowability being in the first 28 d of ripening. Confocal scanning laser microscopy showed that the degree of emulsification in the PC samples increased as the maturity of the cheddar cheese ingredient increased from 7 to 168 d. This increased emulsification resulted in a reduction in the rate of softening in the PC in samples manufactured from cheddar cheese bases at later ripening times. Multivariate data analysis was performed to summarize the relationships between proteolysis in the cheddar cheese bases and textural properties of the PC made therefrom. The proportion of α s 1-casein (CN) in the cheddar cheese base was strongly correlated with hardness, adhesiveness, fracturability, springiness, and storage modulus values for the corresponding PC. Degradation of α s 1-CN was the proteolytic event with the strongest correlation to the softening of PC samples, particularly those manufactured from cheddar cheese in the first 28 d of ripening.  相似文献   

3.
The pH of cheese is an important attribute that influences its quality. Substantial changes in cheese pH are often observed during ripening. A combined effect of calcium, phosphorus, residual lactose, and salt-to-moisture ratio (S/M) of the cheese on the changes in cheese pH during ripening was investigated. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), lactose at pressing (2.4 vs. 0.78%), and S/M (6.4 vs. 4.8%) were manufactured. All the cheeses were salted at a pH of 5.4, pressed for 5 h, and then ripened at 6 to 8°C. The pH of the salted curds before pressing and the cheeses during 48 wk of ripening was measured. Also, cheeses were analyzed for water-soluble Ca and P, organic P, and bound inorganic P during ripening. Changes in organic acids’ concentration and shifts in the distribution of Ca and P between different forms were studied in relation to changes in pH. Cheeses with low S/M exhibited a larger increase in acid production during ripening compared with high S/M cheeses. Cheeses with the highest concentration of bound inorganic P exhibited the highest pH, whereas cheeses with the lowest concentration of bound inorganic P exhibited the lowest pH among the 8 treatments. Although conversion of lactose to short-chain, water-soluble organic acids decreased cheese pH, bound inorganic phosphate buffered the changes in cheese pH. Production of acid in excess of the buffering capacity (which was the case in low Ca and P and low S/M treatments) led to a low pH, whereas solubilization of bound inorganic P in excess to acid production (which was the case in high Ca and P and high S/M treatments) led to an increase in pH. However, for cheeses with high Ca and P and low S/M, changes in cheese pH were influenced by the level of residual lactose. Hence, pH changes in Cheddar cheese can be modulated by a concomitant control on the amount and state of Ca and P, level of residual lactose, and S/M of the cheese.  相似文献   

4.
To determine the influence of milk preacidification with CO(2) on Cheddar cheese aging and proteolysis, cheese was manufactured from milk with and without added CO(2). The experiment was replicated 3 times. Carbon dioxide (approximately 1600 ppm) was added to the cold milk, resulting in a milk pH of 5.9 at 31 degrees C in the cheese vat. The starter and coagulant usage rates were equal for the control and CO(2) treatment cheeses. The calcium content of the CO(2) treatment cheese was lower, but no difference in moisture content was detected. The higher CO(2) content of the treatment cheeses (337 vs. 124 ppm) was maintained throughout 6 mo of aging. In spite of having almost one and a half times the salt-in-moisture, proteolysis as measured by pH 4.6 and 12% trichloroacetic acid soluble nitrogen expressed as percentages of total nitrogen, was higher in the CO(2) treatment cheeses throughout aging. The ratio of alpha(s)-casein (CN) to para-kappa-CN decreased faster in the CO(2) treatment cheeses than in the control cheeses, especially before refrigerated storage. No difference was detected in the ratio of beta-CN to para-kappa-CN between the control and CO(2) treatment cheeses. Intact alpha(s)- and beta-CN were found in the expressible serum (ES) from the CO(2) treatment cheese as well as alpha(s1)-I-CN, but they were not detected in the ES from the control cheese. No CN was detected in the ES from the curd before the salting of either the control or CO(2) treatment cheese. Higher proteolysis in the cheese made from milk preacidified with CO(2) may have been due to increased substrate availability in the water phase or increased chymosin activity or retention in the cheese.  相似文献   

5.
Buffalo milk Cheddar cheese samples of different ages were analysed for compositional attributes (CA), ripening indices (RI) and Instron Textural Profile (ITP). All samples were compositionally alike, except for pH and salt-in-moisture (SM) contents. RI showed significant variations. CA and RI showed highly significant correlations within themselves and with each other, except for moisture with pH, SM with moisture, MNFS, Fat and FDM and Fat with MNFS. The ITPs of cheeses showed significant variations and had highly significant intercorrelations indicating their interdependence. CA (except moisture and MNFS) and RI showed a highly significant correlationship with ITPs. Moisture content showed a highly significant correlationship with all ITPs, except cohesiveness and springiness, where it was significant. MNFS content showed significant correlations only with hardness and brittleness. Stepwise regression analysis revealed that MI was the most predominant factor influencing cheese texture, followed by pH, SM, FDM and TVFA. Knowing Ca and RI, the textural properties of cheeses can be forecast through mathematical equations. Similarly the age of cheese can also be predicted if RI and/or textural properties are known.  相似文献   

6.
In cheese, the concentration and form of residual Ca greatly influences texture. Two methods were used to determine the proportions of soluble (SOL) and insoluble (INSOL) Ca in Cheddar cheese during 4 mo of ripening. The first method was based on the acid-base buffering curves of cheese and the second was based on the extraction of the aqueous phase ("juice") of cheese under high pressure and determining the concentration of SOL Ca in the juice using atomic absorption spectroscopy. When cheese was acidified there was a strong buffering peak at pH approximately 4.8, which was due to the solubilization of residual colloidal calcium phosphate (CCP) of milk that remained in cheese as INSOL Ca phosphate. The area of this buffering peak in cheese was expressed as a percentage of the original area of this peak in milk and was used to estimate the concentration of residual INSOL Ca phosphate in cheese. There were no significant differences between the 2 methods. The proportions of INSOL Ca in cheese decreased from approximately 73 to approximately 58% between d 1 and 4 mo. These methods will be useful techniques to study the role of Ca in cheese texture and functionality.  相似文献   

7.
Previous research demonstrated that crystal coverage on the surface of Cheddar cheese can be quantitatively and nondestructively measured using image analysis of digital photographs of the cheese surface. The objective of the present study was to extend image analysis methodology to quantify and characterize additional features of visible crystals on cheese surfaces as they grow over time. A random weight (∼300 g) retail sample of naturally smoked Cheddar cheese exhibiting white surface crystals was obtained from a commercial source. The total area occupied by crystals and total number of discrete crystal regions on one of the surfaces (∼55 × 120 mm) was measured at 3-wk intervals for 30 wk using image analysis. In addition, 5 small (∼0.3 mm radius) individual crystals on that surface were chosen for observation over the 30-wk period. The crystals were evaluated for area, radius, and shape factor (circularity) every third week using image analysis. The total area occupied by crystals increased in a linear manner (R2 = 0.95) from about 0.44 to 7.42% of the total cheese surface area over the 30-wk period. The total number of discrete crystal regions also increased but in a nonlinear manner that was best described by a quadratic relationship. Measurement of discrete crystal regions underestimated the true number of crystals present at the cheese surface due to merging of adjacent crystals as they grew and merged into a single crystal region over time. Throughout this period, the shapes of the 5 individual crystals closely approximated perfect circles, except when adjacent crystals merged to form a single irregular crystal region, and the area occupied by each of the 5 crystals increased in a near-linear manner (R2 = 0.95). Image analysis approaches may be used to evaluate crystal formation and growth rates and morphology on cheese.  相似文献   

8.
Three experimental batches of Cheddar cheese were manufactured in duplicate, with standardization of the initial cheese-milk lactose content to high (5.24%), normal (4.72%, control), and low lactose (3.81%). After 35 d of aging at 4.4°C, the cheeses were subjected to temperature abuse (24 h at 21°C, unopened) and contamination (24 h at 21°C, packages opened and cheeses contaminated with crystal-containing cheese). After aging for 167 d, residual cheese lactose (0.08 to 0.43%) and l(+)-lactate concentrations (1.37 to 1.60%) were high and d(−)-lactate concentrations were low (<0.03%) for all cheeses. No significant differences in lactose concentrations were attributable to temperature abuse or contamination. No significant differences in l(+)- or d(−)-lactate concentrations were attributable to temperature abuse. However, concentrations of l(+)-lactate were significantly lower and d(−)-lactate were significantly higher in contaminated cheeses than in control cheeses, indicating inoculation (at d 35) with heterofermentative nonstarter lactic acid bacteria able to racemize l(+)-lactate to d(−)-lactate. The fact that none of the cheeses exhibited crystals after 167 d demonstrates that high cheese milk or residual lactose concentrations do not guarantee crystal formation. Contamination with nonstarter lactic acid bacteria can significantly contribute to d(−)-lactate accumulation in cheese.  相似文献   

9.
The present study was undertaken to study the effects of application of natural wood smoke on ripening of Cheddar cheese, and to determine the effects of smoking before or after ripening on cheese quality. A 20-kg block of Cheddar cheese obtained immediately after pressing was divided into six approximately 3-kg blocks and ripened at 8 degrees C for up to 270 d. One 3-kg block was taken after 1 d, 1, 3, 6, or 9 mo and smoked for 20 min, then returned to the ripening room for further ripening. Cheeses were sampled at intervals for lactobacilli counts, moisture, pH, and proteolysis. Sensory analysis was conducted on 6 and 9-mo-old cheeses by a trained sensory panel (n = 7). Results show that application of natural wood smoke did not significantly affect cheese pH or primary proteolysis during ripening. However, secondary proteolysis as assessed by the concentrations of free amino acids was generally higher in smoked cheeses than in control cheeses after 6 mo of ripening. Cheese smoked after 6 mo of ripening had better smoked flavor than that smoked after 9 mo of ripening. Cheese smoked after 3 mo of age and further ripened for 6 mo had the highest smoked flavor intensity. It is concluded that it is best to smoke cheese after ripening for at least 3 mo.  相似文献   

10.
We applied capillary electrophoresis, liquid chromatography coupled with tandem mass-spectrometry (MS/MS), and ultra-performance liquid chromatography to determine the composition of water-insoluble and water-soluble proteinaceous fractions of the cheese and to study in detail the degradation of caseins during 8 mo of ripening of Estonian high-temperature cooked hard cheese Old Saare. The application of high-resolution and high-accuracy MS/MS enabled identification of more than 3,000 small peptides, representing a fairly full casein peptidome containing peptides of 4 to 25 AA in length: 1,049 from β-casein (CN), 944 from αS1-CN, 813 from αS2-CN, and 234 from κ-CN. The majority of β-CN- and αS1-CN-derived peptides originated from the N-terminal parts of the molecule, f6-93 and f1-124, respectively; peptides from αS2-CN arose predominantly from the C-terminal end f100-162. At the beginning of ripening, we found a relatively high amount of peptides originating from the glycomacropeptide part of κ-CN, whereas peptides from para-κ-CN prevailed during the later stages of ripening of the cheese. The cleavage patterns of β-CN, αS2-CN, as well as αS1-CN, showed that primary proteolysis was started mainly by plasmin, although a low proteolytic activity of chymosin was also evident. Based on the analysis of cleavage sites, we observed a significant participation of proteolytic enzymes, including amino- and carboxypeptidases, of both mesophilic and thermophilic starter bacteria in further hydrolysis of oligopeptides during the ripening. Several new phosphopeptides were detected in the result of MS/MS data analysis. The profiles of the estimated concentrations of phosphopeptides revealed that those originating from β-CN and αS1-CN accumulated during cheese maturation. In contrast, we did not notice any generation of phosphopeptides from the highly phosphorylated part of αS2-CN, f25-80, presumably due to the inaccessibility of this region to the action of plasmin and chymosin. The analysis of cleavage sites and the combination of principal component and clustering analyses provided a characterization of the complex dynamics of formation and degradation of peptides during cheese maturation. We made an attempt to obtain a comprehensive picture of proteolysis during Old Saare cheese ripening on the basis of the detailed peptidomic data, including also the less abundant peptides determined by MS/MS, and complemented by the data on intact caseins and free AA and reported the results in the paper.  相似文献   

11.
Proteolysis during ripening of reduced fat Cheddar cheeses made with different exopolysaccharide (EPS)-producing and nonproducing cultures was studied. A ropy strain of Lactococcus lactis ssp. cremoris (JFR1) and capsule-forming nonropy and moderately ropy strains of Streptococcus thermophilus were used in making reduced-fat Cheddar cheese. Commercial Cheddar starter was used in making full-fat cheese. Results showed that the actual yield of cheese made with JFR1 was higher than that of all other reduced-fat cheeses. Cheese made with JFR1 contained higher moisture, moisture in the nonfat substance, and residual coagulant activity than all other reduced-fat cheeses. Proteolysis, as determined by PAGE and the level of water-soluble nitrogen, was also higher in cheese made with JFR1 than in all other cheeses. The HPLC analysis showed a significant increase in hydrophobic peptides (causing bitterness) during storage of cheese made with JFR1. Cheese made with the capsule-forming nonropy adjunct of S. thermophilus, which contained lower moisture and moisture in the nonfat substance levels and lower chymosin activity than did cheese made with JFR1, accumulated less hydrophobic peptides. In conclusion, some EPS-producing cultures produced reduced-fat Cheddar cheese with moisture in the nonfat substance similar to that in its full-fat counterpart without the need for modifying the standard cheese-making protocol. Such cultures might accumulate hydrophobic (bitter) peptides if they do not contain the system able to hydrolyze them. For making high quality reduced-fat Cheddar cheese, EPS-producing cultures should be used in conjunction with debittering strains.  相似文献   

12.
The objective of the study was to determine the effects of exopolysaccharide (EPS)‐producing or non‐EPS‐producing starters on proteolysis, physical and microstructural characteristics of full‐fat or low‐fat Tulum cheeses during ripening. For this purpose, Tulum cheese was manufactured using full‐ or low‐fat milk with EPS‐producing and non‐EPS‐producing starter cultures. Chemical composition, proteolysis, texture profiles and microstructure of the cheeses were studied during 90 days of ripening. Urea‐PAGE of water‐insoluble and RP‐HPLC peptide profiles of water‐soluble fractions of the cheeses showed that the use of starters resulted in different degradation patterns in all cheeses during ripening. Although β‐casein exhibited similar degradation patterns in all cheeses, small differences are present in αs1‐casein degradation during ripening. Reducing fat in Tulum cheese changed the RP‐HPLC peptide profile of the cheeses. The use of EPS‐producing cultures improved the textural characteristics and changed the microstructure and proteolysis of low‐fat Tulum cheese.  相似文献   

13.
The occurrence of unappetizing calcium lactate crystals in Cheddar cheese is a challenge and expense to manufacturers, and this research was designed to understand their origin. It was hypothesized that nonstarter lactic acid bacteria (NSLAB) affect calcium lactate crystallization (CLC) by producing D(-)-lactate. This study was designed to understand the effect of NSLAB growth and aging temperature on CLC. Cheeses were made from milk inoculated with Lactococcus lactis starter culture, with or without Lactobacillus curvatus or L. helveticus WSU19 adjunct cultures. Cheeses were aged at 4 or 13 degrees C for 28 d, then half of the cheeses from 4 and 13 degrees C were transferred to 13 and 4 degrees C, respectively, for the remainder of aging. The form of lactate in cheeses without adjunct culture or with L. helveticus WSU19 was predominantly L(+)-lactate (> 95%, wt/wt), and crystals were not observed within 70 d. While initial lactate in cheeses containingL. curvatus was only L(+)-lactate, the concentration of D(-)-lactate increased during aging. After 28 d, a racemic mixture of D/L-lactate was measured in cheeses containing L. curvatus; at the same time, CLC was observed. The earliest and most extensive CLC occurred on cheeses aged at 13 degrees C for 28 d then transferred to 4 degrees C. These results showed that production of D(-)-lactate by NSLAB, and aging temperature affect CLC in maturing Cheddar cheese.  相似文献   

14.
对真空包装和涂蜡包装的半硬质干酪成熟过程中蛋白降解进行了研究。结果表明:2种包装的干酪在成熟过程中pH 4.6SN含量和12%TCA-SN含量都随着时间的延长逐渐增大,且2组数据之间差异显著(P<0.05);2种包装的干酪中游离氨基酸总量随成熟时间的延长而逐渐增加,各种氨基酸含量变化的显著性不同;SDS-PAGE电泳图谱显示2种干酪在成熟期内蛋白质都发生了明显的降解,且涂蜡包装的干酪蛋白降解程度较真空包装的深,在成熟45 d后较为明显。  相似文献   

15.
Characterization of nutty flavor in cheddar cheese   总被引:4,自引:0,他引:4  
  相似文献   

16.
Directly acidified cheeses with different insoluble Ca (INS Ca) contents were made to test the hypothesis that the removal of INS Ca from casein micelles (CM) would directly contribute to the softening and flow behavior of cheese at high temperature. Skim milk was directly acidified with dilute lactic acid to pH values of 6.0, 5.8, 5.6, or 5.4 to remove INS Ca (pH trial). Lowering milk pH also reduced protein charge repulsion, which could influence melt. In a second treatment, EDTA (0, 2, 4, or 6 mM) was added to skim milk that was subsequently acidified to pH 6.0 (EDTA trial). Both types of milks were then made into directly acidified cheese. Cheese properties were determined at approximately 10 h after pressing to reduce possible confounding effects of proteolysis. The INS Ca content was determined by the acid-base titration method. Dynamic low-amplitude oscillatory rheology was used to measure the viscoelastic properties of cheese during heating from 5 to 80°C. The composition of all cheeses was as similar as possible, with cheese-making procedures being modified to obtain similar moisture contents (∼55%). Insoluble Ca contents of cheeses significantly decreased with a reduction in pH or with the addition of EDTA to skim milk. The pH values of cheeses in the pH trial varied, but all cheeses in the EDTA trial had similar pH values (∼5.73). In the pH trial, the reduction in cheese pH and consequent decrease in INS Ca content resulted in a reduction in the G′ values of cheeses at 20°C. In contrast, the G′ values at 20°C in cheeses from the EDTA trial increased with EDTA addition up to 4 mM EDTA. The G′ values at 70°C of cheeses from the pH trial decreased with a decrease in cheese pH, and a similar decrease was observed in the G′ values of cheese from the EDTA trial with an increase in EDTA concentration even though these cheeses had a similar pH value. In both trials, loss tangent (LT) values increased with temperatures >30°C and reached a maximum at approximately 70°C. In the pH trial, LT values at 70°C increased from 1.50 to 4.24 with a decrease in cheese pH from 5.78 to 5.21. The LT values increased from 1.43 to 3.23 with an increase in the concentration of added EDTA from 0 to 6 mM. In the EDTA trial, the decrease in G′ and increase in LT values at 70°C were due to the reduction in INS Ca content, because the pH values of these cheeses were the same. It can be concluded that the loss of INS Ca increases the melting in cheeses that have the same pH and gross chemical composition, and removal of INS Ca can even make cheese at high pH (∼5.73) exhibit reasonable melt characteristics.  相似文献   

17.
The objective of this study was to evaluate the effects of cheese-making technologies, including homogenization of cream, ultrafiltration, and vacuum condensing of milk, on the retention of salt in Cheddar cheese. One part of pasteurized, separated milk (0.58% fat) was ultrafiltered (55 degrees C, 16.0% protein), another vacuum condensed (12.5% protein), and the third was not concentrated. Cheddar cheese was manufactured using 6 treatments by standardizing unconcentrated milk to a casein-to-fat ratio of 0.74 with unhomogenized 35% fat cream (C), homogenized (6.9 MPa/3.5 MPa) 35% fat cream (CH), ultrafiltered milk and unhomogenized cream (UF), ultrafiltered milk and homogenized cream (UFH), condensed milk and unhomogenized cream (CM), and condensed milk and homogenized cream (CMH). Treatments C and CH had 3.7% fat and 3.5% protein, and the respective values for the remaining treatments were 4.9 and 4.6. The milled curd was dry salted at 2.7% by weight. The salt content of the cheeses receiving homogenization treatment was higher at 1.83 and 1.70% for CH and UFH, respectively, compared with their corresponding controls at 1.33%. The salt content in cheeses from CMH was 1.64% and was not affected by homogenization. Salt retention in C increased from 41.7 to 59.2% in CH, and in UF it increased from 42.5 to 54.5% in UFH. There was a corresponding decrease in the salt content of whey from these cheeses.  相似文献   

18.
The evolution of free fatty acids (FFA) was monitored over 168 d of ripening in Cheddar cheeses manufactured from good quality raw milk (RM), thermized milk (TM; 65°C × 15 s), and pasteurized milk (PM; 72°C × 15 s). Heat treatment of the milk reduced the level and diversity of raw milk microflora and extensively or wholly inactivated lipoprotein lipase (LPL) activity. Indigenous milk enzymes or proteases from RM microflora influenced secondary proteolysis in TM and RM cheeses. Differences in FFA in the RM, TM, and PM influenced the levels of FFA in the subsequent cheeses at 1 d, despite significant losses of FFA to the whey during manufacture. Starter esterases appear to be the main contributors of lipolysis in all cheeses, with LPL contributing during production and ripening in RM and, to a lesser extent, in TM cheeses. Indigenous milk microflora and nonstarter lactic acid bacteria appear to have a minor contribution to lipolysis particularly in PM cheeses. Lipolytic activity of starter esterases, LPL, and indigenous raw milk microflora appeared to be limited by substrate accessibility or environmental conditions over ripening.  相似文献   

19.
The effect of addition of trisodium citrate (TSC) and calcium chloride (CaCl2) on the textural and rheological properties of Cheddar-style cheese was investigated. Cheese curds were salted (2.5%) with NaCl (control) or NaCl supplemented with either TSC or CaCl2 with a constant ionic strength. Casein-bound calcium phosphate decreased upon addition of TSC and increased upon addition of CaCl2. Addition of CaCl2 resulted in increased hardness. Addition of TSC resulted in reduced hardness but more elastic cheeses at high temperatures. The addition of TSC or CaCl2 at salting had a significant effect on cheese rheology and texture.  相似文献   

20.
The objective of this study was to compare the effects of vacuum-condensed (CM) and ultrafiltered (UF) milk on some compositional and functional properties of Cheddar cheese. Five treatments were designed to have 2 levels of concentration (4.5 and 6.0% protein) from vacuum-condensed milk (CM1 and CM2) and ultrafiltered milk (UF1 and UF2) along with a 3.2% protein control. The samples were analyzed for fat, protein, ash, calcium, and salt contents at 1 wk. Moisture content, soluble protein, meltability, sodium dodecyl sulfate-PAGE, and counts of lactic acid bacteria and nonstarter lactic acid bacteria were performed on samples at 1, 18, and 30 wk. At 1 wk, the moisture content ranged from 39.2 (control) to 36.5% (UF2). Fat content ranged from 31.5 to 32.4% with no significant differences among treatments, and salt content ranged from 1.38 to 1.83% with significant differences. Calcium content was higher in UF cheeses than in CM cheeses followed by control, and it increased with protein content in cheese milk. Ultrafiltered milk produced cheese with higher protein content than CM milk. The soluble protein content of all cheeses increased during 30 wk of ripening. Condensed milk cheeses exhibited a higher level of proteolysis than UF cheeses. Sodium dodecyl sulfate-PAGE showed retarded proteolysis with increase in level of concentration. The breakdown of alphas1- casein and alphas1-I-casein fractions was highest in the control and decreased with increase in protein content of cheese milk, with UF2 being the lowest. There was no significant degradation of beta-casein. Overall increase in proteolytic products was the highest in control, and it decreased with increase in protein content of cheese milk. No significant differences in the counts of lactic starters or nonstarter lactic acid bacteria were observed. Extent as well as method of concentration influenced the melting characteristics of the cheeses. Melting was greatest in the control cheeses and least in cheese made from condensed milk and decreased with increasing level of milk protein concentration. Vacuum condensing and ultrafiltration resulted in Cheddar cheeses of distinctly different quality. Although both methods have their advantages and disadvantages, the selection of the right method would depend upon the objective of the manufacturer and intended use of the cheese.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号