首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A chemotactic receptor for val(ala)-gly-ser-glu on human   总被引:1,自引:0,他引:1  
Preferential eosinophil chemotactic activity is an in vitro and in vivo property of eosinophil chemotactic factor of anaphylaxis (ECF-A), a mixture of two peptides, Val-Gly-Ser-Glu and Ala-Gly-Ser-Glu, isolated from extracts and anaphylactic diffusates of human lung tissue. Purified native and synthetic ECF-A share with the synthetic N-formyl methionyl peptides such features as in vitro activity in nanomolar amounts, high dose inhibition of effect and a requirement for hydrophobic amino acid residues. The capacity of the substituents of ECF-A, Val-Gly-Ser, Ala-Gly-Ser, and Gly-Ser-Glu to modulate eosinophil chemotaxis has permitted a preliminary functional characterization of an eosinophil surface receptor. The activity, specificity, and structural characteristics of the active tetrapeptides suggest that distinct interactions of the peptide with a stereospecific receptor on the eosinophil surface is required for chemotactic movement.  相似文献   

2.
BACKGROUND: Previous reports investigating the clinical course and management of inflammatory bowel disease (IBD) after orthotopic liver transplant (OLT) have revealed conflicting results. METHODS: To determine the natural history and course of therapy for liver transplant patients with IBD, we reviewed the records of 35 patients, who underwent OLT between 1985 and 1996 and who had a history of either IBD (29 patients) or primary sclerosing cholangitis (PSC) without evidence of IBD before OLT (6 patients). Of 29 patients with IBD before OLT, 25 had a history of ulcerative colitis (UC) and 4 had Crohn's disease. Six patients had undergone total colectomy, one subtotal colectomy, and three partial colectomy before OLT. Mean follow-up after OLT was 37+/-6.4 months. Immunosuppression included cyclosporine, prednisone, and azathioprine in 34 patients and tacrolimus and prednisone in 1 patient. RESULTS: After OLT, 17 patients (49%) had quiescent disease and were receiving no additional medications other than standard immunosuppression to prevent organ rejection. Five patients (14%) had mild flares controlled with initiation of 5'-aminosalicylates (5'-ASA), and two patients (6%) required an increase in oral prednisone. Only one patient with PSC, without evidence of IBD before OLT, developed IBD after OLT. No patients required intravenous steroids or surgical intervention for active IBD. CONCLUSIONS: (1) Standard postOLT immunosuppressive agents in patients undergoing OLT with IBD were able to adequately control disease activity after OLT in the majority of patients. (2) IBD flares after OLT were generally well controlled with aminosalicylates or oral steroids. (3) Aminosalicylates were helpful in the clinical management of IBD, even when patients were taking standard doses of steroids, azathioprine, and cyclosporine.  相似文献   

3.
We studied urokinase-type plasminogen activator (u-PA)-dependent chemotaxis and DNA synthesis in both human fibroblasts and LB6 mouse fibroblasts transfected with human u-PA receptor (u-PAR) gene (LB6 clone 19). Both cell lines have receptors for the amino-terminal fragment of u-PA (u-PA-ATF). We observed that u-PA and u-PA-ATF stimulated chemotactic migration of both LB6 clone 19 cells and human fibroblasts, which could be impaired by down-regulation of protein kinase C (PKC) with phorbol myristate acetate (PMA). While LB6 clone 19 cells were unable to undergo mitosis following exposure to either u-PA or u-PA-ATF, human fibroblasts were stimulated to mitosis by exogenous addition of native u-PA, and u-PA-ATF was ineffective. The mitogenic activity of u-PA on human fibroblasts could also be impaired by down-regulation of PKC with PMA. We studied second messenger formation following u-PAR stimulation. Neither inositol lipid metabolism nor intracellular Ca2+ content were affected, while an increase of diacylglycerol (DAG) generation was observed. Such DAG formation was related to de novo synthesis from glucose and was dependent on ligand-receptor interaction. Both u-PA-ATF and the native u-PA molecule were able to stimulate DAG formation, u-PA being from three to fourfold more efficient than ATF. These data suggest that u-PAR stimulation per se is sufficient to trigger DAG formation. The native molecule confers on the cell an additional stimulus, possibly related with the activation of a u-PA-catalytic site-dependent substrate. Such stimulation allows the cell to reach the DAG threshold level required to trigger DNA synthesis.  相似文献   

4.
The effect of heparin sulphate on the infection of CD4+ lymphocytes by recombinant HIV-1 clones pIIIB and by pIIIB/V3-BaL was investigated. It was demonstrated that heparin sulphate decreased the infectivity of CD4+ lymphocytes by the pIIIB virus stronger than by the pIIIB/V3-BaL clone, and that the effect of heparin was concentration-dependent. This was accompanied by an inhibition of binding of the monoclonal antibodies 447-52-D to the V3 region and G45-60 to the C4 region of oligomeric glycoprotein 120 (gp120). It has been concluded that the inhibitory effect of heparin sulphate on the infection of CD4+ lymphocytes by recombinant HIV-1 clones is mediated mainly by the V3 region of gp120. However, the C4 region contributes to the inhibitory effect of heparin sulphate.  相似文献   

5.
Variations in glycosylation exist among urokinase plasminogen activator receptors (u-PARs) from different cell types. We have studied the functional role of N-linked carbohydrate within the ligand-binding domain of u-PAR. Treatment with glycosidases demonstrated that all the N-linked carbohydrates on u-PAR are complex-type oligosaccharides. Substitution of a single Asn (Asn52) to Gln by means of site-directed mutagenesis led to an active receptor mutant with a ligand-binding domain devoid of carbohydrate. The cellular distribution, the glycosyl-phosphatidylinositol anchoring, and the conformational stability after solubilization were unaffected by this single substitution. However, ligand binding analysis demonstrated a 4- 5-fold decrease in affinity as compared with the wild type receptor. Two different strategies were used in order to obtain a u-PAR type completely devoid of N-linked carbohydrates. 1) Tunicamycin treatment of wild type u-PAR-expressing cells. 2) Mutation of all glycosylation sites (Hu-PARN5-mut). In neither case, unglycosylated receptors with ligand binding activity were identified. However, immunofluorescence studies demonstrated that the Hu-PARN5-mut was retained inside the cells in the endoplasmic reticulum. The same result was found for Hu-PARN4-mut, where only the glycosylation sites outside the binding domain were mutated. These results demonstrate that some extent of glycosylation of u-PAR is necessary for cellular transport and for molecular maturation events leading to ligand binding activity. Glycosylation of the binding domain per se affects only the affinity of the receptor. The positive modulation of the Asn52 carbohydrate side chain on ligand affinity suggests that the u-PAR glycosylation variants observed in various cell types may have different functional roles.  相似文献   

6.
7.
Antisera against peptides from the extreme N- and C-terminal regions of the VDR were evaluated. The N-terminal antiserum Ab192 functioned as a general-purpose antibody, being able to supershift the rhVDR in heterodimeric or homodimeric binding complexes in the EMSA, and detect both recombinant and native forms of the receptor on Western blots. The C-terminal antiserum, Ab195, also identified the receptor on Western blots, but in contrast, it displayed differential sensitivity to the conditions employed in the EMSA. In the presence of 1,25(OH)2D3, rhVDR, rhRXR alpha, and nonspecific DNA, Ab195 produced a weak supershift of the heterodimer complex in the EMSA. Significantly, omission of hormone from the binding buffer resulted in a complete shift of the bound complex with the antiserum. A complete supershift was also observed if only the nonspecific DNA was removed. Together these results indicate antiserum sensitivity to the ligand status in the rhVDR C-terminus as part of a DNA-bound heterodimer complex. Inclusion of 9-cis RA resulted in a modest increase in the amount of shifted product relative to 1,25(OH)2D3 alone. Finally, Ab195 completely supershifted the rhVDR homodimer binding complex under all tested conditions, including those analogous to where it was largely ineffective in shifting the heterodimer. Thus, Ab195 is sensitive to the ligand binding status of the VDR, discriminates heterodimer and homodimer binding interactions, and should provide an additional tool for exploring conformational changes induced in the receptor.  相似文献   

8.
9.
Both in cell culture and in vivo, keratinocytes that are migrating in response to a wound express enhanced levels of both urokinase-type plasminogen activator (uPA) and the uPA cell surface receptor (uPA-R). To explore the mechanism of this up-regulation, keratinocyte cultures were treated proir to wounding with a variety of metabolic and growth factor inhibitors in order to evaluate their effect on uPA and uPA-R expression. Actinomycin D and cycloheximide inhibited the up-regulation of both uPA and uPA-R, as determined by immunohistochemistry, indicating that RNA and protein syntheses are required for their induction in migrating keratinocytes. Neither removal of protein growth factors from the medium nor addition of inhibitory antibodies to a number of growth factors depressed uPA or uPA-R induction; these findings suggest that a variety of exogenous or endogenous growth factors [i.e., basic fibroblast growth factor (bFGF), epidermal growth factor (EGF), transforming growth factor-alpha (TGF-alpha), amphiregulin, and tumor necrosis factor-alpha (TNF-alpha) do not have a critical role in the induction of uPA or uPA-R. In contrast, when protein kinase C (PKC) was either down-regulated with bryostatin 5 or inhibited with Ro31-8220 or staurosporine, the expression of both uPA and uPA-R was greatly decreased in migrating keratinocytes. Furthermore, pharmacologic activation of PKC enhanced uPA levels in non-wounded cultures. These data suggest that the enhanced expression of uPA and uPA-R in migrating keratinocytes is mediated by selective activation of PKC in these cells, perhaps secondary to alterations in the cytoskeleton induced by wounding. To test the requirement for uPA during keratinocyte migration in vitro, the extent of migration was quantified in the presence and absence of a variety of inhibitors in the wounded culture model. Migration was not altered by actinomycin D, cycloheximide, any of the above growth factor inhibitors, anti-uPA antibodies, a variety of inhibitors of uPA or plasmin enzymatic activity, or exogenous uPA. The independence of keratinocyte migration in vitro from uPA was further suggested by experiments which combined the phagokinetic assay of migration and the zymographic assay for pericellular uPA activity; no relationship was observed between pericellular uPA activity and the motility of individual cells.  相似文献   

10.
11.
Certain missense substitutions on the human lipase (hLPL) gene produce mutated proteins that are retained in different compartments along the secretory pathway. The purpose of the present study was to elucidate whether the C-terminal domain of the hLPL molecule could be important for secretion. We constructed by site-directed mutagenesis three carboxy-terminal mutated (F388-->Stop, K428-->Stop and K441-->Stop) hLPL cDNAs that were expressed in COS1 cells. Immunoblotting of cell extracts showed that all three constructs led to similar levels of protein. Both wild type (WT) hLPL and the truncated K441-->Stop hLPL were secreted to the extracellular medium, and presented a similar intracellular distribution pattern as shown by immunofluorescence. Neither F388-->Stop nor K428-->Stop hLPL protein was detected in cell medium. Immunofluorescence experiments showed that both truncated hLPL were retained within an intracellular compartment, which became larger. Double immunofluorescence analysis using antibodies against LPL and antiprotein disulfide isomerase as a marker showed that the truncated K428-->Stop hLPL was retained within the rough endoplasmic reticulum. This truncated protein was not found in other compartments in the secretory pathway, such as Golgi complex and lysosomes, indicating that it did not exit the endoplasmic reticulum. Further analysis of the C-terminal region of the LPL molecular model showed both that F388-->Stop and K428-->Stop hLPL truncated proteins are highly hydrophobic. As retention of secretory proteins in the rough endoplasmic reticulum is a quality control mechanism of the secretory pathway, we conclude that the C-terminal domain of hLPL is critical for correct intracellular processing of the newly synthesized protein.  相似文献   

12.
Interferon-alpha (IFN-alpha)-mediated intracellular signaling is initiated by ligand-induced receptor dimerization, tyrosine phosphorylation of the Tyk2 and Jak1 tyrosine kinases, and subsequent phosphorylation of the Stat1 and Stat2 proteins. The IFN-alpha receptor consists of at least two distinct subunits. One subunit, IFNAR1, has low affinity binding for interferon yet is required for signal transduction. We introduced mutations in the cytoplasmic domain of human IFNAR1 in order to identify residues involved in the mediation of biological responses. We took advantage of the species specificity of the interferon receptors by analyzing human IFN-alpha-induced major histocompatibility complex class I antigen expression in mouse L929 cells stably transfected with mutant human receptors. The membrane proximal 60-amino acids were insufficient to signal a biological response even though within these residues Tyk2 and Stat2 binding sites have been identified. IFN-alpha-induced receptor tyrosine phosphorylation was not critical for signaling because mutation of Tyr residues to Phe did not prevent the biological response to IFN-alpha. The deletion of a 16-amino acid region highly homologous between species created a receptor which signals an enhanced response. Tyrosine dephosphorylation is a component of this enhanced response as mutation of the Tyr residues within this region to Phe resulted in a receptor with increased sensitivity to IFN. The known signaling molecules that interact with IFNAR1 are positive regulators of IFN-alpha function. The presence of this domain in the COOH-terminal region suggests that the receptor may interact with signaling molecules that negatively regulate interferon responses.  相似文献   

13.
Urokinase is the main component of the fibrinolytic system and comprises two functions. Namely, the catalytic domain enables to trigger the proteolytic cascade in blood and in the vessel wall, stimulating the activation of growth factors, matrix remodelling and smooth muscle cell proliferation. On the other hand, the amino terminal domain of urokinase that is homologous to epidermal growth factor promotes urokinase to bind to the specific receptor. The cell surface binding of uPA may initiate the activation of the second messengers, protein phosphorylation and cell migration. This dual function of urokinase affects vascular growth, as well as the intimal thickening of the vessel wall after intravascular injury. Also uPA and its receptor are implicated in many physiological and pathological processes, including ovulation, embryogenesis, cancer metastasis, inflammation, and wound healing.  相似文献   

14.
15.
The human Ca2+ receptor (hCaR) is a member of the superfamily of G protein-coupled receptors. Its large (approximately 600 residue) amino-terminal extracellular domain contains 9 potential N-linked glycosylation sites. Immunoblot of cell membranes derived from HEK-293 cells, stably transfected with the hCaR, showed two major immunoreactive bands of approximately 150 and 130 kDa, respectively. Complete digestion of the membranes with PN-glycosidase F yielded a single major immunoreactive band of approximately 115 kDa, confirming the presence of N-linked glycosylation. Treatment of these cells with tunicamycin, which blocks N-linked glycosylation, inhibited signal transduction in response to Ca2+. Flow cytometric analysis showed decreased expression of the hCaR on the cell membrane in tunicamycin-treated cells. Immunoblot of tunicamycin-treated cells showed a reduction in the amount of the 150-kDa band and conversion of the 130-kDa band to the presumptively nonglycosylated 115-kDa form. Tunicamycin treatment of cells, transfected with a mutant hCaR complementary DNA containing a nonsense codon at position 599 preceding the 1st transmembrane domain, blocked the secretion of a 95-kDa protein, representing the amino-terminal extracellular domain, into the medium. These results demonstrate that N-linked glycosylation is required for normal expression of the hCaR at the cell surface.  相似文献   

16.
We describe the first highly polymorphic microsatellite marker for the human urokinase plasminogen activator receptor gene (PLAUR). The urokinase receptor (uPAR) has a central role in cancer invasion and metastasis, which may enable the development of new anti-metastatic therapies. Analysis of the marker genotypes in colorectal cancer cell lines revealed three alleles that were not detected in a series of healthy control individuals, which encourages further genetic study of the role of uPAR in cancer.  相似文献   

17.
Phagocytosis of Borrelia burgdorferi by human polymorphonuclear leukocytes triggers oxygen-dependent and -independent mechanisms of potentially cidal outcome. Nevertheless, no factor or process has yet been singled out as being borreliacidal. We have studied the B. burgdorferi-killing ability of the myeloperoxidase-H2O2-chloride system and that of primary and secondary granule components in an in vitro assay. We found that neither secondary granule acid extracts nor the chlorinating system could kill these microorganisms, while primary granule extracts were effective. The Borrelia-killing factor was purified to homogeneity and demonstrated to be elastase. Its cidal activity was found to be independent of its proteolytic activity.  相似文献   

18.
19.
The binding of urokinase-type plasminogen activator (u-PA) to a specific cell surface receptor (uPA-R) has been shown to enhance plasminogen activation, a process involved in extracellular matrix degradation and cell migration during angiogenesis and tumor growth. We investigated the expression of u-PA and uPA-R in renal cell carcinomas (n = 11). By immunohistochemistry using monoclonal and polyclonal anti-uPA-R antibodies, we found that tumoral capillary endothelial cells (von Willebrand factor and CD31 positive cells) overexpressed uPA-R, whereas vascular endothelial cells of the normal human kidney do not. In addition, tumor-associated macrophages (CD68-positive cells) strongly expressed uPA-R. In contrast, few tumoral cells and stromal fibroblasts expressed uPA-R. By in situ hybridization using a cDNA S35-labeled probe specific for uPA-R, we confirmed the local expression of uPA-R messenger RNA. We also detected the induction of u-PA in tumoral capillary endothelial cells and in tumor-associated macrophages. In two cases, tumoral cells themselves were also stained by anti-u-PA antibodies in focal areas. Finally tissue-type plasminogen activator (t-PA) was also overexpressed by tumoral capillary endothelial cells as compared with endothelial cells of normal human kidney vessels. These findings indicate an active invasive phenotype of endothelial cells in renal cell carcinoma and suggest a role for the plasminogen activation system in tumoral angiogenesis and invasion.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号