首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The use of semipermeable membrane devices (SPMDs) has become common in environmental sampling of nonpolar organic contaminants, yet few data exist for the uptake or sampling rates of polycyclic aromatic hydrocarbons (PAH). Two separate laboratory calibration experiments were conducted to determine the sampling rates of 28 individual PAH and 19 homologues. PAH with a log Kow > 4.5 remained in the linear uptake phase for 30 days, but PAH with a log Kow < 4.5 began to approach steady state within 15 days. Sampling rates, corrected for dissolved organic carbon, ranged from 2.11 to 6.06 L d(-1). Shear flow across the membrane had no statistically significant effect on rates over the range of 0.01-0.50 cm s(-1). Field verification of these sampling rates yielded agreement within about a factor of 2 for most PAH and a factor of 4 for all PAH. The worst agreement was for the most hydrophobic PAH, where partitioning into dissolved and particulate organic carbon pools are more important and less certain. These SPMD sampling rate data will allow quantitative estimations of freely dissolved concentrations of 47 compounds that are commonly used for PAH and petroleum product source identification and allocation.  相似文献   

2.
The effect of temperature on sampling rates and sampler-water partition coefficients of semipermeable membrane devices (SPMDs) and low-density polyethylene (LDPE) strips was studied in an experimental setup under controlled flow conditions. Aqueous concentrations of chlorobenzenes, polychlorinated biphenyls (PCBs), and polyaromatic hydrocarbons (PAHs) were maintained by continuous circulation of the water over a generator column. Sampling rates for standard design SPMDs (460 cm2) were in the range of 20-200 L d(-1). No significant differences were observed between sampling rates of SPMDs and LDPE strips, but the latter samplers reached equilibrium faster because of their smaller sorption capacity. Sampling rates at 30 degrees C were higher than at 2 degrees C by a factor of about 3. Sampling rate modeling indicated boundary layer-controlled uptake for compounds with log octanol-water partition coefficients smaller than 4.4 and aqueous boundary-layer controlled uptake for more hydrophobic compounds. SPMD-water partition coefficients did not significantly change with temperature, but LDPE-water partition coefficients were larger at 2 degrees C than at 30 degrees C by a factor of 2. For field application of SPMDs, the results imply that temperature is not a key factor that controls uptake rates unless large geographical and temporal scales are involved. The results confirm that water flow velocity has a profound effect on sampling rates.  相似文献   

3.
Concentrations of hydrophobic chemicals in mussels and semipermeable membrane devices (SPMDs) from nine studies published over the past decade, amended with new data obtained in the Scheldt-North Sea area, were assessed to understand the similarities and differences between these sampling matrixes. A model was developed to describe the concentration ratios, using literature values of elimination rate constants and steady-state accumulation factors of both samplers as key parameters. The model could successfully describe the results of seven studies. Differences in concentration ratios among these studies were related to the variability of mussel bioaccumulation factors (BAFs) and water sampling rates of SPMDs. For two studies, the model could only describe the data by adopting unrealistically high water sampling rates, and for one study there were not enough data to test the model. We argue that SPMDs will generally yield more reliable estimates of exposure concentrations than mussels, because in situ BAF values are difficult to estimate, whereas the in situ exchange kinetics of SPMDs can be quantified by measuring the dissipation rates of performance reference compounds. The implications of the results for future and existing monitoring programs are discussed.  相似文献   

4.
We demonstrate the use of polyethylene devices (PEDs) for assessing hydrophobic organic compounds (HOCs) in aquatic environments. Like semipermeable membrane devices (SPMDs) and solid-phase microextraction (SPME), PEDs passively accumulate HOCs in proportion to their freely dissolved concentrations. Polyethylene-water partition constants (K(PEW)S) were measured in the laboratory for eight polycyclic aromatic hydrocarbons (PAHs), five polychlorinated biphenyls (PCBs), and one polychlorinated dibenzop-dioxin (PCDD), and these were found to correlate with octanol-water partition constants (K(OW)s; log K(PEW) = 1.13 log K(OW) - 0.86, R2 = 0.89). Temperature and salinity dependencies of K(PEW) values for the HOCs tested were well predicted with excess enthalpies of solution in water and Setschenow constants, respectively. We also showed that standards, impregnated in the PED before deployment, can be used to correct for incomplete equilibrations. Using PEDs, we measured phenanthrene and pyrene at ng/L concentrations and 2,2',5,5'-tetrachlorobiphenyl at pg/L concentrations in Boston Harbor seawater, consistent with our findings using traditional procedures. PEDs are cheap and robust samplers, competent to accomplish in situ, time-averaged passive sampling with fast equilibration times (approximately days) and simplified laboratory analyses.  相似文献   

5.
Use of membrane inlet mass spectrometers (MIMS) for quantitative measurements of dissolved gases and volatile organics over a wide range of ocean depths requires characterization of the influence of hydrostatic pressure on the permeability of MIMS inlet systems. To simulate measurement conditions in the field, a laboratory apparatus was constructed for control of sample flow rate, temperature, pressure, and the concentrations of a variety of dissolved gases and volatile organic compounds. MIMS data generated with this apparatus demonstrated thatthe permeability of polydimethylsiloxane (PDMS) membranes is strongly dependent on hydrostatic pressure. For the range of pressures encountered between the surface and 2000 m ocean depths, the pressure dependent behavior of PDMS membranes could not be satisfactorily described using previously published theoretical models of membrane behavior. The observed influence of hydrostatic pressure on signal intensity could, nonetheless, be quantitatively modeled using a relatively simple semiempirical relationship between permeability and hydrostatic pressure. The semiempirical MIMS calibration developed in this study was applied to in situ underwater mass spectrometer (UMS) data to generate high-resolution, vertical profiles of dissolved gases in the Gulf of Mexico. These measurements constitute the first quantitative observations of dissolved gas profiles in the oceans obtained by in situ membrane inlet mass spectrometry. Alternative techniques used to produce dissolved gas profiles were in good accord with UMS measurements.  相似文献   

6.
The use of lipid-containing semipermeable membrane devices (SPMDs) is becoming commonplace, but the potential effects of environmental variables affecting the accumulation of contaminants into SPMDs had not been characterized sufficiently, yet. To characterize the effect of hydrodynamic conditions on the contaminant uptake kinetics, accumulation of pentachlorobenzene, hexachlorobenzene, and hexachlorocyclohexane isomers from water into SPMD was studied at various water flow rates. The accumulation kinetics of hydrophobic compounds (log Kow > 4) are governed by the aqueous boundary layer in linear flow velocity range from 0.06 to 0.28 cm s(-1) and sensitive to slight changes in flow rate. The effect of flow velocity on the exchange kinetics increases with increasing hydrophobicity. Under faster, but still laminar flow conditions (0.28-1.14 cm s(-1)), the sensitivity to changes in flow decreases to a nonsignificant level for the substances under consideration. The results of this study confirm that the use of the laboratory-derived calibration data for estimation of analyte concentrations in the ambient environment is limited unless flow-sensitive performance reference compounds are used.  相似文献   

7.
In this paper we report an extension of our previous work on the triolein-embedded cellulose acetate membrane (TECAM) as a passive sampling device (PSD) and describe the results from simultaneous exposure of TECAMs and triolein-containing semipermeable membrane devices (SPMDs) to PAHs in lake water for 16 days. The data obtained provided a comparison of the uptake rates of specific PAHs by the two PSDs. Using 16-day accumulation tests, similar PAH distribution patterns in TECAMs and in SPMDs (R2 = 0.89, p < 0.0001) were observed. However, it was noted that TECAMs could take up greater amounts of PAHs than SPMDs (735 ng/g of TECAM vs 630 ng/g of SPMD). Uptake rate constants of TECAMs and SPMDs for 16 priority pollutant (PP) PAHs, corrected for dissolved organic carbon, ranged from 0.28 to 2.94 L d(-1) and from 0.16 to 0.91 L d(-1), respectively. The elimination rate constants of TECAMs were 1.4-6.7 times greater than those observed for SPMDs, thereby indicating that PAHs required shorter times to achieve equilibrium in TECAMs than in SPMDs. Thus, the results of the present study suggest that TECAMs have significant potential as a good monitor to assess the pollution of hydrophobic pollutants in aquatic environments.  相似文献   

8.
Sediment pore water concentrations of polychlorinated biphenyls (PCBs) in a contaminated mudflat in San Francisco Bay, CA were determined by field-deployed polyethylene devices (PEDs). Sequential sampling of PEDs deployed in the field showed large differences in uptake rates and time to equilibrium compared to PEDs mixed with field-collected sediment in the laboratory. We demonstrate a modeling approach that involves the use of impregnated performance reference compounds (PRCs) and interpretation of the data either by PCB molar volume adjustment or environmental adjustment factors to measure pore water concentrations of 118 PCB congeners. Both adjustment methods predicted comparable sampling rates, and PCB pore water concentrations estimated by use of the molar volume adjustment method were similar to values analytically measured in pore waters from the laboratory and field. The utility of PEDs for sampling pore water in the field was evaluated at a tidal mudflat amended with activated carbon to sequester PCBs. Pore water concentrations decreased up to 60% within 18 months after activated carbon amendment, as compared to a mechanical-mixed control plot Results of this study illustrate PEDs provide an inexpensive, in situ method to measure total PCB contamination in sediment pore water using a small set of PRCs.  相似文献   

9.
Compound-specific carbon and hydrogen isotope analysis (CSCIA and CSHIA) has been increasingly used to study the source, transport, and bioremediation of organic contaminants such as petroleum hydrocarbons. In natural aquatic systems, dissolved contaminants represent the bioavailable fraction that generally is of the greatest toxicological significance. However, determining the isotopic ratios of waterborne hydrophobic contaminants in natural waters is very challenging because of their extremely low concentrations (often at sub-parts ber billion, or even lower). To acquire sufficient quantities of polycyclic aromatic hydrocarbons with 10 ng/L concentration for CSHIA, more than 1000 L of water must be extracted. Conventional liquid/liquid or solid-phase extraction is not suitable for such large volume extractions. We have developed a new approach that is capable of efficiently sampling sub-parts per billion level waterborne petroleum hydrocarbons for CSIA. We use semipermeable membrane devices (SPMDs) to accumulate hydrophobic contaminants from polluted waters and then recover the compounds in the laboratory for CSIA. In this study, we demonstrate, under a variety of experimental conditions (different concentrations, temperatures, and turbulence levels), that SPMD-associated processes do not induce C and H isotopic fractionations. The applicability of SPMD-CSIA technology to natural systems is further demonstrated by determining the delta13C and deltaD values of petroleum hydrocarbons present in the Pawtuxet River, RI. Our results show that the combined SPMD-CSIA is an effective tool to investigate the source and fate of hydrophobic contaminants in the aquatic environments.  相似文献   

10.
Passive air samplers (PAS) are simple and cost-effective tools to monitor semivolatile organic compounds in air. Chemical uptake occurs by molecular diffusion from ambient air to a passive sampling medium (PSM). Previous calibration studies indicate that even for the same type of PAS, passive air sampling rates (R, m(3)(air)/d) can be highly variable due to the influence of a number of factors. Earlier studies mainly focused on factors (e.g., wind speed and temperature) influencing R via the kinetic resistance posed by the air boundary layer surrounding the PSM because that layer was deemed to be the main factor determining the uptake kinetics. Whereas recent calibration studies suggest that the PAS configuration can influence R, so far few studies have specifically focused on this factor. In this study, with the objective to understand the effect of PAS configurations on R, we applied a gravimetrical approach to study the kinetics of water vapor uptake from indoor air by silica gel placed inside cylindrical PAS of various configurations. We also conducted an indoor calibration for polychlorinated biphenyls on the same type of PAS using XAD-resin as the PSM. R was found to be proportional to the interfacial transfer area of the PSM but not the amount of the PSM because chemicals mainly accumulated in the outer layer of the PSM during the deployment time of the PAS. The sampler housing and the PSM can introduce kinetic resistance to chemical uptake as indicated by changes in R caused by positioning the PSM at different distances from the opening of the sampler housing and by using PSM of different diameters. Information gained from this study is useful for optimizing the PAS design with the objective to reduce the material and shipping costs without sacrificing sampling efficiency.  相似文献   

11.
Solid-phase microextraction (SPME) is a promising technique for determining organic contaminants within biotic systems. Existing in vivo SPME-kinetic calibration (SPME-KC) approaches are unwieldy due to the necessity of predetermining a distribution coefficient for the analyte of interest in the tissue and the preloading of a calibrating compound to the fiber. In this study, a rapid and convenient SPME alternative calibration method for in vivo analysis, termed SPME-sampling rate (SPME-SR) calibration, was developed and validated under both laboratory and field conditions to eliminate such presampling requirements. Briefly, the SPME probe is inserted into tissue, in this study fish dorsal-epaxial muscle, for 20 min allowing the concentrations of target analytes in the fish muscle to be determined by the extracted amount of analyte and the predetermined sampling rates. Atrazine, carbamazepine, and fluoxetine were detected nonlethally in the low ppb levels within fish muscle, with both laboratory and field-derived results obtained by in vivo SPME-KC comparable (within a factor of 1.27) to those obtained by lethal sampling followed by tissue liquid extraction. The technique described in this study represents an important advance which broadens the application of SPME in vivo sampling technology.  相似文献   

12.
Uptake of hydrophobic organic compounds into organisms is often limited by the diffusive transport through a thin boundary layer. Therefore, a microscale diffusion technique was applied to determine the diffusive mass transfer of 12 polycyclic aromatic hydrocarbons through water, air, surfactant solutions, humic acid solutions, aqueous soil and horse manure extracts, digestive fluid of a deposit-feeding worm, and root exudates from willow plants. In most cases the diffusive mass transfer of PAHs was much higher through the tested media than through water, and the enhancement factors increased with increasing hydrophobicity of the PAHs. The diffusive flux of benzo[a]pyrene was for instance enhanced 74 times through gut fluid of a deposit-feeding worm when compared to water. These findings demonstrate that a wide variety of dissolved organic carbon (DOC) at environmental levels can enhance diffusive mass transfer in various transport scenarios. The diffusive uptake of PAHs into sediment dwelling organisms is particularly efficient within the gut and at direct contract with the sediment matrix. Bioremediation might be enhanced bythe addition of auxiliary agents that enhance diffusive mass transfer. Enhanced diffusion needs also to be considered in dynamic transport models and for the operation and calibration of passive sampling techniques.  相似文献   

13.
Passive diffusion (PD) samplers offer several potential technical and cost-related advantages, particularly for measuring dissolved gases and volatile organic compounds (VOCs) in groundwater at contaminated sites. Sampler equilibration is a diffusion-type process; therefore, equilibration time is dependent on sampler dimensions, membrane thickness, and the temperature-dependent membrane diffusion coefficient (Dm) for the analyte of interest. Diffusion coefficients for low-density polyethylene membranes were measured for He, Ne, H2, O2, and N2 in laboratory experiments and ranged from 1.1 to 1.9 x 10(-7) cm2 sec(-1) (21 degrees C). Additionally, Dm values for several commonly occurring VOCs were estimated from empirical experimental data previously presented by others (Vroblesky, D. A.; Campbell, T. R. Adv. Environ. Res. 2001, 5(1), 1.), and estimated values ranged from 1.7 to 4.4 x 10(-7) cm2 sec(-1) (21 degrees C). On the basis of these Dm ranges, PD sampler equilibration time is predicted for various sampler dimensions, including dimensions consistent with simple constructed samplers used in this study and commercially available samplers. Additionally, a numerical model is presented that can be used to evaluate PD sampler concentration "lag time" for conditions in which in situ concentrations are temporally variable. The model adequately predicted lag time for laboratory experiments and is used to show that data obtained from appropriately designed PD samplers represent near-instantaneous measurement of in situ concentrations for most field conditions.  相似文献   

14.
The technique of DGT (diffusive gradients in thin films) was used for the first time to measure in situ the distribution of Zn and Ni between inorganic species and complexes with fulvic and humic acids in natural waters. With DGT, metals are bound to a resin embedded in a layer of hydrogel after diffusive transport through an adjacent layer of hydrogel. The metal concentrations in the waters can be quantified using simple diffusion equations. By using devices with hydrogels of different pore size, large and small complex species were discriminated. Inorganic species diffuse freely through all gels, but larger organic complexes with fulvic and humic acids diffuse less freely through more restricted gels (gels with smaller pore size). Systematic differences between DGT devices containing gels of different pore size were obtained. Their calibration for the diffusion of fulvic and humic complexes allowed calculation of the concentrations of labile inorganic (Zn, 34.6 +/- 2.5 nM; Ni, 23.5 +/- 0.9 nM) and labile organic (Zn, 43.1 +/- 2.9 nM; Ni, 11.2 +/- 0.7 nM) complexes. The concentration of Zn measured by anodic stripping voltammetry in samples returned to the laboratory lay between the DGT-measured inorganic concentration and the total dissolved concentration, consistent with partial measurement of organic complexes of Zn. The speciation model WHAM successfully predicted the species distribution of Ni, Zn, and Cu, provided that competitive binding by Fe(III) was considered. Using the speciation models WHAM and ECOSAT, free ion activities of Zn and Ni were calculated from (1) the total inorganic species measured by DGT and (2) the total dissolved species and dissolved organic carbon. The calculations confirmed the good model predictions of metal-humic binding but highlighted problems with default databases used for the speciation of inorganic components.  相似文献   

15.
Semipermeable membrane devices (SPMDs) are passive samplers used to measure the vapor phase of organic pollutants in air. This study tested whether extremely high wind-speeds during a 21-day sampling increased the sampling rates of polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), and whether the release of performance reference compounds (PRCs) was related to the uptakes at different wind-speeds. Five samplers were deployed in an indoor, unheated, and dark wind tunnel with different wind-speeds at each site (6-50 m s(-1)). In addition, one sampler was deployed outside the wind tunnel and one outside the building. To test whether a sampler, designed to reduce the wind-speeds, decreased the uptake and release rates, each sampler in the wind tunnel included two SPMDs positioned inside a protective device and one unprotected SPMD outside the device. The highest amounts of PAHs and PCBs were found in the SPMDs exposed to the assumed highest wind-speeds. Thus, the SPMD sampling rates increased with increasing wind-speeds, indicating that the uptake was largely controlled by the boundary layer at the membrane-air interface. The coefficient of variance (introduced by the 21-day sampling and the chemical analysis) for the air concentrations of three PAHs and three PCBs, calculated using the PRC data, was 28-46%. Thus, the PRCs had a high ability to predict site effects of wind and assess the actual sampling situation. Comparison between protected and unprotected SPMDs showed that the sampler design reduced the wind-speed inside the devices and thereby the uptake and release rates.  相似文献   

16.
Vertical pore water profiles of in situ PCBs were determined in a contaminated mudflat in San Francisco Bay, CA, 30 months after treatment using an activated carbon amendment in the upper layer of the sediment. Pore water concentrations were derived from concentrations of PCBs measured in two passive samplers; polyethylene (PE, 51 μm thick) and polyoxymethylene (POM, 17 μm thick) at different sediment depths. To calculate pore water concentrations from PCB contents in the passive samplers, an equilibrium approach and a first-order uptake model were applied, using five performance reference compounds to estimate pore water sampling rates. Vertical pore water profiles showed good agreement among the measurement and calculation methods with variations within a factor of 2, which seems reasonable for in situ measurements. The close agreements of pore water estimates for the two sampler materials (PE and POM) and the two methods used to translate uptake in samplers to pore water concentrations demonstrate the robustness and suitability of the passive sampling approach. The application of passive samplers in the sediment presents a promising method for site monitoring and remedial treatment evaluation of sorbent amendment or capping techniques that result in changes of pore water concentrations in the sediment subsurface.  相似文献   

17.
The facultative deposit-feeding clam Macoma balthica is used as a bioindicator organism for assessing coastal metal contamination. Previous work has evaluated the assimilation of metals from different possible food sources for this clam, but no studies have measured the uptake rates of metals from different dissolved sources. This study specifically compares three different dissolved sources: overlying water (SW), oxic pore water (OPW) from a depth of <1 cm (entrained during surface deposit feeding), and burrow water (BW) (a mixture of anoxic pore water and overlying water). Uptake rates of dissolved Ag, Cd, and Co in M. balthica were measured in short-term laboratory experiments using radiotracers. Clams were exposed to metals in water only for SW and surface OPW treatments. In the BW treatment, metal uptake was compared in clams placed in radiolabeled organic-poor or organic-rich sediment under conditions in which feeding was inhibited. Uptake rate constantsfrom SW for Ag, Cd, and Co were 0.35, 0.033, and 0.035 L g(-1) day(-1), respectively. Lower uptake of dissolved metals from OPW was noted but was only significant for Co. Metal uptake from BW and SW were also comparable; however, the trend showed lower Ag and higher Co uptake from BW. Metal distributions and concentrations in the two radiolabeled sediments were affected by active irrigation of SW into the burrows; dissolved metal concentrations in BW were approximately 30% lower than that in the bulk pore water concentrations. In the organic-rich sediment, Cd and Ag partitioned more in the dissolved phase (<0.2 microm) and Co more in the particulate phase as compared with the organic-poor sediment. A sensitivity analysis using measured rate constants for uptake and a range of metal concentrations from field studies suggested that, under most conditions, uptake of dissolved Ag is primarily from OPW, Co is mostly from BW, and Cd uptake varies depending on its concentration in each compartment. Little Co or Ag is likely to be taken up from SW, whereas 20-50% of Cd may be accumulated from this source. Thus, SW, OPW, and BW are all potential sources of metals for M. balthica, and the relative importance of these sources differs among metals and is dependent on the dissolved metal concentrations in each compartment.  相似文献   

18.
Adsorption to dissolved organic matter (DOM) may significantly decrease the freely dissolved concentration of many hydrophobic organic compounds and, hence, result in reduced bioavailability to aquatic organisms. Here, the suitability of using triolein-embedded cellulose acetate membrane (TECAM) as a biomimetic surrogate to assess the bioavailability of organochlorine pesticides (OCPs) in water in the presence of DOM was explored. The accumulation of OCPs was measured in TECAM and pelagic Japanese medaka (Oryzias latipes) in the laboratory after 12 h exposure to water containing different levels of Aldrich humic acid. Further, OCP uptake by TECAM and medaka in real aqueous environments was evaluated after 30 d exposures in two sites. Laboratory results showed that OCP uptake by medaka consistently decreased with increasing levels of humic acid in the range of 0-15 mg C/L in sample solutions. This tendency was closely mimicked by OCP accumulation in TECAM under the same conditions. Field results showed that TECAM accumulated similar OCP patterns as medaka (r2 = 0.92 for site 1 and r2 = 0.94 for site 2), although comparison of the in-field eight OCP concentrations in TECAM to those in medaka yielded approximately a factor of 3 (on a wet weight basis). These results suggest that the TECAM method can be used as a simple and useful tool to predict the bioavailability and bioaccumulation potential of poorly biotransformed organic compounds in pelagic fish in aqueous environment.  相似文献   

19.
The incorporation of multiple dissolved gas measurements in biogeochemical studies remains a difficult and expensive challenge. Incompatibilities in collection, handling, and storage procedures generally force the application of multiple sampling procedures for multiple gases. This paper introduces the concept and application of pumping-induced ebullition (PIE), a unified approach for routine measurement of multiple dissolved gases in natural waters and establishes a new platform for development of in situ real-time dissolved gas monitoring tools. Ebullition (spontaneous formation of bubbles) is induced by pumping a water sample through a narrow-diametertube (a "restrictor") to decrease hydrostatic pressure (PH) below total dissolved gas pressure (PT). Buoyancy is used to trap bubbles within a collection tower where gas accumulates rapidly (1 mL/min) to support multiple chemical analyses. Providing for field collection of an essentially unlimited and unified volume of gas sample, PIE afforded accurate and precise measurements of major (N2, 02, Ar), trace (CO2, N20, CH4) and ultratrace (CFC11, CFC12, CFC113, SF6) dissolved gases in Wisconsin groundwater, revealing interrelationships between denitrification, apparent recharge age-dates, and historical land use. Compared to conventional approaches, PIE eliminates multiple gas-specific sampling methods, reduces data computations, simplifies laboratory instrumentation, and avoids aqueous production and consumption of biogenic gases during sample storage. A lake depth profile for CO2 demonstrates PIE's flexibility as an in situ real-time platform for dissolved gas measurements. The apparent departures of some gases (SF6, H2, N2O, CO2) from solubility equilibrium behavior warrant further confirmation and theoretical investigation.  相似文献   

20.
Previous field studies utilizing solid-phase microextraction (SPME) predominantly focused on volatile and semivolatile compounds in air or water. Earlier in vivo sampling studies utilizing SPME were limited to the liquid matrix (blood). The present study has expanded the SPME technique to semisolid tissues under laboratory and field conditions through the investigation of both theoretical and applied experimental approaches. Pre-equilibrium extraction and desorption were performed in vivo in two separate animals. Excellent linearity was found between the amounts extracted by SPME from the muscle of living fish and the waterborne concentrations of pharmaceuticals. A simple SPME method is also described to simultaneously determine free and total analyte concentrations in living tissue. The utility of in vivo SPME sampling was evaluated in wild fish collected from a number of different river locations under varying degrees of influence from municipal wastewater effluents. Diphenhydramine and diltiazem were detected in the muscle of fish downstream of a local wastewater treatment plant. Based on this study, SPME demonstrated several important advantages such as simplicity, sensitivity, and robustness under laboratory and in vivo field sampling conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号