共查询到20条相似文献,搜索用时 15 毫秒
1.
We present a part‐type segmentation method for articulated voxel‐shapes based on curve skeletons. Shapes are considered to consist of several simpler, intersecting shapes. Our method is based on the junction rule: the observation that two intersecting shapes generate an additional junction in their joined curve‐skeleton near the place of intersection. For each curve‐skeleton point, we construct a piecewise‐geodesic loop on the shape surface. Starting from the junctions, we search along the curve skeleton for points whose associated loops make for suitable part cuts. The segmentations are robust to noise and discretization artifacts, because the curve skeletonization incorporates a single user‐parameter to filter spurious curve‐skeleton branches. Furthermore, segment borders are smooth and minimally twisting by construction. We demonstrate our method on several real‐world examples and compare it to existing part‐type segmentation methods. 相似文献
2.
Pedro Machado Manhães de Castro Jane Tournois Pierre Alliez Olivier Devillers 《Computer Graphics Forum》2009,28(5):1465-1474
Updating a Delaunay triangulation when its vertices move is a bottleneck in several domains of application. Rebuilding the whole triangulation from scratch is surprisingly a very viable option compared to relocating the vertices. This can be explained by several recent advances in efficient construction of Delaunay triangulations. However, when all points move with a small magnitude, or when only a fraction of the vertices move, rebuilding is no longer the best option. This paper considers the problem of efficiently updating a Delaunay triangulation when its vertices are moving under small perturbations. The main contribution is a set of filters based upon the concept of vertex tolerances. Experiments show that filtering relocations is faster than rebuilding the whole triangulation from scratch under certain conditions. 相似文献
3.
The gradient of a function defined on a manifold is perhaps one of the most important differential objects in data analysis. Most often in practice, the input function is available only at discrete points sampled from the underlying manifold, and the manifold is approximated by either a mesh or simply a point cloud. While many methods exist for computing gradients of a function defined over a mesh, computing and simplifying gradients and related quantities such as critical points, of a function from a point cloud is non-trivial.
In this paper, we initiate the investigation of computing gradients under a different metric on the manifold from the original natural metric induced from the ambient space. Specifically, we map the input manifold to the eigenspace spanned by its Laplacian eigenfunctions, and consider the so-called diffusion distance metric associated with it. We show the relation of gradient under this metric with that under the original metric. It turns out that once the Laplace operator is constructed, it is easier to approximate gradients in the eigenspace for discrete inputs (especially point clouds) and it is robust to noises in the input function and in the underlying manifold. More importantly, we can easily smooth the gradient field at different scales within this eigenspace framework. We demonstrate the use of our new eigen-gradients with two applications: approximating / simplifying the critical points of a function, and the Jacobi sets of two input functions (which describe the correlation between these two functions), from point clouds data. 相似文献
In this paper, we initiate the investigation of computing gradients under a different metric on the manifold from the original natural metric induced from the ambient space. Specifically, we map the input manifold to the eigenspace spanned by its Laplacian eigenfunctions, and consider the so-called diffusion distance metric associated with it. We show the relation of gradient under this metric with that under the original metric. It turns out that once the Laplace operator is constructed, it is easier to approximate gradients in the eigenspace for discrete inputs (especially point clouds) and it is robust to noises in the input function and in the underlying manifold. More importantly, we can easily smooth the gradient field at different scales within this eigenspace framework. We demonstrate the use of our new eigen-gradients with two applications: approximating / simplifying the critical points of a function, and the Jacobi sets of two input functions (which describe the correlation between these two functions), from point clouds data. 相似文献
4.
Scalar functions defined on manifold triangle meshes is a starting point for many geometry processing algorithms such as mesh parametrization, skeletonization, and segmentation. In this paper, we propose the Auto Diffusion Function (ADF) which is a linear combination of the eigenfunctions of the Laplace-Beltrami operator in a way that has a simple physical interpretation. The ADF of a given 3D object has a number of further desirable properties: Its extrema are generally at the tips of features of a given object, its gradients and level sets follow or encircle features, respectively, it is controlled by a single parameter which can be interpreted as feature scale, and, finally, the ADF is invariant to rigid and isometric deformations.
We describe the ADF and its properties in detail and compare it to other choices of scalar functions on manifolds. As an example of an application, we present a pose invariant, hierarchical skeletonization and segmentation algorithm which makes direct use of the ADF. 相似文献
We describe the ADF and its properties in detail and compare it to other choices of scalar functions on manifolds. As an example of an application, we present a pose invariant, hierarchical skeletonization and segmentation algorithm which makes direct use of the ADF. 相似文献
5.
We propose a connectivity editing framework for quad‐dominant meshes. In our framework, the user can edit the mesh connectivity to control the location, type, and number of irregular vertices (with more or fewer than four neighbors) and irregular faces (non‐quads). We provide a theoretical analysis of the problem, discuss what edits are possible and impossible, and describe how to implement an editing framework that realizes all possible editing operations. In the results, we show example edits and illustrate the advantages and disadvantages of different strategies for quad‐dominant mesh design. 相似文献
6.
Justin Solomon Mirela Ben‐Chen Adrian Butscher Leonidas Guibas 《Computer Graphics Forum》2011,30(2):365-374
The discovery of meaningful parts of a shape is required for many geometry processing applications, such as parameterization, shape correspondence, and animation. It is natural to consider primitives such as spheres, cylinders and cones as the building blocks of shapes, and thus to discover parts by fitting such primitives to a given surface. This approach, however, will break down if primitive parts have undergone almost‐isometric deformations, as is the case, for example, for articulated human models. We suggest that parts can be discovered instead by finding intrinsic primitives, which we define as parts that posses an approximate intrinsic symmetry. We employ the recently‐developed method of computing discrete approximate Killing vector fields (AKVFs) to discover intrinsic primitives by investigating the relationship between the AKVFs of a composite object and the AKVFs of its parts. We show how to leverage this relationship with a standard clustering method to extract k intrinsic primitives and remaining asymmetric parts of a shape for a given k. We demonstrate the value of this approach for identifying the prominent symmetry generators of the parts of a given shape. Additionally, we show how our method can be modified slightly to segment an entire surface without marking asymmetric connecting regions and compare this approach to state‐of‐the‐art methods using the Princeton Segmentation Benchmark. 相似文献
7.
We present a novel hierarchical grid based method for fast collision detection (CD) for deformable models on GPU architecture. A two‐level grid is employed to accommodate the non‐uniform distribution of practical scene geometry. A bottom‐to‐top method is implemented to assign the triangles into the hierarchical grid without any iteration while a deferred scheme is introduced to efficiently update the data structure. To address the issue of load balancing, which greatly influences the performance in SIMD parallelism, a propagation scheme which utilizes a parallel scan and a segmented scan is presented, distributing workloads evenly across all concurrent threads. The proposed method supports both discrete collision detection (DCD) and continuous collision detection (CCD) with self‐collision. Some typical benchmarks are tested to verify the effectiveness of our method. The results highlight our speedups over prior algorithms on different commodity GPUs. 相似文献
8.
9.
Yong‐Liang Yang Ren Guo Feng Luo Shi‐Min Hu Xianfeng Gu 《Computer Graphics Forum》2009,28(7):2005-2014
Surface Ricci flow is a powerful tool to design Riemannian metrics by user defined curvatures. Discrete surface Ricci flow has been broadly applied for surface parameterization, shape analysis, and computational topology. Conventional discrete Ricci flow has limitations. For meshes with low quality triangulations, if high conformality is required, the flow may get stuck at the local optimum of the Ricci energy. If convergence to the global optimum is enforced, the conformality may be sacrificed. This work introduces a novel method to generalize the traditional discrete Ricci flow. The generalized Ricci flow is more flexible, more robust and conformal for meshes with low quality triangulations. Conventional method is based on circle packing, which requires two circles on an edge intersect each other at an acute angle. Generalized method allows the two circles either intersect or separate from each other. This greatly improves the flexibility and robustness of the method. Furthermore, the generalized Ricci flow preserves the convexity of the Ricci energy, this ensures the uniqueness of the global optimum. Therefore the algorithm won't get stuck at the local optimum. Generalized discrete Ricci flow algorithms are explained in details for triangle meshes with both Euclidean and hyperbolic background geometries. Its advantages are demonstrated by theoretic proofs and practical applications in graphics, especially surface parameterization. 相似文献
10.
The notion of parts in a shape plays an important role in many geometry problems, including segmentation, correspondence, recognition, editing, and animation. As the fundamental geometric representation of 3D objects in computer graphics is surface-based, solutions of many such problems utilize a surface metric, a distance function defined over pairs of points on the surface, to assist shape analysis and understanding. The main contribution of our work is to bring together these two fundamental concepts: shape parts and surface metric. Specifically, we develop a surface metric that is part-aware. To encode part information at a point on a shape, we model its volumetric context – called the volumetric shape image (VSI) – inside the shape's enclosed volume, to capture relevant visibility information. We then define the part-aware metric by combining an appropriate VSI distance with geodesic distance and normal variation. We show how the volumetric view on part separation addresses certain limitations of the surface view, which relies on concavity measures over a surface as implied by the well-known minima rule. We demonstrate how the new metric can be effectively utilized in various applications including mesh segmentation, shape registration, part-aware sampling and shape retrieval. 相似文献
11.
Rigid registration of two geometric data sets is essential in many applications, including robot navigation, surface reconstruction, and shape matching. Most commonly, variants of the Iterative Closest Point (ICP) algorithm are employed for this task. These methods alternate between closest point computations to establish correspondences between two data sets, and solving for the optimal transformation that brings these correspondences into alignment. A major difficulty for this approach is the sensitivity to outliers and missing data often observed in 3D scans. Most practical implementations of the ICP algorithm address this issue with a number of heuristics to prune or reweight correspondences. However, these heuristics can be unreliable and difficult to tune, which often requires substantial manual assistance. We propose a new formulation of the ICP algorithm that avoids these difficulties by formulating the registration optimization using sparsity inducing norms. Our new algorithm retains the simple structure of the ICP algorithm, while achieving superior registration results when dealing with outliers and incomplete data. The complete source code of our implementation is provided at http://lgg.epfl.ch/sparseicp . 相似文献
12.
13.
Widely used for morphing between objects with arbitrary topology, distance field interpolation (DFI) handles topological transition naturally without the need for correspondence or remeshing, unlike surface‐based interpolation approaches. However, lack of correspondence in DFI also leads to ineffective control over the morphing process. In particular, unless the user specifies a dense set of landmarks, it is not even possible to measure the distortion of intermediate shapes during interpolation, let alone control it. To remedy such issues, we introduce an approach for establishing correspondence between the interior of two arbitrary objects, formulated as an optimal mass transport problem with a sparse set of landmarks. This correspondence enables us to compute non‐rigid warping functions that better align the source and target objects as well as to incorporate local rigidity constraints to perform as‐rigid‐aspossible DFI. We demonstrate how our approach helps achieve flexible morphing results with a small number of landmarks. 相似文献
14.
William Benjamin Andrew Wood Polk S.V.N. Vishwanathan Karthik Ramani 《Computer Graphics Forum》2011,30(7):2097-2106
Segmenting three dimensional objects using properties of heat diffusion on meshes aim to produce salient results. The few existing algorithms based on heat diffusion do not use the full knowledge that can be gained from heat diffusion and are sensitive to varying kinds of perturbations. Our simple algorithm, Heat Walk, converts the implicit information in the heat kernel to explicit knowledge about the pathways for maximum heat flow capacity. We develop a two stage strategy for segmentation. In the first stage we quickly identify regions which are dominated by heat accumulators by employing a greedy algorithm. The second stage partitions out dissipative regions from the previously discovered accumulative regions by using a KL‐divergence based criterion. The resulting algorithm is both independent of human intervention and fast because of the globally aware directed walk along the maximal heat flow capacity. Extensive experimental evidence shows the method is robust to a variety of noise factors including topological short circuits, surface holes, pose variations, variations in tessellation, missing features, scaling, as well as normal and shot noise. Comparison with the Princeton Segmentation Benchmark (PSB) shows that our method is comparable with state of the art segmentation methods and has additional advantages of being robust and self contained. Based upon theoretical insight the convergence and stability of the Heat Walk is shown. 相似文献
15.
Sofien Bouaziz Mario Deuss Yuliy Schwartzburg Thibaut Weise Mark Pauly 《Computer Graphics Forum》2012,31(5):1657-1667
We introduce a unified optimization framework for geometry processing based on shape constraints. These constraints preserve or prescribe the shape of subsets of the points of a geometric data set, such as polygons, one‐ring cells, volume elements, or feature curves. Our method is based on two key concepts: a shape proximity function and shape projection operators. The proximity function encodes the distance of a desired least‐squares fitted elementary target shape to the corresponding vertices of the 3D model. Projection operators are employed to minimize the proximity function by relocating vertices in a minimal way to match the imposed shape constraints. We demonstrate that this approach leads to a simple, robust, and efficient algorithm that allows implementing a variety of geometry processing applications, simply by combining suitable projection operators. We show examples for computing planar and circular meshes, shape space exploration, mesh quality improvement, shape‐preserving deformation, and conformal parametrization. Our optimization framework provides a systematic way of building new solvers for geometry processing and produces similar or better results than state‐of‐the‐art methods. 相似文献
16.
We develop a novel isotropic remeshing method based on constrained centroidal Delaunay mesh (CCDM), a generalization of centroidal patch triangulation from 2D to mesh surface. Our method starts with resampling an input mesh with a vertex distribution according to a user‐defined density function. The initial remeshing result is then progressively optimized by alternatively recovering the Delaunay mesh and moving each vertex to the centroid of its 1‐ring neighborhood. The key to making such simple iterations work is an efficient optimization framework that combines both local and global optimization methods. Our method is parameterization‐free, thus avoiding the metric distortion introduced by parameterization, and generating more well‐shaped triangles. Our method guarantees that the topology of surface is preserved without requiring geodesic information. We conduct various experiments to demonstrate the simplicity, efficacy, and robustness of the presented method. 相似文献
17.
Strange attractors of 3D vector field flows sometimes have a fractal geometric structure in one dimension, and smooth surface behavior in the other two. General flow visualization methods show the flow dynamics well, but not the fractal structure. Here we approximate the attractor by polygonal surfaces, which reveal the fractal geometry. We start with a polygonal approximation which neglects the fractal dimension, and then deform it by the flow to create multiple sheets of the fractal structure. We use adaptive subdivision, mesh decimation, and retiling methods to preserve the quality of the polygonal surface in the face of extreme stretching, bending, and creasing caused by the flow. A GPU implementation provides efficient visualization, which we also apply to other turbulent flows. 相似文献
18.
Yuanfeng Zhou Feng Sun Wenping Wang Jiaye Wang Caiming Zhang 《Computer Graphics Forum》2010,29(7):2233-2242
Updating a Delaunay triangulation when data points are slightly moved is the bottleneck of computation time in variational methods for mesh generation and remeshing. Utilizing the connectivity coherence between two consecutive Delaunay triangulations for computation speedup is the key to solving this problem. Our contribution is an effective filtering technique that confirms most bi‐cells whose Delaunay connectivities remain unchanged after the points are perturbed. Based on bi‐cell flipping, we present an efficient algorithm for updating two‐dimensional and three‐dimensional Delaunay triangulations of dynamic point sets. Experimental results show that our algorithm outperforms previous methods. 相似文献
19.
Functions that optimize Laplacian‐based energies have become popular in geometry processing, e.g. for shape deformation, smoothing, multiscale kernel construction and interpolation. Minimizers of Dirichlet energies, or solutions of Laplace equations, are harmonic functions that enjoy the maximum principle, ensuring no spurious local extrema in the interior of the solved domain occur. However, these functions are only C0 at the constrained points, which often causes smoothness problems. For this reason, many applications optimize higher‐order Laplacian energies such as biharmonic or triharmonic. Their minimizers exhibit increasing orders of continuity but lose the maximum principle and show oscillations. In this work, we identify characteristic artifacts caused by spurious local extrema, and provide a framework for minimizing quadratic energies on manifolds while constraining the solution to obey the maximum principle in the solved region. Our framework allows the user to specify locations and values of desired local maxima and minima, while preventing any other local extrema. We demonstrate our method on the smoothness energies corresponding to popular polyharmonic functions and show its usefulness for fast handle‐based shape deformation, controllable color diffusion, and topologically‐constrained data smoothing. 相似文献
20.
Quentin Mérigot 《Computer Graphics Forum》2011,30(5):1583-1592
In this paper, we propose an improvement of an algorithm of Aurenhammer, Hoffmann and Aronov to find a least square matching between a probability density and finite set of sites with mass constraints, in the Euclidean plane. Our algorithm exploits the multiscale nature of this optimal transport problem. We iteratively simplify the target using Lloyd's algorithm, and use the solution of the simplified problem as a rough initial solution to the more complex one. This approach allows for fast estimation of distances between measures related to optimal transport (known as Earth‐mover or Wasserstein distances). We also discuss the implementation of these algorithms, and compare the original one to its multiscale counterpart. 相似文献