首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
A mean field model, for storage and desorption of NOx in a Pt/BaO/Al2O3 catalyst is developed using data from flow reactor experiments. This relatively complex system is divided into five smaller sub-systems and the model is divided into the following steps: (i) NO oxidation on Pt/Al2O3; (ii) NO oxidation on Pt/BaO/Al2O3; (iii) NOx storage on BaO/Al2O3; (iv) NOx storage on Pt/BaO/Al2O3 with thermal regeneration and (v) NOx storage on Pt/BaO/Al2O3 with regeneration using C3H6. In this paper, we focus on the last sub-system. The kinetic model for NOx storage on Pt/BaO/Al2O3 was constructed with kinetic parameters obtained from the NO oxidation model together with a NOx storage model on BaO/Al2O3. This model was not sufficient to describe the NOx storage experiments for the Pt/BaO/Al2O3, because the NOx desorption in TPD experiments was larger for Pt/BaO/Al2O3, compared to BaO/Al2O3. The model was therefore modified by adding a reversible spill-over step. Further, the model was validated with additional experiments, which showed that NO significantly promoted desorption of NOx from Pt/BaO/Al2O3. To this NOx storage model, additional steps were added to describe the reduction by hydrocarbon in experiments with NO2 and C3H6. The main reactions for continuous reduction of NOx occurs on Pt by reactions between hydrocarbon species and NO in the model. The model is also able to describe the reduction phase, the storage and NO breakthrough peaks, observed in experiments.  相似文献   

2.
The effect of different reducing agents (H2, CO, C3H6 and C3H8) on the reduction of stored NOx over PM/BaO/Al2O3 catalysts (PM = Pt, Pd or Rh) at 350, 250 and 150 °C was studied by the use of both NO2-TPD and transient reactor experiments. With the aim of comparing the different reducing agents and precious metals, constant molar reduction capacity was used during the reduction period for samples with the same molar amount of precious metal. The results reveal that H2 and CO have a relatively high NOx reduction efficiency compared to C3H6 and especially C3H8 that does not show any NOx reduction ability except at 350 °C over Pd/BaO/Al2O3. The type of precious metals affects the NOx storage-reduction properties, where the Pd/BaO/Al2O3 catalyst shows both a high storage and a high reduction ability. The Rh/BaO/Al2O3 catalyst shows a high reduction ability but a relatively low NOx storage capacity.  相似文献   

3.
Hong He  Changbin Zhang  Yunbo Yu 《Catalysis Today》2004,90(3-4):191-materials
The selective catalytic reduction (SCR) of NO by C3H6 in excess oxygen was evaluated and compared over Ag/Al2O3 and Cu/Al2O3 catalysts. Ag/Al2O3 showed a high activity for NO reduction. However, Cu/Al2O3 showed a high activity for C3H6 oxidation. The partial oxidation of C3H6 gave surface enolic species and acetate species on the Ag/Al2O3, but only an acetate species was clearly observed on the Cu/Al2O3. The enolic species is a more active intermediate towards NO + O2 to yield—NCO species than the acetate species on the Ag/Al2O3 catalyst. The Ag and Cu metal loadings and phase changes on Al2O3 support can affect the activity and selectivity of Ag/Al2O3 and Cu/Al2O3 catalysts, but the formation of enolic species is the main reason why the activity of the Ag/Al2O3 catalyst for NO reduction is higher than that of the Cu/Al2O3 catalyst.  相似文献   

4.
The reduction of NO under cyclic “lean”/“rich” conditions was examined over two model 1 wt.% Pt/20 wt.% BaO/Al2O3 and 1 wt.% Pd/20 wt.% BaO/Al2O3 NOx storage reduction (NSR) catalysts. At temperatures between 250 and 350 °C, the Pd/BaO/Al2O3 catalyst exhibits higher overall NOx reduction activity. Limited amounts of N2O were formed over both catalysts. Identical cyclic studies conducted with non-BaO-containing 1 wt.% Pt/Al2O3 and Pd/Al2O3 catalysts demonstrate that under these conditions Pd exhibits a higher activity for the oxidation of both propylene and NO. Furthermore, in situ FTIR studies conducted under identical conditions suggest the formation of higher amounts of surface nitrite species on Pd/BaO/Al2O3. The IR results indicate that this species is substantially more active towards reaction with propylene. Moreover, its formation and reduction appear to represent the main pathway for the storage and reduction of NO under the conditions examined. Consequently, the higher activity of Pd can be attributed to its higher oxidation activity, leading both to a higher storage capacity (i.e., higher concentration of surface nitrites under “lean” conditions) and a higher reduction activity (i.e., higher concentration of partially oxidized active propylene species under “rich” conditions). The performance of Pt and Pd is nearly identical at temperatures above 375 °C.  相似文献   

5.
A series of CoOx/Al2O3 catalysts was prepared, characterized, and applied for the selective catalytic reduction (SCR) of NO by C3H8. The results of XRD, UV–vis, IR, Far-IR and ESR characterizations of the catalysts suggest that the predominant oxidation state of cobalt species is +2 for the catalysts with low cobalt loading (≤2 mol%) and for the catalysts with 4 mol% cobalt loading prepared by sol–gel and co-precipitation. Co3O4 crystallites or agglomerates are the predominant species in the catalysts with high cobalt loading prepared by incipient wetness impregnation and solid dispersion. An optimized CoOx/Al2O3 catalyst shows high activity in SCR of NO by C3H8 (100% conversion of NO at 723 K, GHSV: 10,000 h−1). The activity of the selective catalytic reduction of NO by C3H8 increases with the increase of cobalt–alumina interactions in the catalysts. The influences of cobalt loading and catalyst preparation method on the catalytic performance suggest that tiny CoAl2O4 crystallites highly dispersed on alumina are responsible for the efficient catalytic reduction of NO, whereas Co3O4 crystallites catalyze the combustion of C3H8 only.  相似文献   

6.
Effect of additives, In2O3, SnO2, CoO, CuO and Ag, on the catalytic performance of Ga2O3–Al2O3 prepared by sol–gel method for the selective reduction of NO with propene in the presence of oxygen was studied. As for the reaction in the absence of H2O, CoO, CuO and Ag showed good additive effect. When H2O was added to the reaction gas, the activity of CoO-, CuO- and Ag-doped Ga2O3–Al2O3 was depressed considerably, while an intensifying effect of H2O was observed for In2O3- and SnO2-doped Ga2O3–Al2O3. Of several metal oxide additives, In2O3-doped Ga2O3–Al2O3 showed the highest activity for NO reduction by propene in the presence of H2O. Kinetic studies on NO reduction over In2O3–Ga2O3–Al2O3 revealed that the rate-determining step in the absence of H2O is the reaction of NO2 formed on Ga2O3–Al2O3 with C3H6-derived species, whereas that in the presence of H2O is the formation of C3H6-derived species. We presumed the reason for the promotional effect of H2O as follows: the rate for the formation of C3H6-derived species in the presence of H2O is sufficiently fast compared with that for the reaction of NO2 with C3H6-derived species in the absence of H2O. Although the retarding effect of SO2 on the activity was observed for all of the catalysts, SnO2–Ga2O3–Al2O3 showed still relatively high activity in the lower temperature region.  相似文献   

7.
Catalytic properties of supported gallium oxides have been examined for the selective reduction of NO by CH4 in excess oxygen. The activity was greatly affected by the support; Ga2O3/Al2O3 (Al2O3 supported Ga2O3) and Ga2O3–Al2O3 mixed oxide exhibited high activity and selectivity as comparable to Ga-ZSM-5, while unsupported Ga2O3 and the other supported Ga2O3 were ineffective. For Ga2O3/Al2O3, the activity changed with Ga2O3 content, and was highest at about 30 wt% Ga2O3, which corresponds to a theoretical monolayer coverage. Gallium oxide highly dispersed on Al2O3 is considered to be responsible for the high activity and selectivity. The reaction characteristics of Ga2O3/Al2O3 were studied and compared with Ga-ZSM-5 and Co-ZSM-5. Ga2O3/Al2O3 exhibited the highest activity and selectivity at high temperature. In addition, Ga2O3/Al2O3 showed higher tolerance against water than Ga-ZSM-5. C3H8 and C3H6 were also evaluated as reducing agents, and Ga2O3/Al2O3 showed higher activity than Ga-ZSM-5 above 723 K achieving almost complete reduction of NO to N2.  相似文献   

8.
The reduction of NOx by hydrogen under lean burn conditions over Pt/Al2O3 is strongly poisoned by carbon monoxide. This is due to the strong adsorption and subsequent high coverage of CO, which significantly increases the temperature required to initiate the reaction. Even relatively small concentrations of CO dramatically reduce the maximum NOx conversions achievable. In contrast, the presence of CO has a pronounced promoting influence in the case of Pd/Al2O3. In this case, although pure H2 and pure CO are ineffective for NOx reduction under lean burn conditions, H2/CO mixtures are very effective. With a realistic (1:3) H2:CO ratio, typical of actual exhaust gas, Pd/Al2O3 is significantly more active than Pt/Al2O3, delivering 45% NOx conversion at 160 °C, compared to >15% for Pt/Al2O3 under identical conditions. The nature of the support is also critically important, with Pd/Al2O3 being much more active than Pd/SiO2. Possible mechanisms for the improved performance of Pd/Al2O3 in the presence of H2+CO are discussed.  相似文献   

9.
The reduction of NO by propene in the presence of excess oxygen over mechanical mixtures of Au/Al2O3 with a bulk oxide has been investigated. The oxides studied were: Co3O4, Mn2O3, Cr2O3, CuO, Fe2O3, NiO, CeO2, SnO2, ZnO and V2O5. Under lean C3H6-SCR conditions, these oxides (with the exception of SnO2) convert selectively NO to NO2. When mechanically mixed with Au/Al2O3, the Mn2O3 and Co3O4 oxides and, to a much greater extent, CeO2 act synergistically with this catalyst greatly enhancing its SCR performance. It was found that their synergistic action is not straightforwardly related to their activity for NO oxidation to NO2. The exhibited catalytic synergy may be due to the operation of either remote control or a bifunctional mechanism. In the later case, the key intermediate must be a short-lived compound and not the NO2 molecule in gas-phase.  相似文献   

10.
The selective catalytic reduction (SCR) of NOx assisted by propene is investigated on Pd/Ce0.68Zr0.32O2 catalysts (Pd/CZ), and is compared, under identical experimental conditions, with that found on a Pd/SiO2 reference catalyst. Physico-chemical characterisation of the studied catalysts along with their catalytic properties indicate that Pd is not fully reduced to metallic Pd for the Pd/CZ catalysts. This study shows that the incorporation of Pd to CZ greatly promotes the reduction of NO in the presence of C3H6. These catalysts display very stable deNOx activity even in the presence of 1.7% water, the addition of which induces a reversible deactivation of about 10%. The much higher N2 selectivity obtained on Pd/CZ suggests that the lean deNOx mechanism occurring on these catalysts is different from that occurring on Pd0/SiO2. A detailed mechanism is proposed for which CZ achieves both NO oxidation to NO2 and NO decomposition to N2, whereas PdOx activates C3H6 via ad-NO2 species, intermediately producing R-NOx compounds that further decompose to NO and CxHyOz. The role of the latter oxygenates is to reduce CZ to provide the catalytic sites responsible for NO decomposition. The proposed C3H6-assisted NO decomposition mechanism stresses the key role of NO2, R-NOx and CxHyOz as intermediates of the SCR of NOx by hydrocarbons.  相似文献   

11.
The effectiveness of Ag/Al2O3 catalyst depends greatly on the alumina source used for preparation. A series of alumina-supported catalysts derived from AlOOH, Al2O3, and Al(OH)3 was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV–vis) spectroscopy, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, O2, NO + O2-temperature programmed desorption (TPD), H2-temperature programmed reduction (TPR), thermal gravimetric analysis (TGA) and activity test, with a focus on the correlation between their redox properties and catalytic behavior towards C3H6-selective catalytic reduction (SCR) of NO reaction. The best SCR activity along with a moderated C3H6 conversion was achieved over Ag/Al2O3 (I) employing AlOOH source. The high density of Ag–O–Al species in Ag/Al2O3 (I) is deemed to be crucial for NO selective reduction into N2. By contrast, a high C3H6 conversion simultaneously with a moderate N2 yield was observed over Ag/Al2O3 (II) prepared from a γ-Al2O3 source. The larger particles of AgmO (m > 2) crystallites were believed to facilitate the propene oxidation therefore leading to a scarcity of reductant for SCR of NO. An amorphous Ag/Al2O3 (III) was obtained via employing a Al(OH)3 source and 500 °C calcination exhibiting a poor SCR performance similar to that for Ag-free Al2O3 (I). A subsequent calcination of Ag/Al2O3 (III) at 800 °C led to the generation of Ag/Al2O3 (IV) catalyst yielding a significant enhancement in both N2 yield and C3H6 conversion, which was attributed to the appearance of γ-phase structure and an increase in surface area. Further thermo treatment at 950 °C for the preparation of Ag/Al2O3 (V) accelerated the sintering of Ag clusters resulting in a severe unselective combustion, which competes with SCR of NO reaction. In view of the transient studies, the redox properties of the prepared catalysts were investigated showing an oxidation capability of Ag/Al2O3 (II and V) > Ag/Al2O3 (IV) > Ag/Al2O3 (I) > Ag/Al2O3 (III) and Al2O3 (I). The formation of nitrate species is an important step for the deNOx process, which can be promoted by increasing O2 feed concentration as evidenced by NO + O2-TPD study for Ag/Al2O3 (I), achieving a better catalytic performance.  相似文献   

12.
Pd-loaded Ce0.6Zr0.4O2 solid solutions supported on Al2O3 are investigated as catalysts for the reduction of NO by CO. The attention is focused on the role of the Ce0.6Zr0.4O2 and of the Pd dispersion on the catalytic activity. The system shows a very high activity below 500 K, which is almost independent on the Pd dispersion. The high activity is attributed to a promoting effect of the Ce0.6Zr0.4O2 on the NO conversion. Investigation of the influence of high temperature treatments disclosed a thermal stabilisation of both Ce0.6Zr0.4O2 and Al2O3 in the Ce0.6Zr0.4O2/Al2O3 system.  相似文献   

13.
Cobalt-promoted palladium as a three-way catalyst   总被引:1,自引:0,他引:1  
Fifteen catalysts were prepared by intermittently impregnating alumina washcoats with water solutions containing La3+, Co2+ and PdCl2−4 ions/complex and calcining them at 550–820°C. The catalysts were evaluated with respect to light-off performance, at stationary and transient feed gas stoichiometry, respectively, and redox characteristics, using NO/CO/C3H6/O2/N2 gas mixtures to simulate car exhaust. Alumina supported Pd exhibited three-way activity, i.e., simultaneous oxidation of CO and C3H6 and reduction of NO in a narrow interval around stoichiometric composition of the feed gas. Compared to Pd alone, addition of La or Co caused a widening of the interval under net reducing conditions. Addition of Co to Pd caused a significant increase in the activities for oxidation of CO and C3H6 under stoichiometric conditions. The conversions of CO and C3H6 started at about 100 degrees lower temperatures over Co-promoted Pd compared to unpromoted Pd. A marked increase in the activity for the reduction of NO at transient conditions was observed over Co-promoted Pd compared to unpromoted Pd. The catalysts were characterized by X-ray powder diffraction, scanning electron microscopy, and transmission electron microscopy combined with energy-dispersive spectroscopy analysis, X-ray photoelectron spectroscopy (XPS), and specific surface area measurements. Only Co2+ could be detected by XPS in the surface layers of the Co-containing sample. A significant part of the cobalt is present in forms which can be oxidized and reduced under synthetic car exhaust conditions. These oxidizable/reducible cobalt sites are predominantly active for oxidation of CO and C3H6, hence promoting the reduction of NO over Pd by initiating these exothermic reactions in the catalyst.  相似文献   

14.
The effect of the Pd addition method into the fresh Pd/(OSC + Al2O3) and (Pd + OSC)/Al2O3 catalysts (OSC material = CexZr1−xO2 mixed oxides) was investigated in this study. The CO + NO and CO + NO + O2 model reactions were studied over fresh and aged catalysts. The differences in the fresh catalysts were insignificant compared to the aged catalysts. During the CO + NO reaction, only small differences were observed in the behaviour of the fresh catalysts. The light-off temperature of CO was about 20 °C lower for the fresh Pd/(OSC + Al2O3) catalyst than for the fresh (Pd + OSC)/Al2O3 catalyst during the CO + NO + O2 reaction. For the aged catalysts lower NO reduction and CO oxidation activities were observed, as expected. Pd on OSC-containing alumina was more active than Pd on OSC material after the agings. The activity decline is due to a decrease in the number of active sites on the surface, which was observed as a larger Pd particle size for aged catalysts than for fresh catalysts. In addition, the oxygen storage capacity of the aged Pd/(OSC + Al2O3) catalyst was higher than that of the (Pd + OSC)/Al2O3 catalyst.  相似文献   

15.
Selective catalytic reduction of NOx by C3H6 in the presence of H2 over Ag/Al2O3 was investigated using in situ DRIFTS and GC–MS measurements. The addition of H2 promoted the partial oxidation of C3H6 to enolic species, the formation of –NCO and the reactions of enolic species and –NCO with NOx on Ag/Al2O3 surface at low temperatures. Based on the results, we proposed reaction mechanism to explain the promotional effect of H2 on the SCR of NOx by C3H6 over Ag/Al2O3 catalyst.  相似文献   

16.
New experimental and theoretical results on the complex dynamics of heterogeneously catalyzed reactions are presented. The experimental work deals with the CO and the C2H5OH oxidation catalyzed by Pd supported on zeolites and amorphous Al2O3. The theoretical modelling of the dynamic behavior of such system is based on numerical investigations of two-dimensional cellular automatons.  相似文献   

17.
We have examined the adsorption of CO and NO on powder Pd/Al2O3, Pd–Ce/Al2O3 and CeO2/Al2O3 catalysts, using temperature-programmed desorption (TPD). For CO adsorption on oxidized and pre-reduced Pd–Ce/Al2O3 TPD profiles are identical to those observed for Pd/Al2O3, suggesting that interactions between ceria and Pd have a negligible effect on the adsorption properties of CO. It does, however, affect the oxidation state of the palladium particles. For NO, there are differences between Pd/Al2O3 and Pd–Ce/Al2O3. On oxidized catalysts, Pd/Al2O3 is more efficient for NO dissociation. However, pre-reduction increases the amount of NO that can adsorb on Pd–Ce/Al2O3 and react to N2O and N2. In comparison with Pd/Al2O3, reduced Pd–Ce/Al2O3catalysts dissociate NO at relatively high temperatures but they are more reactive and favor N2 over N2O.  相似文献   

18.
The nature of the silver phases of Ag/Al2O3 catalysts (prepared by silver nitrate impregnation followed by calcination) was investigated by X-ray diffractograms (XRD), transmission electron microscopy (TEM) and UV–VIS analyses and related to the activity of the corresponding materials for the oxidation of NO to NO2. The UV–VIS spectrum of the 1.2 wt.% Ag/Al2O3 exhibited essentially one band associated with Ag+ species and the NO2 yields measured over this material were negligible. A 10 wt.% Ag/Al2O3 material showed the presence of oxidic species of silver (as isolated Ag+ cations and silver aluminate), but the UV–VIS data also revealed the presence of some metallic silver. The activity for the NO oxidation to NO2 of this sample was moderate. The same 10% sample either reduced in H2 or used for the C3H6-selective catalytic reduction (SCR) of NO showed a significantly larger proportion of silver metallic phases and these samples displayed a high activity for the formation of NO2. These data show that the structure and nature of the silver phases of Ag/Al2O3 catalysts can markedly change under reaction feed containing only a fraction of reducing agent (i.e. 500 ppm of propene) in net oxidizing conditions (2.5% O2). The low activity for N2 formation during the C3H6-SCR of NO (reported in an earlier study) over the high loading sample can, therefore, be related to the presence of metallic silver, which is yet a good catalyst for NO oxidation to NO2. The reverse observations apply for the oxide species observed over the low loading sample, which is a good SCR catalyst but do not oxidize NO to NO2.  相似文献   

19.
The effect of the addition of a second fuel such as CO, C3H8 or H2 on the catalytic combustion of methane was investigated over ceramic monoliths coated with LaMnO3/La-γAl2O3 catalyst. Results of autothermal ignition of different binary fuel mixtures characterised by the same overall heating value show that the presence of a more reactive compound reduces the minimum pre-heating temperature necessary to burn methane. The effect is more pronounced for the addition of CO and very similar for C3H8 and H2. Order of reactivity of the different fuels established in isothermal activity measurements was: CO>H2≥C3H8>CH4. Under autothermal conditions, nearly complete methane conversion is obtained with catalyst temperatures around 800 °C mainly through heterogeneous reactions, with about 60–70 ppm of unburned CH4 when pure methane or CO/CH4 mixtures are used. For H2/CH4 and C3H8/CH4 mixtures, emissions of unburned methane are lower, probably due to the proceeding of CH4 homogeneous oxidation promoted by H and OH radicals generated by propane and hydrogen pyrolysis at such relatively high temperatures.

Finally, a steady state multiplicity is found by decreasing the pre-heating temperature from the ignited state. This occurrence can be successfully employed to pilot the catalytic ignition of methane at temperatures close to compressor discharge or easily achieved in regenerative burners.  相似文献   


20.
An In2O3/Al2O3 catalyst shows high activity for the selective catalytic reduction of NO with propene in the presence of oxygen. The presence of SO2 in feed gas suppressed the catalytic activity dramatically at high temperatures; however it was enhanced in the low temperature range of 473–573 K. In TPD and FT-IR studies, the formation of sulfate species on the surface of the catalyst caused an inhibition of NOX adsorption sites, and the absorbance ability of NO was suppressed by the presence of SO2, and the amount of ad-NO3 species decreased obviously. This leads to a decrease of catalytic activity at higher temperatures. However, addition of SO2 enhanced the formation of carboxylate and formate species, which can explain the promotional effect of SO2 at low temperature, because active C3H6 (partially oxidized C3H6) is crucial at low temperature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号