首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
泡沫铝填充帽型结构轴向冲击吸能特性的试验研究   总被引:2,自引:1,他引:1  
利用冲击试验系统,通过试验方法研究了泡沫铝填充帽型结构在轴向冲击工况下的吸能特性。首先进行了泡沫铝、空心帽型结构以及泡沫铝填充帽型结构的轴向冲击试验;然后根据试验结果,对泡沫铝填充帽型结构轴向冲击工况下的吸能特性进行了分析,评估了填充泡沫铝以及应变率对帽型结构吸能特性的影响。试验结果表明, 与空心结构相比,填充泡沫铝之后帽型结构的轴向压缩稳定性和吸能特性有明显的改善;由于材料对应变率敏感, 与准静态压缩相比,结构的吸能特性有一定的提高。  相似文献   

2.
泡沫铝填充帽型结构轴向压缩吸能特性的试验研究   总被引:5,自引:2,他引:5  
通过试验方法研究了泡沫铝填充帽型结构准静态压溃时的吸能特性。首先,进行了泡沫铝空心帽型结构以及泡沫铝填充帽型结构的轴向压缩试验;然后,根据试验结果,对泡沫铝填充帽型结构的轴向吸能特性进行了分析,并与空心帽型结构进行了比较。结果表明,填充泡沫铝之后,帽型结构的轴向压缩稳定性和吸能特性有了很大的提高。在吸收的能量一定时,泡沫铝填充能够减少吸能结构所需要的质量。  相似文献   

3.
A theoretical analysis was performed to predict the crushing behaviour of aluminium foam-filled single hat and double hat sections subjected to axial compression. The experimental results and superfolding element theory were used to create deformation models for the aluminium foam contained in the hat sections, and several assumptions were made for the theoretical analysis. According to the energy method and superfolding elements theory, the mean crushing force and the interactive effect were theoretically predicted for the axial compression of the aluminium foam-filled hat sections. The final formula specified the relationship between the mechanical characteristics of the aluminum foam and the height of the superfolding element. The mean crush forces and the interactive effect predicted by the theoretical analysis were in good agreement with the experimental results. The theoretical prediction results showed that the interactive effect was mainly from the aluminium foam.  相似文献   

4.
Research to quantify the energy absorption of empty and foam-filled tubes under oblique loading with different loading angles and geometry parameters was carried out. Tests on circular tubes made of aluminum alloy AA6063 under quasi-static axial or oblique loading were performed. The collapse behavior of empty, foam-filled single and double tubes was investigated at loading angles of 0°, 5°, 10° and 15° with respect to the longitudinal direction of the tube. The tubes were fixed at both ends and oblique load was realized by applying a load at the upper end of a pair of specimens. When the foam-filled tubular structures subjected to oblique quasi-static loading, some new deformation modes, such as spiral folding mode, irregular extensional folding mode and irregular axi-symmetric or diamond deformation mode, were identified and ascribed to the bending of tubes and shearing of foam filler, as well as the interaction between the tubes and the foam. The energy absorption characteristics of empty and foam-filled single and double tube structures with respect to the load angle and wall thickness are determined. It is found that the energy-absorbing effectiveness factors of the circular tube structures with aluminum foam core are significant higher than those of the empty tubes and the energy absorption capacity of the foam-filled double tubes is better than that of the empty and foam-filled single tubes.  相似文献   

5.
Torsional crushing behavior of foam-filled thin-walled square columns were investigated analytically, numerically and experimentally. The lower and upper bounds on the torsional resistance of foam-filled columns were established analytically. Numerical simulations were carried out and showed that the presence of the filler changes the torsional collapse mechanism and gives rise to higher order sectional collapse modes, which results in a higher torsional resistance. Torsional experiments were performed and results were compared to the analytical and numerical solutions with reasonably good agreement. It was found that bonding of the foam to the walls changes the deformation mode by spreading deformation over the whole length. The corresponding torsional resistance is also larger for the first 40° of rotation. It is concluded that fitting prismatic members with the aluminum foam of a density ranging from 0.14 to 0.28 g/cm3 can double the energy absorption of a given member.  相似文献   

6.
In this paper the crushing behavior of thin-walled tubes under static and dynamic loading is investigated. First, a finite element (FE) model for empty thin-walled tube was constructed and validated by available experimental and numerical data. The comparison between the FE results and the existing numerical solutions as well as the available experimental results showed good agreements. Next, a model for the foam was adopted and implemented in an in-house FE code. The implemented isotropic foam model was then used to simulate the behavior of foam-filled tubes under both static and dynamic loadings. Good agreement was observed between the results from the model with those obtained by analytical relations and experimental test data. The validated FE model was then used to conduct a series of parametric studies on foam-filled tapered tubes under static and dynamic loadings. The parametric studies were carried out to determine the effect of different parameters such as the number of oblique sides, foam density and boundary conditions on crushing behavior of rectangular tubes. The characteristic included deformed shapes, load–displacement, fold length and specific energy absorptions.  相似文献   

7.
泡沫铝填充薄壁结构具有轻质、较大承载能力以及高效吸能特性,越来越多地应用于各种工程结构。提出一种新颖的轴向梯度泡沫填充薄壁结构,采用试验与数值分析的方法,系统地分析空管、均匀泡沫填充及梯度泡沫填充薄壁圆管在弯曲工况下的力学响应及能量吸收特性。研究发现,泡沫填充薄壁结构比空管具有更好的抗弯性能。与均匀泡沫填充结构相比,梯度泡沫不仅使得填充薄壁结构的变形模式从单褶皱模式变为多褶皱模式,截面扁化量和抗弯刚度损失显著减小,而且有效地提高了填充结构的承载力及吸能特性。为了进一步探索填充结构的最优耐撞性,结合Kriging近似技术与粒子群数值优化方法,对均匀泡沫和功能梯度填充泡沫薄壁结构进行多目标优化设计,得到了泡沫填充薄壁结构耐撞性的最佳参数匹配设计,并有效提高了结构的抗弯性能,为泡沫填充薄壁结构抗弯性设计提供了参考依据。  相似文献   

8.
采用压力渗透法制备出了铝基复合泡沫材料,填充材料是以粉煤灰漂珠为主要组分、硬质聚氨酯泡沫为粘结剂的复合泡沫材料.通过准静态实验和分离式霍普金森压杆(Split Hopkinson pressure bar,SHPB)动态压缩的方法研究了复合泡沫铝的压缩力学响应,然后建立了动态本构关系.研究表明,复合泡沫铝的压缩应力-应变曲线与其它泡沫材料的应力-应变曲线类似,文中的两种铝基复合泡沫具有应变率效应,复合泡沫铝较密度相近未填充前的泡沫铝基具有更高的压缩强度与能量吸收能力.但由于漂珠尺寸的不同,导致两种复合泡沫铝的动态压缩结果不尽相同,且小颗粒复合泡沫铝在动态冲击下吸能效果最好.在本研究实验的应变率和密度范围内,本文建立的本构模型曲线与实验曲线吻合较好.  相似文献   

9.
采用压力渗透法制备出了铝基复合泡沫材料,填充材料是以粉煤灰漂珠为主要组分、硬质聚氨酯泡沫为粘结剂的复合泡沫材料.通过准静态实验和分离式霍普金森压杆(Split Hopkinson pressure bar,SHPB)动态压缩的方法研究了复合泡沫铝的压缩力学响应,然后建立了动态本构关系.研究表明,复合泡沫铝的压缩应力-应变曲线与其它泡沫材料的应力-应变曲线类似,文中的两种铝基复合泡沫具有应变率效应,复合泡沫铝较密度相近未填充前的泡沫铝基具有更高的压缩强度与能量吸收能力.但由于漂珠尺寸的不同,导致两种复合泡沫铝的动态压缩结果不尽相同,且小颗粒复合泡沫铝在动态冲击下吸能效果最好.在本研究实验的应变率和密度范围内,本文建立的本构模型曲线与实验曲线吻合较好.  相似文献   

10.
为准确地模拟轮毂的碰撞断裂失效行为,开展了AlSi7(铸铝)材料的断裂力学试验,基于CrachFEM失效准则研究了材料特性参数拟合方法。根据轮毂的准静态和动态试验与仿真对比分析,提出了适用于轮毂断裂模拟的有限元建模规则和材料失效参数调整方法,使轮毂碰撞断裂模式的仿真结果更贴合试验结果。研究结果表明:利用所提建模规则与方法显著提高了碰撞模拟的失效预测精度,可为小偏置碰的安全性能开发提供有效的虚拟仿真评估手段。  相似文献   

11.
The objective of this paper is to evaluate the effect of intermittent weldment of cylindrical tubes on the energy absorbing behavior under axial crushing. This paper describes the test results for cylindrical empty and foam-filled tubes and discussions of the improvement of energy absorbing efficiency by the sequential rupture of intermittent weldment. The weldment rupture of a cylindrical foam-filled tube reduces the peak values of crush load and increases the valley values, while the mean crush load is maintained at a similar level as in the fully welded tube. The weldment rupture of a cylindrical foam-filled tube improves the energy-absorbing efficiency by reducing the crush load amplitude without a loss of total energy absorption.  相似文献   

12.
An experimental investigation was carried out to study the behaviour of square aluminium extrusions filled with aluminium foam under quasi-static loading conditions. Based on the experimental work, simple relations between dimensionless numbers governing the influence of the foam on the characteristics of the crush problem were identified. Furthermore, a simplified set of equations applicable for design of foam-filled components was proposed.  相似文献   

13.
Quasi-static axial crushing tests have been carried out on thin-walled top-hat and double-hat mild steel spot-welded sections. Several post-test collapse modes were identified for the structures and the associated energy-absorbing characteristics have been examined and compared with previous tests. A new empirical equation is suggested for relating the structural effectiveness to the structural density of top-hat and double-hat sections.  相似文献   

14.
汽车碰撞仿真中的连接失效模拟   总被引:10,自引:1,他引:9  
描述了汽车碰撞仿真研究中连接方式的模拟方法 ,讨论了各种连接方式的不同约束条件和失效准则。本文通过一个典型的闭口帽型截面的薄壁梁在轴向碰撞载荷下的屈曲模态给出了不同强度的连接方式所产生的不同溃缩模式 ,进而分析了连接失效对载荷 -位移曲线和碰撞吸能特性的影响 ,为利用有限元仿真进行碰撞结构设计提供了依据  相似文献   

15.
基于有限元分析软件LS-DYNA对设计的一种薄壁、中空且带加强筋的铝合金保险杠横梁的摆锤和台车试验进行了有限元模拟;并进行相关试验,与钢制横梁的碰撞性能进行对比。结果表明:在20km·h-1低速碰撞条件下台车有限元模拟与实际试验结果吻合较好;铝合金横梁较原钢制横梁有更好的刚度和吸能性能;在相同的碰撞试验条件下,钢制横梁的吸能性有限,而铝合金横梁能够在较大的速度范围内保持较高的吸能性能。  相似文献   

16.
Validation of constitutive models applicable to aluminium foams   总被引:2,自引:0,他引:2  
An extensive experimental database has been established for the structural behaviour of aluminium foam and aluminium foam-based components (foam-filled extrusions). The database is divided into three levels, these are: (1) foam material calibration tests, (2) foam material validation tests and finally (3) structural interaction tests where the foam interacts with aluminium extrusions. This division makes it possible to validate constitutive models applicable to aluminium foam for a wide spectrum of loading configurations. Several existing material models for aluminium foam from the literature are discussed and compared. To illustrate the use of the database, four existing material models for foams in the explicit, non-linear finite element code LS-DYNA have been calibrated and evaluated against configurations in the database.  相似文献   

17.
通过仿真和落锤试验研究了内部加强帽形结构动态压溃时的吸能特性。首先,从理论上分析内部加强对帽形结构吸能特性的影响;然后,根据仿真结果,对内部加强帽型结构的轴向吸能特性进行了分析,并与无内部加强帽形结构进行了对比;最后进行了试验验证。结果表明:通过改变加强结构,帽形结构的轴向压缩稳定性和吸能特性有了很大的提高,且失效现象得到改善,还有利于结构的轻量化。  相似文献   

18.
Porous materials such as aluminum foam have been investigated for possible use as impact shock absorbers in transportation aeronautic applications. However, the response of aluminum foam during impacts at high velocities of more than 100 m/s is not yet fully understood. A high-velocity impact experiment was therefore carried out to clarify impact shock absorption properties of aluminum foam. A one-stage powder gun was used to accelerate an aluminum foam sample to impact a rigid wall. Velocity and deformation of the aluminum foam sample during impact was studied using a digital high-speed video camera, while the pressure wave in the aluminum foam sample was measured using a PVDF gauge. The experimental observations revealed uneven collapse of the aluminum foam sample structure during high speed impact with a general stress plateau effect, typical for cellular material structures when subjected to quasi-static loading.  相似文献   

19.
Metallic foams as a filler in thin-walled structures can improve their crashworthiness characteristics. In this article, nonlinear parametric finite element simulations of FGF foam-filled conical tube are developed and the effect of various design parameters such as density grading, number of grading layers and the total mass of FGF tube on resulting mode shapes, specific energy absorption and initial peak load is investigated. Multi design optimization (MDO) technique and the geometrical average method, both are based on FE model are applied to maximize the specific energy absorption and minimize the impact peak force by estimating the best wall thickness and gradient exponential parameter “m” that controls the variation of foam density. The results obtained from the optimizations indicated that functionally graded foam material, with graded density, is a suitable candidate for enhancing the crashworthiness characteristics of the structure compared to uniform density foam.  相似文献   

20.
闭孔泡沫铝在圆柱形平压头下的压痕性能   总被引:1,自引:0,他引:1  
采用圆柱形平压头对闭孔泡沫铝进行了压痕试验,研究了压头直径、泡沫铝相对密度及边界条件对压痕响应、压痕硬度、吸能特性等的影响,并与单向压缩试验结果进行了对比.结果表明:闭孔泡沫铝压痕试验的应力-应变曲线与其单向压缩时的相似,但压痕试验时的屈服强度显著高于单向压缩时的;压痕试验时泡沫铝的变形被严格限制在压头之下,并且是局部的不均匀变形;压痕试验时泡沫铝的撕裂能和能量吸收效率不随压头直径和泡沫铝相对密度的变化而变化;压痕硬度随压头直径的增加而线性减小,随相对密度的增加而线性增大;其吸能能力分别随压头直径及相对密度的增加而线性增大;压痕深度在一定范围内(小于6 mm),刚性基础和筒支边界条件对泡沫铝在圆柱形平压头作用下压痕响应的影响可以忽略不计.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号