首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The electrochemical synthesis of poly(o-anisidine) (POA) was achieved on brass (CuZn) electrode by applying two scan rates (50 and 20 mVs−1). The synthesized polymer films were strongly adherent and homogeneous in both cases. Their corrosion performance was investigated by AC impedance spectroscopy (EIS) technique, anodic polarization plots and open circuit potential-time curves, in 3.5% NaCl solution. It was clearly seen that poly(o-anisidine) films provided a significant physical protection for longer exposure time. It was shown that polymer film coated at high scan rate (CuZn/POA-H) exhibited better barrier property against the attack of corrosive agents when compared with polymer film obtained at low scan rate (CuZn/POA-L). It was found out that poly(o-anisidine) film synthesized at high scan rate caused a significant increase in corrosion resistance by its catalytic behavior on formation of protective oxide layers on the surface in longer time.  相似文献   

2.
Poly(o-anisidine) (POA) and polyaniline (PANI) coatings were synthesized on platinum (Pt) surface and stainless steel (SS) in monomer containing 0.50 M sulphamic acid (SA) solution by means of cyclic voltammetry (CV) technique. Meanwhile, poly(o-anisidine) film was also deposited with a different scan rate on SS electrode. The behaviour of PANI and POA films obtained on stainless steel examined by CV was different from the one obtained for PANI and POA on Pt electrode. The corrosion performances of PANI and POA coatings in 3.5% NaCl solution were investigated with anodic polarization technique and electrochemical impedance spectroscopy (EIS). EIS measurements verified the effect of monomers and that of scan rate on corrosion inhibition of coatings on SS electrode. The results showed that POA film synthesized at low scan rate exhibited an effective anticorrosive property on SS electrode. POA synthesized at low scan rate and PANI coatings provided a remarkable anodic protection to SS substrate for longer exposure time than the one observed for POA coating produced at high scan rate as well as that of bare SS electrode.  相似文献   

3.
The nanocrystalline NiO thin films with the mean size of 30 nm are prepared by pulsed laser reactive ablation in an oxygen ambient and subsequent coated by MgO on the NiO film surface. As compared with bare NiO, coated NiO film electrode heat-treated at 500 °C exhibits excellent structural stability and electrochemical performance. Excellent electrochemical performance, a reversible capacity as high as 650 mAh/g in the range 0.01–3.0 V at high discharge rate of 2C with a high capacity retention up to 150 cycles, could be achieved with MgO-coated NiO films. Preliminary electrochemical cycling measurements show that capacity retention with capacity fading for bare NiO and MgO-coated NiO film electrodes are 0.43 and 0.28% per cycle, respectively, at the discharge rate of 2C after 150 cycles. This result is related to good structural stability of the MgO-coated NiO film as verified by cyclic voltammetric (CV) measurement and scanning electron microscopy (SEM) analysis.  相似文献   

4.
Poly(pyrrole-co-N-methyl pyrrole) copolymer and poly(pyrrole)/poly(N-methyl pyrrole) bilayer composites were electrochemically synthesized on copper by cyclic voltammetry from aqueous solution of 0.3 M oxalic acid and 0.1 M monomer. Synthesis of copolymers were performed with different monomer feed ratios (pyrrole:N-methyl pyrrole, 8:2, 6:4, 5:5, 4:6 and 2:8) and in order to determine the copolymer, which has the best corrosion performance, anodic polarization was applied to copolymer coated samples. It was found that the performance of coatings was strongly dependent to the monomer feed ratio and the copolymer synthesized with 8:2 concentration ratio showed the most protective property compared to others. Bilayer of poly(pyrrole)/poly(N-methyl pyrrole) was also synthesized to compare the anticorrosive properties. Polymer films were characterized by ATR-FTIR spectroscopy and SEM techniques. Corrosion behavior of polymer composites was investigated in 0.1 M H2SO4 solution by anodic polarization and electrochemical impedance spectroscopy. Different approaches such as phase angle at high frequency and areas under Bode plots were used to evaluate corrosion performances of the coatings. Copolymer and bilayer coatings were found to have higher protection effect than single polypyrrole coatings. Moreover, bilayer coating exhibited better protection efficiency than copolymer coating against corrosion of copper when the obtained results were compared.  相似文献   

5.
Nickel-cobalt (Ni-Co) oxide thin films were electrodeposited onto copper substrates in an electrolyte containing cobalt chloride and nickel chloride, and the electrochemical capacitor behaviors of these films were investigated. The XRD pattern revealed that the electrodeposited Ni-Co oxide thin film was comprised of NiCo2O4. In the SEM image, the electrodeposited Ni-Co oxide film was covered with hexagonal and cubical shaped particles. The electrodeposited Ni-Co oxide electrode exhibited a specific capacitance of 148 F/g at a scan rate of 20 mV, and the current density was fairly stable over 200 cycles. The charge-discharge test confirmed that capacitance of the electrodeposited Ni-Co oxide electrode resulted from the electric double layer capacitance and pseudocapacitance.  相似文献   

6.
The electrochemical synthesis of poly(o-anisidine) homopolymer and its copolymerization with pyrrole have been investigated on mild steel. The copolymer films have been synthesized from aqueous oxalic acid solutions containing different ratios of monomer concentrations: pyrrole:o-anisidine, 9:1, 8:2, 6:4, 1:1. The characterization of polymer films were achieved with FT-IR, UV–visible spectroscopy and cyclic voltammetry techniques. The electrochemical synthesis of homogeneous-stable poly(o-anisidine) film with desired thickness was very difficult on steel surface. Therefore its copolymer with pyrrole has been studied to obtain a polymer film, which could be synthesized easily and posses the good physical–chemical properties of anisidine. The kinetics and rate of copolymer film growth were strongly related to monomer feed ratio. The introduction of pyrrole unit into synthesis solution increased the rate of polymerization and the substrate surface became covered with polymer film soon, while this process required longer periods in single o-anisidine containing solution. The protective behavior of coatings has been investigated against steel corrosion in 3.5% NaCl solution. For this aim electrochemical impedance spectroscopy (EIS) and anodic polarization curves were utilized. The synthesized poly(o-anisidine) coating exhibited significant protection efficiency against mild steel corrosion. It was shown that 6:4 ratio of pyrrole and anisidine solution gave the most stable and corrosion protective copolymer coating.  相似文献   

7.
Conductive flexible films are successfully synthesized from polyvinyl alcohol matrix and poly(aniline-co-carbazole) charge carrier. To improve the mechanical properties of polyvinyl alcohol and promote charge transition in the conductive copolymer, dual purpose sulfonated multiwall carbon nanotube is added. Conductivity is enhanced via sulfonic acid protonic dopant and mechanical property is increased by its hexagonal nanorods. Nanocomposites are prepared by adding 0.025, 0.050, and 0.075 g of carbon nanotube which is added at 1%, 3%, and 5% loads to the polymer matrix. Films are characterized by infrared, UV–vis, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis. Conductivity is measured by the four-probe technique and mechanical property is assessed through tensile tests and dynamic mechanic thermal analysis. A 5 × 10−6 S cm−1 conductivity and 116 MPa tensile strength are recorded for the conductive film with optimum dopant/nanocomposite loads. The electrochemical property and corrosion resistance are studied by cyclic voltammetry and Tafel curves, respectively. The conductive films show an increase in corrosion potential and a decrease in corrosion current referring to a reliable corrosion protection film. The water uptake and contact angle of the films are measured to be 157% and 80.1° respectively to confirm its required hydrophilic property.  相似文献   

8.
Poly(N-ethylaniline) (PNEA) coatings were grown by cyclic voltammetry technique on copper from 0.1 M N-ethylaniline (NEA) in 0.3 M oxalic acid solution. The optimum conditions (e.g. upper potential limit, scan rate and cycle number) effect on corrosion performance of synthesized PNEA films were determined in order to obtain best protection results against corrosion. The electrodeposited coatings were characterized by cyclic voltammetry (CV), Fourier Transform Infrared-Attenuated Total Reflectance (FTIR-ATR) spectroscopy and scanning electron microscopy (SEM). Redox parameters were found after electrochemical tests and results of stability tests of these films impart an electroactive behavior that is composed of both diffusion control and thin film behavior. In addition, corrosion performance of PNEA coatings were investigated in 0.1 M H2SO4 by Tafel extrapolation and electrochemical impedance spectroscopy (EIS) techniques.  相似文献   

9.
Polyaniline and poly(aniline-co-o-anisidine) films were deposited on brass (Cu40Zn). The synthesis processes of homo and copolymer film were carried out under cyclic voltammetric condition from 0.12 M aniline and 0.06 M aniline + 0.06 M o-anisidine containing 0.2 M sodium oxalate solutions. Homo and copolymer films were characterized by scanning electron microscopy (SEM). SEM images clearly show that one of the brass electrodes was covered with a black copolymer film of strongly adherent homogeneous characteristic while the other one with a porous dark green homo polymer one. The corrosion performances of coated and uncoated electrodes in 3.5% NaCl were evaluated with the help of AC impedance spectroscopy, anodic polarization plots and open circuit potential–time curves. The protective effect of homo and copolymer films formed on brass grew in parallel with extended exposure time. It was only observed with copolymer-coated electrode that changes in the charge transfer resistance of copolymer-coated electrode were related to strong adsorption of copolymer film on the brass surface which led to the formation of a protective oxide layer due to its catalytic behaviour.  相似文献   

10.
Polyaniline (PANI) coatings were electropolymerized on zinc-cobalt alloy deposited carbon steel (CS/ZnCo) electrode from an aqueous sodium oxalate solution using three different scan rates in cyclic voltammetric technique. Scanning electron microscopy (SEM) was used to analyze the surface morphology of the polymer film. The SEM images showed that the increase in scan rate induced an increase in grain size of the PANI film. The corrosion behavior of CS/ZnCo electrodes with and without PANI film in 3.5% NaCl solution were investigated through electrochemical impedance spectroscopy (EIS) and anodic polarization studies. The results of the study showed that the PANI coatings provided significant and effective protection for the CS/ZnCo electrode, in preventing corrosion. In addition, the PANI film that was synthesized at a high scan rate, exhibited the best anti-corrosive performance due to the formation of protective oxide layers through its catalytic efficiency.  相似文献   

11.
In this study, we investigated the inhibition of the corrosion of stainless steel (SS) in acidic solution by N-vinylimidazole monomer (NVI) and poly-N-vinylimidazole (PNVI). First, we have synthesized a polymer sample of PNVI from the monomer NVI. A stainless steel electrode was coated with this polymer as a thin film by dipping method. Corrosion rates of SS electrodes coated with PNVI films of different thicknesses were determined and compared with the results of the bare electrode in acidic solution. Corrosion rates of the bare SS electrodes were also compared with the rates in the presence of monomer and polymer, respectively, in the acidic solution. The corrosion currents were obtained by Tafel extrapolation from anodic and cathodic polarization curves. Electrochemical impedance spectroscopy (EIS) measurements were also carried out. Values of percent inhibition, wetted area and porosity were obtained for SS electrodes coated with PNVI films of different thicknesses.  相似文献   

12.
Pyrrole was successfully electropolymerized at a copper electrode in a near neutral sodium oxalate solution to generate a homogeneous and adherent polypyrrole film. The growth of these films was facilitated by the initial oxidation of the copper electrode in the oxalate solution to generate a copper oxalate pseudo-passive layer. This layer was sufficiently protective to inhibit further dissolution of the copper electrode and sufficiently conductive to enable the electropolymerization of pyrrole at the interface, and the generation of an adherent polypyrrole film. These films remained stable and conducting for periods exceeding eight days and exhibited significant corrosion protection properties in acidified and neutral 0.1 mol dm−3 NaCl solutions even on polarization to high anodic potentials.  相似文献   

13.
Quasicrystals belong to a particular type of solids, which consist of highly symmetric atom clusters. The structure is neither periodically ordered, as in crystalline materials, nor amorphous, as in a glass. Recent work has shown that thin film quasicrystal coatings can have unique properties such as very high electrical and thermal resistivities and very low surface energy, which may result in interesting corrosion properties. For example, aluminum alloy based quasicrystals are insulator alloys containing about 70% of aluminum. Other interesting properties involving, for instance, adhesion, corrosion, friction, and hardness suggest that quasicrystal coatings are promising materials for a variety of industrial applications.

The corrosion related properties of aluminum alloy based quasicrystal thin film coatings have been studied on coated AA2024 substrates. The thin film deposition parameters are briefly discussed. Results of the microstructural, surface chemistry, and surface energy analysis of the quasicrystal films are presented. The corrosion protection properties of the films have been studied by potentiodynamic scan and electrochemical impedance spectroscopy. Analysis of the electrochemical data indicates that nanostructured quasicrystal films significantly resist corrosion of AA2024-T3 substrates in a constant immersion environment.  相似文献   


14.
The poly (calmagite) film was synthesized on the surface of carbon paste electrode by electrochemical method. The synthesized polymer film coated electrode exhibits excellent electrocatalytic activity towards the detection of dopamine at neutral pH. The scan rate effect was found to be adsorption controlled electrode process. The concentration effect of dopamine was studied. The redox peak potentials of dopamine were depend on pH. This polymer film coated electrode was very good at simultaneous study of dopamine in the presence of high concentrated ascorbic acid and uric acid. The incorporation study was done by varying the concentration of one species while other two are kept constant. The proposed method was applied to the detection of dopamine in injection samples.  相似文献   

15.
Epitaxial Ba0.5Sr0.5TiO3 (BSTO) thin films were grown on TiN buffered Si (0 0 1) substrates by PLD method and the effects of deposition temperature on their crystallinity and microstructure were studied. BSTO thin films were prepared with substrate temperature ranging from 350 to 650 °C. The BSTO films grown at below 400 °C showed amorphous phase and the film grown at 450 °C showed mixed phase of crystalline and amorphous, where crystalline phase was observed only at the top surface portion of the film. The BSTO films with fully crystalline phase were obtained in the samples deposited at above 500 °C. The (0 0 l) preferred orientation and the crystallinity of the BSTO films were improved with increasing the temperature. The dielectric constant, measured at 100 kHz and at room temperature, of the BSTO film grown at 650 °C was measured to be as high as 1129.  相似文献   

16.
This study demonstrates the deposition of poly(ethylhexyl acrylate-co-ethylene glycol dimethacrylate) (P(EHA-co-EGDMA)) copolymer thin films in a batch type initiated chemical vapor deposition (iCVD) reactor. Crosslinked copolymers are desired for many applications because of their high stable properties. iCVD polymers derived by monomers bearing only one vinyl bond are usually linearly structured polymers and hence they are not durable, which is unfavorable for many real-world applications. Robust crosslinked iCVD films can be produced with the help of crosslinkers. In a typical iCVD process, copolymer thin film is produced by constantly feeding monomer vapor and crosslinker into the reactor. The monomer/crosslinker ratio should be precisely controlled for fabrication of reproducible thin films. In order to eliminate problems caused by adjusting the flowrates of precursors, a closed-batch type iCVD reactor was used for the first time in this study to produce copolymer thin films. The variation of precursors' partial pressures allowed control over the copolymer thin film structures. As compared with homopolymer, copolymers showed the better chemical and thermal stable properties. Almost 40% of the copolymer thin film remained on the substrate surface at an annealing temperature of 300°C, whereas the homopolymer film was completely removed at an annealing temperature of 280°C.  相似文献   

17.
The dihexyl substituted poly (3,4-propylenedioxythiophene) (PProDOT-Hx2) thin films uniformly deposited by cost effective spray coating technique on transparent conducting oxide coated substrates. The electro-optical properties of PProDOT-Hx2 films were studied by UV-Vis spectroscopy that shows the color contrast about 45% with coloration efficiency of ~ 185 cm2/C. The electrochemical properties of PProDOT-Hx2 films were studied by cyclic voltammetry and AC impedance techniques. The cyclic voltammogram shows that redox reaction of films are diffusion controlled and ions transportation will be faster on the polymer film at higher scan rate. Impedance spectra indicate that polymer films are showing interface charge transfer process as well as capacitive behavior between the electrode and electrolyte. The XRD of the PProDOT-Hx2 thin films revealed that the films are in amorphous nature, which accelerates the transportation of ions during redox process.  相似文献   

18.
Polypyrrole (PPy) film was synthesized on nickel-plated copper electrodes, from monomer containing 0.2 M ammonium oxalate solution. The thickness of galvanostatically deposited nickel layer was 2 μm, while 0.80 μm thick polymer film was obtained by using cyclic voltammetry technique. The protective behavior of PPy modified nickel coating has been investigated, against copper corrosion in 3.5% NaCl solution. For this aim, ac impedance spectroscopy, the anodic polarization curves and open circuit potential–time (Eocpt) diagrams were utilized. It was shown that PPy modified nickel coating could provide important protection to copper for considerable periods, in such aggressive medium. The thin polymer film constituted a physical barrier on top of nickel layer against the attack of corrosive environment for a certain period. Also, it was found that the thin PPy film could increase the protection efficiency and lifetime of nickel coating, by its catalytic behavior on formation of NiO layer.  相似文献   

19.
Polyaniline (PANI) thin films were electrochemically deposited by cyclic voltammetry on stainless steel electrode previously covered by a thin film of polyvinyl acetate (PVAc). The corrosion resistance of PANI covered stainless steel substrates was estimated by using potentiodynamic polarization curves and its linear polarization resistance (LPR) was measured in 0.5 M H2SO4, 0.5 M NaCl and 0.5 M NaOH aqueous solutions at room temperature. The results indicate that the PANI-PVAc films did improve the corrosion resistance of the stainless steel in NaOH, behaving even worst, in the case of PANI film, than the uncoated substrate. In H2SO4 both PANI and PANI-PVAc coatings gave good protection for the stainless steel electrode, with a slightly better performance of PANI-PVAc than PANI. In NaCl solution both PANI and PANI-PVAc films provided a good protection against corrosion. The better performance of PANI-PVAc coatings for corrosion protection in basic media may be due to its major chemical stability compared to simple PANI films, which lose their conductivity in high pH solutions. The E corr (free corrosion potential) value of the coated substrate was in the passive region of the uncoated substrate in acidic environment but in the active region in neutral or basic environment.  相似文献   

20.
The poly(ethylene glycol) (PEG)‐grafted styrene (St) copolymer, which was formed as a nanosphere, was used as an agent to modify the surface of poly(ethylene terephthalate) (PET) film. The graft copolymer was dissolved into chloroform and coated onto the PET film by dip–coating method. The coated amount depends on the content ratios of PEG and St, the solution concentration, and the coating cycles. The graft copolymers having a low molecular weight of PEG‐ or St‐rich content was fairly stable on washing in sodium dodecyl sulfate (SDS) aqueous solution. It was confirmed that the PET surface easily altered its surface property by the coating of the graft copolymers. The contact angles of the films coated with the graft copolymers were very high (ca. 105–120°). The coated film has good antistatic electric property, which agreed with PEG content. The best condition of coating is a one‐cycle coating of 1% (w/v) graft copolymer solution. The coated surface had water‐repellency and antistatic electric property at the same time. The graft copolymer consisted of a PEG macromonomer; St was successfully coated onto PET surfaces, and the desirable properties of both of PEG macromonomer and PSt were exhibited as a novel function of the coated PE film. © 1999 John Wiley & Sons, Inc. J Appl Polym Sci 74: 1524–1530, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号