首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Passover (Pas) flies fail to jump in response to a light-off stimulus. The mutation disrupts specific synapses of the giant fibers (GFs), command neurons for this response. Pas was cloned from a P element-induced allele. The cDNA encodes a putative membrane protein of 361 amino acids. Null, hypomorphic, and dominant alleles were sequenced. In the adult central nervous system, and in the pupa during GF synapse formation, Pas is consistently expressed in the GF and in a large thoracic cell in the location of its postsynaptic targets. Pas establishes a new gene family. The Drosophila ogre protein, required for postembryonic neuroblast development, is 47% identical; the C. elegans Unc-7 protein, which when mutated alters the connectivity of a few neurons, is 33% identical.  相似文献   

2.
3.
Rat trophoblast giant cells each contain at least 100 times more genomic DNA per nucleus than diploid cells. This unusual phenomenon appears to be of interest in relation to the molecular mechanism of cell differentiation and gene expression in the placenta. In the present study, we analyzed the CpG islands of trophoblast giant cells by restriction landmark genomic scanning (RLGS) using the methylation-sensitive landmark enzymes, Not I and Bss HII. More than 1,000 and 1,900 spots were detected by RLGS using Not I and Bss HII, respectively, in the placental junctional zone, where more than 90% of genomic DNA is present in the cells with higher DNA content. Of these, 97% (1,009 spots) and 99% (1,911 spots) of the spots found in the junctional zone showed an identical pattern and identical intensity with those of diploid cell controls, for which genomic DNA was extracted from the labyrinth zone and maternal kidney. Therefore, the giant cells are basically polyploid. More importantly, 24 tissue-specific spots were detected by RLGS using Not I. Subsequent cloning and sequencing of four typical spots of the genomic DNA confirmed that these DNA fragments contained abundant CpG dinucleotides and showed characteristics of CpG islands. Of these 24 spots, there were ten spots specific for the placenta, and three of them were specific for the junctional zone, indicating that methylation status of CpG islands in the placental tissue differed between the junctional zone and labyrinth zone. These results suggest that multiple rounds of endoreduplication and modification of CpG islands by cytosine methylation occur during the differentiation process of giant cells.  相似文献   

4.
Direct electrical coupling between neurons can be the result of both electrotonic current transfer through gap junctions and extracellular fields. Intracellular recordings from CA1 pyramidal neurons of rat hippocampal slices showed two different types of small-amplitude coupling potentials: short-duration (5 ms) biphasic spikelets, which resembled differentiated action potentials and long-duration (>20 ms) monophasic potentials. A three-dimensional morphological model of a pyramidal cell was employed to determine the extracellular field produced by a neuron and its effect on a nearby neuron resulting from both gap junctional and electric field coupling. Computations were performed with a novel formulation of the boundary element method that employs triangular elements to discretize the soma and cylindrical elements to discretize the dendrites. An analytic formula was derived to aid in computations involving cylindrical elements. Simulation results were compared with biological recordings of intracellular potentials and spikelets. Field effects produced waveforms resembling spikelets although of smaller magnitude than those recorded in vitro. Gap junctional electrotonic connections produced waveforms resembling small-amplitude excitatory postsynaptic potentials. Intracellular electrode measurements were found inadequate for ascertaining membrane events because of externally applied electric fields. The transmembrane voltage induced by the electric field was highly spatially dependent in polarity and wave shape, as well as being an order of magnitude larger than activity measured at the electrode. Membrane voltages because of electrotonic current injection across gap junctions were essentially constant over the cell and were accurately depicted by the electrode. The effects of several parameters were investigated: 1) decreasing the ratio of intra to extracellular conductivity reduced the field effects; 2) the tree structure had a major impact on the intracellular potential; 3) placing the gap junction in the dendrites introduced a time delay in the gap junctional mediated electrotonic potential, as well as deceasing the potential recorded by the somatic electrode; and 4) field effects decayed to one-half of their maximum strength at a cell separation of approximately 20 micron. Results indicate that the in vitro measured spikelets are unlikely to be mediated by gap junctions and that a spikelet produced by the electric field of a single source cell has the same waveshape as the measured spikelet but with a much smaller amplitude. It is hypothesized that spikelets are a manifestation of the simultaneous electric field effects from several local cells whose action potential firing is synchronized.  相似文献   

5.
In the Drosophila embryo, the correct association of muscles with their specific tendon cells is achieved through reciprocal interactions between these two distinct cell types. Tendon cell differentiation is initiated by activation of the EGF-receptor signaling pathway within these cells by Vein, a neuregulin-like factor secreted by the approaching myotube. Here, we describe the cloning and the molecular and genetic analyses of kakapo, a Drosophila gene, expressed in the tendons, that is essential for muscle-dependent tendon cell differentiation. Kakapo is a large intracellular protein and contains structural domains also found in cytoskeletal-related vertebrate proteins (including plakin, dystrophin, and Gas2 family members). kakapo mutant embryos exhibit abnormal muscle-dependent tendon cell differentiation. A major defect in the kakapo mutant tendon cells is the failure of Vein to be localized at the muscle-tendon junctional site; instead, Vein is dispersed and its levels are reduced. This may lead to aberrant differentiation of tendon cells and consequently to the kakapo mutant deranged somatic muscle phenotype.  相似文献   

6.
Even before birth and the onset of sensory experience, neural activity plays an important role in shaping the vertebrate nervous system. In the embryonic chick visual system, activity in the retina before vision has been implicated in the refinement of retinotopic maps, the elimination of transient projections, and the survival of a full complement of neurons. In this study, we report the detection of a physiological substrate for these phenomena: waves of spontaneous activity in the ganglion cell layer of the embryonic chick retina. The activity is robust and highly patterned, taking the form of large amplitude, rhythmic, and wide-ranging waves of excitation that propagate across the retina. Activity waves are most prominent and organized between embryonic days 13-18, coinciding with the developmental period during which retinal axons refine their connections in their targets. The spatial and temporal features of the patterns observed are consistent with the role of activity patterns in shaping eye-specific projections and retinotopic maps but inconsistent with the hypothesis that they specify lamina-specific projections in the tectum. Antagonists of glutamatergic and glycinergic transmission and of gap junctional communication suppress spontaneous activity, whereas antagonists to GABAergic transmission potentiate it. Based on these results, we propose that spontaneous activity in the ganglion cells is regulated by chemical inputs from both bipolar and amacrine cells and by gap junctional coupling involving ganglion cells.  相似文献   

7.
The alpha 1-, alpha 2-, alpha 3-, and alpha 4-tubulin genes have been mapped by in situ hybridization to the polytene chromosomes of five species representative of the Drosophila montium subgroup geographical distribution. A lambda phage clone containing alpha 1-tubulin specific sequences was isolated from a genomic DNA library of Drosophila auraria and its restriction endonuclease pattern is presented. Both well-characterized heterologous and homologous probes were used to assess orthogonality of gene members between species groups. The in situ hybridization pattern observed in all species studied is consistent with that of Drosophila melanogaster, since alpha 1-, alpha 2-, and alpha 3-tubulin genes are located on the same polytene arm, and the alpha 4-tubulin gene is found on a different arm. Cross-hybridization was observed among alpha 1-, alpha 2-, and alpha 3-tubulin specific sequences in all species studied, using either heterologous or homologous probes. However, unlike D. melanogaster, in all montium species studied, both alpha 1- and alpha 3-tubulin specific probes hybridize to the same polytene band, indicating a clustered organization of the above genes. The chromosomal organization of this gene family would suggest that taxa within the montium subgroup are closer to their common ancestors than are the taxa in the melanogaster species group. A mode of evolution for this gene family in Drosophila is proposed.  相似文献   

8.
Mutations in the Drosophila shaking-B gene perturb synaptic transmission and dye coupling in the giant fiber escape system. The GAL4 upstream activation sequence system was used to express a neuronal-synaptobrevin-green fluorescent protein (nsyb-GFP) construct in the giant fibers (GFs); nsyb-GFP was localized where the GFs contact the peripherally synapsing interneurons (PSIs) and the tergotrochanteral motorneurons (TTMns). Antibody to Shaking-B protein stained plaquelike structures in the same regions of the GFs, although not all plaques colocalized with nsyb-GFP. Electron microscopy showed that the GF-TTMn and GF-PSI contacts contained many chemical synaptic release sites. These sites were interposed with extensive regions of close membrane apposition (3.25 nm +/- 0.12 separation), with faint cross striations and a single-layered array of 41-nm vesicles on the GF side of the apposition. These contacts appeared similar to rectifying electrical synapses in the crayfish and were eliminated in shaking-B2 mutants. At mutant GF-TTMn and GF-PSI contacts, chemical synapses and small regions of close membrane apposition, more similar to vertebrate gap junctions, were not affected. Gap junctions with more vertebratelike separation of membranes (1.41 nm +/- 0.08) were abundant between peripheral perineurial glial processes; these were unaffected in the mutants.  相似文献   

9.
Potassium channels have been implicated in central roles in activity-dependent neural plasticity. The giant fiber escape pathway of Drosophila has been established as a model for analyzing habituation and its modification by memory mutations in an identified circuit. Several genes in Drosophila encoding K+ channel subunits have been characterized, permitting examination of the contributions of specific channel subunits to simple conditioning in an identified circuit that is amenable to genetic analysis. Our results show that mutations altering each of four K+ channel subunits (Sh, slo, eag, and Hk) have distinct effects on habituation at least as strong as those of dunce and rutabaga, memory mutants with defective cAMP metabolism (). Habituation, spontaneous recovery, and dishabituation of the electrically stimulated long-latency giant fiber pathway response were shown in each mutant type. Mutations of Sh (voltage-gated) and slo (Ca2+-gated) subunits enhanced and slowed habituation, respectively. However, mutations of eag and Hk subunits, which confer K+-current modulation, had even more extreme phenotypes, again enhancing and slowing habituation, respectively. In double mutants, Sh mutations moderated the strong phenotypes of eag and Hk, suggesting that their modulatory functions are best expressed in the presence of intact Sh subunits. Nonactivity-dependent responses (refractory period and latency) at two stages of the circuit were altered only in some mutants and do not account for modifications of habituation. Furthermore, failures of the long-latency response during habituation, which normally occur in labile connections in the brain, could be induced in the thoracic circuit stage in Hk mutants. Our work indicates that different K+ channel subunits play distinct roles in activity-dependent neural plasticity and thus can be incorporated along with second messenger "memory" loci to enrich the genetic analysis of learning and memory.  相似文献   

10.
The hepatocytes in the mature normal liver are tightly coupled through gap junctions, except during compensatory hyperplasia (regeneration) after partial hepatectomy when the gap junctions become down-regulated. The significance of this down-regulation has been a long-standing enigma. The present study of hepatocytes in primary culture and in the regenerating liver aimed at defining the relationship, if any, between hepatocyte gap junctional communication and proliferation. Gap junctional down-regulation in the regenerating liver appeared to be a specific phenomenon because desmosomes and the surface contact area between neighboring hepatocytes remained constant. All agents and conditions (dexamethasone in vivo; dexamethasone, cyclic adenosine monophosphate, serum, and high cell density in vitro) delaying gap junctional down-regulation also increased the lag before the cells reached competence to enter S phase. This raised the possibility that hepatocyte DNA replication was inhibited through preservation of gap junctions. However, we disproved this assumption by showing that the DNA replication (more specifically the G1/S transition rate constant) was inhibited even in hepatocytes completely devoid of gap junctional communication. The teleological advantage of linking gap junctional down-regulation to hepatocyte G1 progression therefore may not be to trigger DNA replication but to ensure that proliferating hepatocytes and hepatocytes responsible for liver-specific metabolic functions maintain separate pools of metabolites and signaling molecules.  相似文献   

11.
12.
13.
Early pattern formation in the Drosophila embryo occurs in a syncytial blastoderm where communication between nuclei is unimpeded by cell walls. During the development of other insects, similar gene expression patterns are generated in a cellular environment. In Tribolium, for instance, pair-rule stripes are transiently expressed near the posterior end of the growing germ band. To elucidate how pattern formation in such a situation deviates from that of Drosophila, functional data about the genes involved are essential. In a genetic screen for Tribolium mutants affecting the larval cuticle pattern, we isolated 4 mutants (from a total of 30) which disrupt segmentation in the thorax and abdomen. Two of these mutants display clear pair-rule phenotypes. This demonstrates that not only the expression, but also the function of pair-rule genes in this short-germ insect is in principle similar to Drosophila. The other two mutants appear to identify gap genes. They provide the first evidence for the involvement of gap genes in abdominal segmentation of short-germ embryos. However, significant differences between the phenotypes of these mutants and those of known Drosophila gap mutants exist which indicates that evolutionary changes occurred in either the regulation or action of these genes.  相似文献   

14.
The Drosophila giant lens (gil) gene encodes a secreted molecule which if absent leads to the recruitment of additional ommatidial cells normally eliminated by apoptosis. Heat induced ectopic gil expression leads to a reduction of ommatidial cells suggesting that gil is secreted by differentiating cells to prevent the development of an excess of cells of a given ommatidial cell type. A second important defect is the misrouting of photoreceptor axons in gil mutants. However, gil function is not required in photoreceptor axons for the establishment of proper connections. We propose that gil acts on the development of lamina cells preventing the correct differentiation of the target region of photoreceptor axons and therefore leading to an axon guidance phenotype.  相似文献   

15.
We investigated the role of retrograde signals in the regulation of short-term synaptic depression and facilitation by characterizing the form of plasticity expressed at novel synapses on four giant interneurons in the cricket cercal sensory system. We induced the formation of novel synapses by transplanting a mesothoracic leg and its associated sensory neurons to the cricket terminal abdominal segment. Axons of ectopic leg sensory neurons regenerated and innervated the host terminal abdominal ganglion forming monosynaptic connections with the medial giant interneuron (MGI), lateral giant interneuron (LGI), and interneurons 7-1a and 9-2a. The plasticity expressed by these synapses was characterized by stimulating a sensory neuron with pairs of stimuli at various frequencies or with trains of 10 stimuli delivered at 100 Hz and measuring the change in excitatory postsynaptic potential amplitude recorded in the postsynaptic neuron. Novel synapses of a leg tactile hair on 7-1a depressed, as did control synapses of cercal sensory neurons on this interneuron. Novel synapses of leg campaniform sensilla (CS) sensory neurons on MGI, like MGI's control synapses, always facilitated. The form of plasticity expressed by novel synapses is thus consistent with that observed at control synapses. Leg CS synapses with 9-2a also facilitated; however, the plasticity expressed by these sensory neurons is dependent on the identity of the postsynaptic cell since the synapses these same sensory neurons formed with LGI always depressed. We conclude that the form of plasticity expressed at these synaptic connections is determined retrogradely by the postsynaptic cell.  相似文献   

16.
17.
Neural connections between the mushroom body (MB) and other protocerebral areas of the honeybee's brain were studied with the help of cobalt chloride and Golgi staining methods. Focal injections of cobalt ions into the alpha-lobe neuropil of the MB reveal seven clusters of somata located in the protocerebrum and deutocerebrum of each brain hemisphere. These neurons connect the mushroom body neuropil with protocerebral areas and number approximately 400. They contact the layered organization of the alpha-lobe at different locations. Some project not only into the alpha-lobe, but also into the beta-lobe and pedunculus neuropils. Fifteen cell types which form intraprotocerebral circuits are morphologically described. They can be divided into three categories: 1) unilateral neurons, with projection fields restricted to the ipsilateral protocerebrum; these neurons connect the alpha-lobe with areas in the protocerebral lobe and ramify with densely layered arborisations arranged perpendicularly to the longitudinal axis of the alpha-lobe; 2) recurrent neurons, which interconnect subcompartments of the MB, forming loops at different levels of the neuropil; their arborisations are mainly restricted to the alpha-lobe, beta-lobe, pedunculus, and calyces of the ipsilateral MB; they also ramify sparsely around the neuropil of the alpha-lobe; and 3) bilateral neurons, which either interconnect both alpha-lobes or connect the ipsilateral alpha-lobe and protocerebral lobe with the dorsolateral protocerebral lobe of the contralateral hemisphere. The connections of different compartments of the MB with other parts of the protocerebrum as revealed in this study are discussed in the context of hypotheses about the functional role of MBs in the honeybee brain.  相似文献   

18.
Caspases are widely conserved proteases considered to be essential effectors of apoptosis. We identified a novel Drosophila gene, dredd, which shares extensive homology to all members of the caspase gene family. Cells specified for programmed death in development exhibit a striking accumulation of dredd RNA that requires signaling by the death activators REAPER, GRIM, and HID. Furthermore, directed misexpression of each activator was sufficient to drive ectopic accumulation of dredd RNA. Heterozygosity at the dredd locus suppressed apoptosis in transgenic models of reaper- and grim-induced cell killing, demonstrating that levels of dredd product can modulate signaling triggered by these death activators. Finally, expression of REAPER, GRIM, and HID was found to trigger processing of DREDD protein precursor through a mechanism that is insensitive to, and upstream of, known caspase inhibitors. Taken together, these observations establish mechanistic connections between activators of apoptosis and a new downstream death effector in Drosophila.  相似文献   

19.
G protein signaling is a widely utilized form of extracellular communication that is mediated by a family of serpentine receptors containing seven transmembrane domains. In sensory neurons, cardiac muscle and other tissues, G protein-coupled receptors are desensitized through phosphorylation by a family of kinases, the G protein-coupled receptor kinases (GRKs). Desensitization allows a cell to decrease its response to a given signal, in the continued presence of that signal. We have identified a Drosophila mutant, gprk2(6936) that disrupts expression of a putative member of the GRK family, the G protein-coupled receptor kinase 2 gene (Gprk2). This mutation affects Gprk2 gene expression in the ovaries and renders mutant females sterile. The mutant eggs contain defects in several anterior eggshell structures that are produced by specific subsets of migratory follicle cells. In addition, rare eggs that become fertilized display gross defects in embryogenesis. These observations suggest that developmental signals transduced by G protein-coupled receptors are regulated by receptor phosphorylation. Based on the known functions of G protein-coupled receptor kinases, we speculate that receptor desensitization assists cells that are migrating or undergoing shape changes to respond rapidly to changing external signals.  相似文献   

20.
We have mapped protein expression of the FMRFamide neuropeptide gene in Drosophila with polyclonal antisera against three small peptides whose sequences were derived from the Drosophila proFMRFamide precursor. One antiserum was affinity-purified and extensively characterized. The enriched antibodies labeled 15-21 bilaterally symmetric pairs of neurons in a pattern that corresponded very closely to the pattern of in situ hybridization that was determined previously (Schneider et al. [1991] J. Comp. Neurol. 304:608-622; O'Brien et al. [1991] J. Comp. Neurol. 304:623-638). The other antisera produced complementary results. These findings suggest that the antisera specifically label cells that express the FMRFamide gene. In larvae we consistently observed strong staining in identified interneurons and neuroendocrine cells, and moderate to weak staining in neurons of unknown function. The adult pattern of expression included both larval neurons whose immunoreactivity persisted through metamorphosis and adult-specific neurons. During metamorphosis, we observed transient staining in a small number of neurons and in specific neuropil regions that included the central body, the protocerebral bridge, and the optic ganglia. Based on these morphological features, we suggest that the FMRFamide-like neuropeptides in Drosophila play a number of functional roles, perhaps affecting both physiological and developmental phenomena. Such roles include general modulation throughout all post-embryonic stages, via the blood, and also more stage- and region-specific modulation within the CNS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号