首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has been shown that anisotropic porosity in PZT reduces the d31/d33, ratio, raising the hydrostatic piezoelectric response of PZT significantly. In the present work, this behavior is related to Poisson's ratio by applying the Gibbs thermodynamic energy function, literature data for dense PZT ceramics and for materials with hexagonal crystal symmetry, and experimental results for PZT with anisotropic porosity. Acoustic as well as mechanical tests of PZT ceramics with anisotropic pores demonstrate the elastic anisotropies that cause the reduction in Poisson's ratio. The dependence of d31/d33 on Poisson's ratio is also detailed. In addition, a close relation between d31/d33 and the longitudinal acoustic velocity is demonstrated. Flexural strength tests indicate that anisotropic pores provide dhn-enhanced PZT ceramics with significantly greater strength than isotropic pores.  相似文献   

2.
Compositional changes which take place during sintering of Pb(Zr,Ti)O3 (PZT) containing excess PbO were studied. The excess PbO forms a liquid phase during the sintering process. The solubility of the TiO2 component of PZT in liquid PbO is higher than that of ZrO2 component. Thus, if an excess PbO exists, the composition of PZT phase shifts towards the Ti-lean side. A change in the lattice constants due to this compositional change was actually observed. Coexistence of tetragonal and rhombohedral phases, due to a compositional fluctuation caused by excess PbO, was observed near the morphotropic phase boundary. When PZT containing excess PbO was sintered at 1100°C, a compositional fluctuation occurred early in the process and then decreased with sintering time. These phenomena have agreed with a result of computer simulation of dissolution of TiO2 component in PZT phase into liquid PbO phase.  相似文献   

3.
High-density lead zirconate titanate (PZT) ceramics were fabricated for the first time at a temperature as low as 800°C via the hot isostatic pressing (HIP) of a PZT powder with a modified composition of 0.92Pb(Zr0.53Ti0.47)O3—0.05BiFeO3—0.03Ba(Cu0.5W0.5)O3 that contained 0.5 mass% MnO2. The resultant PZT ceramics exhibited a microstructure that was denser and finer than that of PZT sintered at 935°C, which is the lowest temperature for the densification of the same composition via normal sintering. The relevant dielectric and piezoelectric properties of the HIPed PZT ceramics were as follows: coefficient of electromechanical coupling ( K 31), 31.8%; mechanical quality factor ( Q m), 1364; piezoelectric constant ( d 31), −73.7 × 10−12 C/N; relative dielectric constant (ɛ33T0), 633; dielectric loss factor (tan δ), 0.5%; Curie temperature ( T c), 285°C; and density (ρ), 8.06 g/cm3. In addition to these reasonably good piezoelectric properties, the HIPed PZT exhibited better mechanical properties—particularly, higher fracture strength—than the normally sintered PZT.  相似文献   

4.
In this work, we suggested a method to evaluate quantitatively the effect of doping oxide on the phase coexistence of PbZr1− x Ti x O3 (PZT)-based ceramics through the analysis of the Raman scattering spectra. Theoretically, the degenerated T 3u mode in the cubic phase of PZT will transform as A 1(3) and E (4) modes in the tetragonal phase or as rhombohedral ( R ) modes in the rhombohedral phase below the Curie temperature, which set up the theoretical base to study the phase coexistence in ferroelectric materials. Through separation by fitting of the Raman bands, the shifts and intensities of different Raman vibration modes were determined. A calculation equation representing the phase coexistence was put forward based on the theoretical analysis of the degenerated T 3u modes. The results showed that a turning point appears at the Fe2O3 addition of 0.3%. The variation in the electrical properties of the Fe2O3-doped Pb(Zn1/3Nb2/3)O3 (PZN)–PZT ceramics also affirmed the turning point of the phase evolution as the addition of Fe2O3.  相似文献   

5.
Lead zirconate titanate (PZT) thin films were deposited by metal-organic chemical vapor deposition (MOCVD) using β-diketonate precursors and 02 at temperatures below 500°C on variously passivated Si substrates. PZT thin films could not be deposited on bare Si substrates, owing to a serious diffusion of Pb into the Si substrate during deposition. Pt/SiO2/Si substrates could partially block the diffusion of Pb, but a direct deposition of PZT thin films on the Pt/SiO2/Si substrates resulted in a very inhomogeneous deposition. A TiO2 buffer layer deposited on Pt/SiO2/Si substrates could partially suppress the diffusion of Pb and produce homogeneous thin films. However, the crystallinity of PZT thin films deposited on the TiO2-buffered Pt/SiO2/Si substrate was not good enough, and the films showed random growth direction. PZT thin films deposited on the PbTiO3-buffered Pt/SiO2/Si substrates had good crystallinity and a- and c-axis oriented growth direction. However, the PZT thin film deposited at 350°C showed fine amorphous phases at the grain boundaries, owing to the low chemical reactivities of the constituent elements at that temperature, but they could be crystallized by rapid thermal anneaiing (RTA) at 700°C. PZT thin film deposited on a 1000-å PbTiO3,-thin-film-buffered Pt/SiO2/Si substrate at 350°C and rapid thermally annealed at 700°C for 6 min showed a single-phase perovskite structure with a composition near the morphotropic boundary composition.  相似文献   

6.
Grain-oriented Bi0.5(Na0.85K0.15)0.5TiO3-Pb(Zr1− x Ti x )O3 (BNKT-PZT) ceramics were prepared via the reactive templated grain growth method, using platelike Bi4Ti3O12 particles. Factors that determine the degree of orientation were examined. Prereacted PZT gave a larger degree of orientation than PZT raw materials (PbO, ZrO2, and TiO2) in the 75BNKT-25PZT ( x = 0.5) system. Increases in the titanium concentration in the PZT of the 75BNKT-25PZT system and in the BNKT concentration in the y BNKT-(100 − y )PZT ( x = 0.5) system increased the degree of orientation. The direction of material transport between BNKT and PZT was important to obtain ceramics with a large degree of orientation.  相似文献   

7.
Lead zirconium titanate (Pb(Zr0.5Ti0.5)O3, PZT) ferroelectric thin films were successfully deposited on platinum-coated silicon substrates and platinum-coated silicon substrates with a PbTiO3 interlayer by using a modified sol–gel spin-coating process, using zirconium oxynitrate dihydrate as the zirconium source. The precursor solution for spin coating was prepared from lead acetate trihydrate, zirconium oxynitrate dihydrate, and tetrabutyl titanate. The use of zirconium oxynitrate instead of the widely used zirconium alkoxide provided more stability to the PZT precursor solution and a well-crystallized structure of PZT film at a relatively low processing temperature. PZT films that were annealed at a temperature of 700°C for 2 min via a rapid thermal annealing process formed a well-crystallized perovskite phase of PZT films and also had nanoscale uniformity. The microstructure and morphology of the prepared PZT thin films were investigated via X-ray diffractometry, transmission electron microscopy, and atomic force microscopy techniques. The values for the remnant polarization ( P ) and coercive electric field ( E ) of the PZT films that were obtained from the P–E loop measurements were 3.67 μC/cm2 and 54.5 kV/cm, respectively.  相似文献   

8.
Ink-Jet Printing and Sintering of PZT   总被引:1,自引:0,他引:1  
Suspensions of Pb(Zr0.53Ti0.47)O3 (PZT)-5H powders, with solid contents up to 40 vol% in a paraffin oil/wax medium using a mixed polyester and amine dispersant system, have been prepared for ink-jet printing. Sufficient suspension stability for printing requires a sub-micron particle distribution, and this could only be achieved by attrition milling the as-received powder. The influence of printing parameters on drop velocity is shown to be consistent with simple physical models of the behavior of the suspensions. Trial objects have been fabricated with 35% PZT suspensions. These have been sintered to full density, with porosity less than 1% and without significant distortion, despite a mean linear shrinkage measured at 25%.  相似文献   

9.
Composites of PZT and Epoxy for Hydrostatic Transducer Applications   总被引:4,自引:0,他引:4  
Composites with 3–1 connectivity for transducer applications were made by embedding extruded PZT rods in an epoxy matrix. The effects of rod diameter, volume fraction of PZT, and composite thickness on the hydrostatic properties of the composites were determined. Due to decoupling of the 33 and 31 coefficients in a composite with 3–1 connectivity, the n may be enhanced, even in composites of low volume fractions of PZT. Such composites alsojiave a low dielectric permittivity. The combination of high n values and low ɛ33 value results in a greatly enhanced n. Composites with 10 vol% PZT were made with values of h and h which are, respectively, two times (>80×10 −12 C/N) and 25 times (>70×10−3 (V·m/N) the solid PZT values.  相似文献   

10.
Lead zirconate titanate PbZr0.53Ti0.47O3 (PZT) thick films have been deposited on silicon substrate by modified metallorganic decomposition process. Crack-free PZT films of 8 μm thickness can be obtained by using lanthanum nickelate LaNiO3 (LNO) as buffer layer. The greater LNO thickness, the greater thickness of crack-free PZT can be obtained. The X-ray diffraction measurements show the films exhibit a single perovskite phase with (110) preferred orientation. SEM measurements showed the PZT thick films have a columnar structure with grain size about 60–200 nm. The thickness dependence of ferroelectric, dielectric, and piezoelectric properties of PZT thick films have been characterized over the thickness range of 1–8 μm. For PZT with thickness of 8 μm, P r and E c are 30 μC/cm2 and 35 kV/cm, and dielectric constant and dielectric loss are 1030 and 0.031, respectively. The piezoelectric coefficient ( d 33) of PZT with 8 μm thickness is obtained to be 77 pm/V. PZT thick films on LNO-coated Si substrate are potential for MEMS applications.  相似文献   

11.
Additions of 0.1 to 6.0 wt% V2O, to lead zirconate titanate (PZT) ceramics promoted rapid densification below 975°C, thereby eliminating the need for PbO atmosphere control The base PZT, Pb(Zr0.53Ti0.47)O3, was prepared by coprecipitation from mixed oxides and butoxides. The V2O5 was incorporated as a batch addition during the PZT coprecipitation process, as mill additions to the calcined precipitated powder, and to a commercial PZT powder. Densification rates were enhanced by the addition of V2O5 (>98% of theoretical density was obtained in ∼15 min at 960°C by the addition of 0.1 to 1.0 wt% V2O5, compared to 4 h at 1280°C for the base PZT). Dielectric properties and piezoelectric coefficients varied slightly within the optimum range of 0.25 to 1.0 wt% V2O5 addition but were at least comparable to the base PZT. Indications are that V2O5 becomes incorporated into the surface layers of the oxide powders during mixing (or in the coprecipitation process) and that the accelerated densification is due to enhanced surface activation and liquid-phase sintering.  相似文献   

12.
Piezoelectric Lead Zirconate Titanate Ceramic Fiber/Polymer Composites   总被引:1,自引:0,他引:1  
Piezoelectric lead zirconate titanate (PZT) ceramic fiber/polymer composites were fabricated by a novel technique referred to as "relic" processing. Basically, this involved impregnating a woven carbon-fiber template material with PZT precursor by soaking the template in a PZT stock solution. Careful heat treatment pyrolized the carbon, resulting in a PZT ceramic relic that retained the fibrous template form. After sintering, the densified relic was backfilled with polymer to form a composite. Optimized relic processing consisted of soaking activated carbon-fiber fabric twice in an intermediate concentration (405-mg PZT/(1-g solution)) alkoxide PZT solution and sintering at 1285°C for 2 h. A series of piezoelectric composites encompassing a wide range of dielectric and piezoelectric properties was prepared by varying the PZT-fiber orientation and polymer-matrix material. In PZT/Eccogel polymer composites with PZT fibers orientated parallel to the electrodes, K = 75, d 33= 145 pC/N, d h= 45 ± 5 pC/N, and d hgh= 3150 × 10−15 m2/N were measured. Furthermore, in composites with a number of PZT fibers arranged perpendicular to the electroded surfaces, K = 190, d 33= 250 pC/N, d h= 65 ± 2 pC/N, and d h gh= 2600 × 10−15 m2/N.  相似文献   

13.
Crack-free Pb(Zr,Ti)O3 (PZT) thin films with preferred orientation were prepared successfully on MgO (100), SrTiO3 (100), and Pt/Ti/SiO2/Si substrates from metal alkoxide solutions. Calcination of precursor films in a H2O─-O2 gas mixture was found to be effective not only for low-temperature crystallization of perovskite PZT, but also for obtaining the preferred orientation of PZT films. Single-phase PZT films with high preferred orientation were synthesized on MgO (100) and Pt/Ti/SiO2/Si substrates at 550° and 600°C for 2 h, respectively. The PZT film on the Pt/Ti/SiO2/Si substrate showed a permittivity of 520, tan δ of 0.03, a remanent polarization of 24 μC/cm2, and a coercive field of 54 kV/cm.  相似文献   

14.
Thin films of Pb(Zr0.52Ti0.48)O3 (PZT) were prepared by hybrid processing (sol-gel and excimer laser ablation) on Pt/Ti/SiO2/Si substrates. Crystalline phases and microstructures of the PZT films were investigated by X-ray diffraction analysis and scanning electron microscopy, respectively. Electrical properties of the films were evaluated by measuring their P - E hysteresis loops and dielectric constants. The temperature of postdeposition annealing in hybrid processing was lower than that in the case of direct film deposition by laser ablation on a Pt/Ti/SiO2/Si substrate. The preferred orientation of the films derived by hybrid processing could be controlled using the seeding layer deposited by the sol-gel process. The films fabricated by hybrid processing consisted of the perovskite phase with a (111) preferred orientation and had good ferroelectric properties.  相似文献   

15.
X-ray diffraction powder patterns were used to determine the cell constants for the complexes 2CaO·SiOLiF and 2CaO·SiO2·KF by Lipson's method of indexing, assuming orthorhombic structures. The resulting cell constants are α0= 18.2, b0=20.6, and c0=7.2 Å for the Li complex and α0=18.7, b0=20.5, and c06.9 Å for the K complex.  相似文献   

16.
PbZr0.53Ti0.47O3 (PZT) thin films with various preferred crystallographic orientations were synthesized on various substrates using pulsed laser deposition techniques. Larger piezoelectric displacement, which involved the bending vibration of the PZT film/substrate, was observed in randomly oriented PZT thin film than that in (100)- and (111)-preferred texture films. This result was discussed by correlation with the number of effective spontaneous polarization axes in the morphotropic phase boundary of the PZT system. Moreover, polarization fatigue was found to lower the electric-field-induced displacement significantly, indicating a large contribution of ferroelectric domain motion to the piezoelectric response of PZT thin films under bipolar drive.  相似文献   

17.
Low-Temperature Sintering of Lead-Based Piezoelectric Ceramics   总被引:3,自引:0,他引:3  
The low-temperature sintering of lead-based piezoelectric ceramics has been studied. The sintering temperature of lead zirconate titanate (PZT) ceramics could be reduced from ∼ 1250° to ∼960°C by the addition of a small amount of the lower-melting frit, B2O3–Bi2O3—CdO. It exhibited the following dielectric and piezoelectric properties: Kp= 0.52 to 0.58, Qm= 1000, εT330= 800 to 1000, tan δ= 50 × 10−4, ρ= 7.56 to 7.64 g/cm3. Ceramics with the aid of suitable dopants (CdO, SiO2, and excess PbO) in the Pb-(Ni1/3Nb2/3)O3—PZT family could be sintered at 860° to 900°C. For these materials, Kp= 0.56 to 0.61, Qm= 1000, εT330= 1500 to 2000, tan δ≤ 50 × 10−4, ρ= 7.80 to 8.03 g/cm3. The microstructure, sintering mechanism, and the effects of various impure additions have been analyzed by means of scanning electron microscopy, scanning transmission electron microscopy, electron probe microanalysis, and X-ray photoelectron spectroscopy.  相似文献   

18.
A method based on the use of four piezoelectric resonances for three sample geometries that allows obtaining the full set of linear electric, mechanical, and electromechanical coefficients, and all related losses of a piezoelectric ceramic has been applied to Mn-doped 0.655Pb(Mg1/3Nb2/3)O3–0.345PbTiO3 at the morphotropic phase boundary (MPB PMN–PT). Length-poled MPB PMN–PT ceramic plates presented piezoelectric shear double resonances associated with a thickness gradient of tetragonal and rhombohedral (or monoclinic) phases that originated during poling. The versatility of the method still allowed addressing these double resonances and obtaining all the linear coefficients and losses of the well-poled material. These are given for MPB PMN–PT and compared with those of a Navy type II Pb(Zr,Ti)O3 (PZT) ceramic. MPB PMN–PT presents piezoelectric coefficients as high as soft PZT but significantly lower losses, and so less overheating and hysteresis under high driving fields. Its thermal stability has been studied up to 100°C, and the temperature dependence of a number of linear coefficients and of the thickness and planar coupling factors and frequency constants of disks has been obtained. The latter thickness parameters hardly changed with temperature, while planar ones showed a relative variation of 10%.  相似文献   

19.
Elastic constants of single crystals of yttria-stabilized zirconia were determined through the temperature range 20° to 700°C. Crystals containing 8.1, 11.1,12.1, 15.5, and 17.9 mol% Y203were measured. The elastic constant C11 was found to decrease and C12 and C44 to increase with increasing Y2O3 content; this appears to be due to decreasing coulombic interaction as Y3+ replaces Zr4+. Except for the 8.1 mol% Y2O3 crystal, the conventional elastic constants all showed normal monotonic decreases with increasing temperature. In the case of the 8.1 mol% Y2O3 crystal, measurements as a function of temperature were not reproducible, and it is likely that this composition at room temperature is below the composition limit of thermodynamic stability of the cubic fluorite phase.  相似文献   

20.
The printing of lead zirconate titanate (PZT, Pb(Zr,Ti)O3) piezoelectric thick films on silicon substrates is being studied for potential use as microactuators, microsensors, and microtransducers. A fundamental challenge in the fabrication of useful PZT thick-film devices on silicon is to sinter the PZT to high density at sufficiently low temperature to avoid mechanical or chemical degradation of the silicon substrate. The goal of the present study is to develop and implement suitable electrodes and PZT sintering aids that yield attractive piezoelectric properties for devices while minimizing reactions between the silicon, the bottom electrode, and the PZT thick film. A B2O3-Bi2O3-CdO sintering aid has been found to be superior to borosilicate glass, and the use of a gold/platinum bilayer bottom electrode has resulted in better thermal stability of the electrode/film structure. Films sintered at 900°C for 1 h have relative permittivity of 970 (at 1 kHz), remnant polarization of 20 μC/cm2, coercive field of 30 kV/cm, and weak-field piezoelectric coefficient d 33 of 110 pm/V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号