首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mix ratio of steel fiber reinforced concrete (SFRC) was optimized using the principles that workability must meet the pumping demand and anti-cracking performance should be optimal. The effect of SFRC on the initial cracking load, the ultimate load and the crack width of the reinforced concrete (RC) member were analyzed in this paper. It was found that the admixture had good preservation of moisture and adhesion and the fibers distributed homogeneously in one hour out of the machine. According to the pumping results, the SFRC could be pumped vertically up to 306 m. Based on the standard computation formula of cracks, the maximum crack width of an RC member with 0.8% steel fiber (by volume) is about 32% lower than that of standard RC member. Through an experimental research on full-scale model tests for the steel and concrete composite anchorage zone on a pylon, the SFRC not only remarkably increases the crack resistance and the ultimate load, but the initial load also improves 33% approximately. It is also indicated that plastic shrinkage cracking of SFRC in which volume fraction of steel fibers is 0.8% can be restrained obviously and the unrestrained drying shrinkage can be diminished by about 50% at early age. The results confirmed that the SFRC can lessen the shrinkage crack of concrete and enhance markedly the direct tensile strength. Therefore, the SFRC can solve the key question of crack resistance for the anchorage zone of a bridge tower.  相似文献   

2.
为解决深埋排水盾构隧道管片衬砌的受力和变形问题,需在管片结构中采用高刚性接头。高刚性接头构造复杂,在施工及承载过程中容易出现接头位置混凝土开裂及手孔局部破坏现象,进而影响接头的承载与防腐性能。对钢纤维混凝土(SFRC)和钢筋混凝土(RC)高刚性管片接头开展正弯矩试验,研究钢纤维对深埋排水盾构隧道高刚性接头受力性能的影响。研究结果表明:在高刚性接头中掺入适量钢纤维可有效提高接头的承载及抗裂能力。SFRC高刚性接头和RC高刚性接头的混凝土开裂荷载相同,但SFRC高刚性接头达到正常使用极限状态时的荷载抗力为RC高刚性接头的1.2倍。与RC高刚性接头相比,SFRC高刚性接头的承载力提高约15%;且接头破坏后,SFRC高刚性接头受压区与手孔附近混凝土裂缝的数量、宽度及分布范围相较于RC高刚性接头明显减小。  相似文献   

3.
In this paper, two reinforced concrete (RC) beams strengthened with carbon fiber reinforced polymer (CFRP) and attached with thick-painted fire resistant coating were tested for fire resistance following the standard fire testing procedures. The experimental results show that the specimen pasted with the insulated layer of 50 mm in thickness could resist fire for 2.5 h. It is also demonstrated that the steel wire mesh embedded in the insulated layer can effectively prevent it from cracking and eroding under firing. __________ Translated from Journal of Tongji University (Natural Sciences), 2006, 34(11): 1452–1456 [译自: 同济大学学报 (自然科学版)]  相似文献   

4.
夏冬桃  颜帅  付敏 《混凝土》2021,(1):135-138,142
通过7根钢纤维混凝土深受弯构件的弯曲性能试验,分析了钢纤维掺量及配筋率对深受弯构件跨中截面混凝土应变、纵筋应变、破坏形态及裂缝宽度的影响。基于STM理论量化钢纤维、钢筋以及混凝土三者在受力过程中的组合作用,提出了适用于钢纤维混凝土深梁最大裂缝宽度的理论计算式,并与实测结果进行比对分析。研究结果表明:较普通深受弯构件而言,钢纤维混凝土深受弯梁的开裂荷载增幅11%~20%,极限荷载提高10%~16%,提高配筋率,开裂荷载提高约22%,极限荷载提高20%~31%;提高配筋率或钢纤维掺量,均可使试件破坏模式由正截面破坏向斜截面破坏转变;钢纤维掺加50、78 kg/m^3后,裂缝宽度可减少13%~29%;试件配筋率提高0.142%,裂缝宽度减少33%;推导出的理论计算式计算得到的最大裂缝宽度与实测值吻合。  相似文献   

5.
Sixteen under-reinforced high strength concrete one-way slabs were cast, heated at 600 °C for 2 h, repaired, and then tested under four-point loading to investigate the coupling effect of water recuring and repairing with advance composite materials on increasing the flexural capacity of heat-damaged slabs. The composites used included high strength fiber reinforced concrete layers; and carbon and glass fiber reinforced polymer (CFRP and GFRP) sheets. Upon heating then cooling, the reinforced concrete (RC) slabs experienced extensive map cracking, and upward cambering without spalling. Recuring the heat-damaged slabs for 28 days allowed recovering the original stiffness without achieving the original load carrying capacity. Other slabs, recured then repaired with steel fiber reinforced concrete (SFRC) layers, regained from 79% to 84% of the original load capacity with a corresponding increase in stiffness from 382% to 503%, whereas those recured then repaired with CFRP and GFRP sheets, regained up to 158% and 125% of the original load capacity with a corresponding increase in stiffness of up to 319% and 197%, respectively. Control, heat-damaged, and water recured slabs showed a typical flexural failure mode with very fine and well distributed hairline cracks, propagated from the repair layers to concrete compression zone. RC slabs repaired with SFRC layers failed in flexural through a single crack, propagated throughout the compression zone, whereas those repaired with CFRP and GFRP experience yielding failure of steel prior to the composites failure.  相似文献   

6.
钢纤维混凝土叠合梁非线性有限元分析   总被引:1,自引:0,他引:1  
在试验研究的基础上 ,通过分析叠合梁二次成型、二次受力的过程 ,考虑材料非线性 ,提出钢纤维混凝土叠合梁非线性有限元分析方法 ;运用C+ + 语言编制了钢纤维混凝土叠合梁从加载→开裂→破坏的全过程分析程序 ,经与试验结果对比 ,两者吻合较好  相似文献   

7.
Thousands of columns with special shape are analyzed by nonlinear numerical methods. The ductility is calculated to investigate the limit of the axial force ratio and circumstantial requirement for stirrups of an reinforced concrete (RC) column with special shape, in the point of view of the characteristic value for providing stirrup. The limit of the axial force ratio of columns with special shape in relation to the characteristic value of the stirrup is obtained. Then, the effect of stirrup arrangement on the ductility of the RC column is discussed in case of buckling of the longitudinal reinforcement and constraint concrete columns. The complete requirement for stirrups of RC column with special shape is given. Translated from Journal of Tianjin University (Natural Science Edition), 2006, 39(3): 295–300 [译自: 天津大学学报 (自然科学版)]  相似文献   

8.
普通纤维混凝土因可泵送性差很少用于索塔锚固区。采用多重复合技术,优选纤维混凝土配合比,并研究了各配合比的泵送性能;模拟干热环境,对优选的高性能混凝土(HPC)和钢锚箱锚固区专用高性能钢纤维混凝土(HPSFRC)进行了塑性收缩试验;研究了纤维掺量和减缩剂对塑性收缩和干燥收缩性能的影响,并对其机理进行了探讨。研究表明,经优化的高性能钢纤维混凝土2h内泵送性能优良。随着纤维掺量的增加,塑性收缩的开裂总面积下降,混凝土的抗裂等级提高。当钢纤维的体积掺量为0.8%时,高性能钢纤维混凝土自由干燥90d的收缩值同高性能混凝土相比下降了50%;有约束的干燥收缩66d试验环未见开裂,从而减少混凝土开裂的风湿,提高混凝土结构的耐久性。与同强度等级的高性能混凝土相比,钢纤维的加入也改善了混凝土的力学性能,高性能钢纤维混凝土的抗弯强度和劈拉强度提高了近30%。试验结果还表明,纤维体积率为0.6%的钢纤维与减缩剂复合后,对抑制塑性收缩和干燥收缩效果显著。  相似文献   

9.
Four-point bending flexural tests were conducted to one full-size reinforced concrete (RC) beam and three full-size RC beams strengthened with carbon fiber plates (CFPs). The experimental results showed that the consumption of CFP had significant effects on failure modes and the flexural capacity. An analytical procedure, based on the limit failure mode and ductility, was presented to predict the applied area of CFP. An analytical program, based on Smith-Teng model and Cheng-Teng model, was provided to calculate the bonding length of CFP. The test results are used to validate the proposed procedure. The results are also applied to the design and construction of RC beam strengthened with CFP. __________ Translated from Journal of Hunan University (Natural Sciences), 2006, 33(6): 16–20 [译自: 湖南大学学报 (自然科学版)]  相似文献   

10.
Steel fiber-added reinforced concrete (SFRC) applications have become widespread in areas such as higher upper layers, tunnel shells, concrete sewer pipes, and slabs of large industrial buildings. Usage of SFRC in load-carrying members of buildings having conventional reinforced concrete (RC) frames is also gaining popularity recently because of its positive contribution to both energy absorption capacity and concrete strength.This paper presents experimental and finite element analysis of three SFRC beams. For this purpose, three SFRC beams with 250 × 350 × 2000 mm dimensions are produced using a concrete class of C20 with 30 kg/m3 dosage of steel fibers and steel class S420 with shear stirrups. SFRC beams are subjected to bending by a four-point loading setup in certified beam-loading frame, exactly after having been moist-cured for 28 days. The tests are with control of loads. The beams are loaded until they are broken and the loadings are stopped when the tensile steel bars are broken into two pieces. Applied loads and mid-section deflections are carefully recorded at every 5 kN load increment from the beginning till the ultimate failure.One of the SFRC beams modeled by using nonlinear material properties adopted from experimental study is analyzed till the ultimate failure cracks by ANSYS. Eight-noded solid brick elements are used to model the concrete. Internal reinforcement is modeled by using 3D spar elements. A quarter of the full beam is taken into account in the modeling process.The results obtained from the finite element and experimental analyses are compared to each other. It is seen from the results that the finite element failure behavior indicates a good agreement with the experimental failure behavior.  相似文献   

11.
To improve the seismic performance of reinforced concrete core walls, reinforced concrete composite core walls with concealed steel truss were proposed and systemically investigated. Two 1/6 scale core wall specimens, including a normal reinforced concrete core wall and a reinforced concrete composite core wall with concealed steel truss, were designed. The experimental study on seismic performance under cyclic loading was carried out. The load-carrying capacity, stiffness, ductility, hysteretic behavior and energy dissipation of the core walls were discussed. The test results showed that the seismic performance of core walls is improved greatly by the concealed steel truss. The calculated results were found to agree well with the actual measured ones. __________ Translated from Journal of Beijing University of Technology, 2008, 34 (4): 379–386 [译自: 北京工业大学学报]  相似文献   

12.
混杂纤维自密实混凝土梁受弯性能的试验研究   总被引:1,自引:0,他引:1  
在纤维自密实混凝土工作性试验的基础上,对7组无筋混杂纤维自密实混凝土梁和5组混杂纤维增强低配筋率的钢筋自密实混凝土梁受弯性能进行试验研究,并分析纤维类型和纤维长径比对梁的开裂荷载、屈服荷载、极限荷载以及弯曲韧性的影响。结果表明:梁的弯曲韧性随着纤维长径比的增加而增加,混杂纤维混凝土梁的弯曲韧性优于钢纤维,两种纤维协同作用时具有很好的正混杂效应;与最小配筋率的钢筋混凝土梁相比,纤维的掺入明显地改善了梁的屈服荷载和极限荷载,掺有(40+4)kg/m3混杂纤维并按最小配筋率配筋的梁的极限荷载与仅按1.5倍最小配筋率配筋的梁相当。  相似文献   

13.
无腹筋锈蚀钢筋混凝土梁承载能力的计算   总被引:3,自引:0,他引:3  
锈蚀钢筋混凝土梁的承载力不仅与纵向钢筋的截面损失有关 ,而且和钢筋与混凝土之间的粘结强度的降低、混凝土保护层中出现的纵向锈胀裂缝有关。本文先考虑了由于钢筋的截面损失引起的钢筋混凝土梁的抗弯承载力的降低 ;再在梁 拱共同作用抵抗剪力的机制上 ,计算了无腹筋锈蚀钢筋混凝土梁的抗剪承载力 ,进而得到了无腹筋锈蚀钢筋混凝土梁的承载力及其相应的破坏模式。对一实例的计算结果表明 ,当混凝土保护层出现纵向锈胀裂缝后 ,钢筋与混凝土之间的极限粘结强度相应降低 ,梁的破坏模式由受弯破坏转向受剪破坏 ,承载能力有较大的降低。同时 ,锚固区的粘结强度的降低 ,导致梁也可能发生粘结锚固破坏。  相似文献   

14.
通过对钢纤维混凝土在未达到设计强度前曾受过荷载非破坏性试验的试件进行后期强度试验,研究了这种早期受荷经历对钢纤维混凝土抗折强度、劈裂抗拉强度和轴心抗压强度的影响,进行了改变早期加荷时间、早期荷载水平和钢纤维掺量等因素的比较,并与普通混凝土做对比。试验结果表明,早期受荷使钢纤维混凝土的后期强度降低,这种不利影响比对普通混凝土的影响小,但在低含纤率时要给予足够重视;在工程中如需要在较早时期作用较大荷载时,增加钢纤维掺量是减小其后期抗折和抗拉强度降低幅度的一项有效措施,并做了相关的机理分析。  相似文献   

15.
为研究骨料种类对无腹筋梁受剪性能的影响,以剪跨比和纵筋配筋率为变量,进行了16根集中荷载作用下的无腹筋混凝土简支梁受剪性能试验,其中8根采用普通碎石混凝土,8根梁采用页岩陶粒(轻骨料)混凝土,对轻骨料和普通混凝土梁的裂缝发展、破坏形态、斜向开裂荷载、受剪承载力、跨中挠度、裂缝面相对位移等进行了观察和测量。对比分析表明:轻骨料混凝土梁的斜向开裂荷载和受剪承载力均低于普通混凝土梁,其裂缝面较普通混凝土的更加光滑;将轻骨料混凝土梁受剪承载力试验值与采用我国JGJ 12-2006《轻骨料混凝土结构技术规程》和美国规范ACI 318-11、加拿大规范CSA 23.3-04、欧洲规范EC 2方法的计算值进行对比分析,结合此次试验结果和从国内外文献中搜集的126组已有试验数据,对我国JGJ 12-2006的受剪承载力公式的准确性和安全性进行探讨,提出了无腹筋轻骨料混凝土梁受剪承载力计算的建议公式。  相似文献   

16.
This paper presents the results of an experimental study investigating the effects of steel fibers on the mechanical properties of concrete and the enhancement of bond strength of prestressing strands in steel fiber reinforced concrete (SFRC). The first part of the experimental program consisted of compression, tension and flexural tests on SFRC. Two types of steel fibers with 30 mm and 60 mm fiber lengths were used with five different fiber contents. The second part of the study consisted of simple pull-out tests on 12.7 mm and 15.2 mm diameter seven-wire untensioned prestressing strands embedded in concrete blocks. The pull-out tests were conducted with two different fiber lengths and five different fiber contents for each strand diameter. The steel fibers were observed to improve the pull-out resistance of strands by controlling the crack growth inside concrete blocks.  相似文献   

17.
钢纤维混凝土断裂行为及受拉本构关系对其工程应用起到至关重要作用,目前尚无本构模型揭示基体开裂与纤维拔出所产生的能量耗散的演化规律.文章通过开展钢纤维混凝土带缺口梁三点弯试验,利用声发射技术监测试件断裂过程中不同微观开裂模式所对应的能量耗散的演化规律,结合损伤力学原理建立钢纤维混凝土的单轴受拉弹塑性损伤本构模型.试验研究...  相似文献   

18.
Recent developments on high-performance double-hooked-end steel fibers have enhanced the wide applications of steel fiber reinforced concrete (SFRC). This study presents the compressive properties and the cyclic flexural performance of the SFRC that were experimentally examined. Three different double-hooked-end steel fibers at 0.25%, 0.5%, 0.75%, and 1% volume fractions were considered. All fiber types had similar length to diameter ratios, while the first two fiber types had similar anchorage mechanisms (4D) and tensile strength and the third type had different anchorage mechanism (5D) and a higher tensile strength. The increased volumetric ratio of the fibers increased the post-peak compressive strain (ductility), the tensile strength, and the cyclic flexural strength and cumulative energy dissipation characteristics of the SFRC. Among the 4D fibers, the mixtures with the larger steel fibers showed higher flexural strength and more energy dissipation compared to the SFRCs with smaller size fibers. For 1% steel fiber dosage, 4D and 5D specimens showed similar cyclic flexural responses. Finally, a 3D finite element model that can predict the monotonic and cyclic flexural responses of the double-hooked-end SFRC was developed. The calibration process considered the results obtained from the inverse analysis to determine the tensile behavior of the SFRC.  相似文献   

19.
为了研究钢纤维增强混凝土(SFRC)二桩厚承台的传力机理和破坏模型,以及钢纤维在混凝土二桩厚承台中的作用,对30个混凝土和钢纤维混凝土二桩承台进行了静力加载试验和非线性有限元分析,探讨了钢纤维混凝土二桩厚承台的开裂荷载、极限荷载、裂缝开展、承台内部应变分布、钢筋应力分布等力学性能。结果表明:钢纤维的掺入能有效提高混凝土承台的开裂荷载和极限荷载,阻碍裂缝的发展,降低承台的厚度;钢纤维混凝土二桩厚承台破坏形态为冲切破坏,其传力模型符合拉杆拱模型或桁架模型。提出了基于桁架模型的钢纤维混凝土二桩厚承台承载力设计计算公式,其计算值与试验值吻合较好。该研究成果可为有关规程的编制及实际工程的应用提供参考。  相似文献   

20.
为了研究钢纤维混凝土六桩双柱厚承台受力模型和传力机理,对6个试件进行静力加载试验和非线性有限元分析,探讨了钢纤维混凝土六桩双柱厚承台开裂荷载、极限荷载、裂缝开展、承台内部应变分布、钢筋应力分布等力学性能。结果表明:钢纤维的掺入能有效提高混凝土承台的开裂荷载和极限荷载,延缓承台的开裂,阻裂效果明显;钢纤维混凝土双柱六桩厚承台破坏形态为冲切破坏,其传力模型符合空间拉压杆模型。提出了基于拉压杆模型的承载力设计计算公式,其计算值与试验值吻合较好;最后给出基于拉压杆模型的双柱承台的设计建议,便于实际工程中应用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号