首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 72 毫秒
1.
关联规则在医疗数据分析中的应用   总被引:20,自引:0,他引:20  
李虹  蔡之华 《微机发展》2003,13(6):94-97
介绍了从医疗数据中发现关联规则的方法,分析了医疗数据的特点,并以心脏疾病诊断的数据集为例,阐述了把医疗数据转换成事务数据格式的方法,描述了关联规则挖掘在医疗数据分析中应用所遇到的难题,针对这些难题给出了一种改进的Apriori算法,并用数据进行测试。结果表明,此算法优于Apriori算法,它可以减少产生的规则的数量,从而能快速发现有趣的医疗关联规则。  相似文献   

2.
关联规则是数据挖掘的主要技术之一,是描述数据库中一组数据项之间的某种潜在关系的规则.以学生CET4成绩数据为研究对象,运用关联规则挖掘算法Apriori算法,找出学生CET4成绩中听力、阅读、写作、综合测试四部分成绩之间的关系,以及这四部分成绩与总分之间的关系.  相似文献   

3.
4.
关联规则在教务管理中的应用   总被引:5,自引:1,他引:5  
运用数据挖掘技术中的关联规则,对历届学生成绩数据进行分析,找出各课程之间的隐藏关系,对数据进行了标准化、离散化处理,并采用经典Apriori算法进行数据挖掘,得到了一些合理、可靠的课程关联规则.这些规则应用到教学管理中,可以为学生选课提供有效的指导以及合理设置课程.  相似文献   

5.
运用数据挖掘中的关联规则分析了高校教学管理中教师信息之间的隐藏关系.并对数据进行了标准化处理,采用优化的Appriori算法进行数据挖掘.通过事例分析了教师的教学工作量和发表论文之间的隐含关系,可为教学管理提供决策支持.  相似文献   

6.
互联网技术在带给我们一个信息爆炸时代的同时,也极大地增加了从浩瀚数据堆里寻找有用知识的困难程度。面对不断拓展的数据规模,对海量信息的搜索、管理以及实时处理能力将面临严峻的挑战。文章主要介绍基于Apriori算法关联规则的具体应用。  相似文献   

7.
关联规则是数据挖掘的重要的组成部分之一。利用关联规则的Apriori算法,以学生成绩数据库为研究对象,挖掘课程之间的良好关系,为教学管理部门设置安排课程提供理论指导。  相似文献   

8.
对挖掘关联规则中的Apriori算法的一种改进   总被引:1,自引:1,他引:0  
对挖掘关联规则的Apriori算法关键思想以及性能进行了研究,给出该算法的一个改进算法,该改进算法提高了原算法的性能,并从实验中得出相关结果.  相似文献   

9.
数据挖掘中关联规则算法的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目前,人们已经提出了许多挖掘关联规则的算法及其变型,其中最著名的是Apriori算法,但传统的算法效率太低。为了解决这些问题,本文提出了一种快速更新的关联挖掘算法。  相似文献   

10.
Apriori算法是关联规则挖掘中的经典算法。通过对Apriori算法的基本思想和性能的研究分析,提出了一种基于垂直事务列表的树形结构的挖掘算法,减少了候选频繁项集的数量,提高了挖掘算法的效率。实验结果表明新算法具有良好的性能。  相似文献   

11.
关联规则挖掘算法在分类中的应用研究   总被引:1,自引:0,他引:1  
提出了一个基于关联规则挖掘算法的医疗数据分类方法。介绍了关联规则的理论基础、关联规则挖掘算法及其在医疗数据挖掘中的应用方法,并利用介绍的算法对乳腺癌数据进行挖掘。获得了分类的实验结果,该模型系统达到了较高的分类准确率,证明了数据挖掘在辅助医疗诊断中有着广泛的应用前景。  相似文献   

12.
首先分析传统用在挖掘结构化数据关联规则的基本思想,然后分析图像数据的特征,找出图像数据与传统结构化数据的区别,最后结合图像数据的特性将传统的关联规则进行改进,并将它应用在图像数据挖掘中,挖掘出图像数据的相关性.  相似文献   

13.
关联规则在教学评价数据分析中的应用   总被引:1,自引:0,他引:1  
教学评价在教育教学的各个环节作用重要,不断提高教学评价数据的客观性、可靠性是提高教学评价质量的重要途径和手段。本文在教学评价数据分析中引入关联规则数据挖掘技术,通过发现和运用关联规则来提高教学评价数据的客观性和可靠性,实践证明这是一种比较科学有效的方法。  相似文献   

14.
数据挖掘被称为数据库中的知识发现,是一个跨学科的研究领域。关联规则分析是数据挖掘中一个重要的课题,用于发现存在于数据库中的项或属性间的关联联系,这些联系是事先未知且隐藏的。关联规则的研究主要集中在生成频繁项集的挖掘算法,通过对几种主要关联规则的算法分析,利用Apriori算法研究再生资源系统中关联规则的确定,从而实现物资的二次销售。  相似文献   

15.
空间数据挖掘是从空间数据库中抽取隐含知识、空间关系及空间数据库中存储的其它信息的方法。空间关联规则是空间数据挖掘的一个重要研究领域,利用空间关联规则把空间数据库中的数据转化为知识是一个很好的方法。在分析空间关联规则的基础上,用基于关联规则的逐步求精挖掘算法,得出空间数据库中的隐含知识,通过实例证明其方法的可行性。  相似文献   

16.
简要介绍数据挖掘中的关联规则算法,并将之运用到学生成绩的数据挖掘中,挖掘高数成绩与高考成绩之间的潜在关系。提出学生大学期间的高数成绩和高考成绩并没有直接的关系,大学生活是一个全新的里程碑,不要因为自己的高考成绩而妄自菲薄。  相似文献   

17.
空间数据挖掘是从空间数据库中抽取隐含知识、空间关系及空间数据库中存储的其它信息的方法。空间关联规则是空间数据挖掘的一个重要研究领域,利用空间关联规则把空间数据库中的数据转化为知识是一个很好的方法。在分析空间关联规则的基础上,用基于关联规则的逐步求精挖掘算法,得出空间数据库中的隐含知识,通过实例证明其方法的可行性。  相似文献   

18.
传统的学生信息管理中不能有效地利用数据对决策者提供有利的信息,使用数据挖掘可以找出学生信息中隐藏的数据关联。在学生各类信息的基础上采用数据采集、预处理,并使用Apriori算法对学生信息进行挖掘,为学校决策提供依据。  相似文献   

19.
针对就业信息数据中存在着大量的量化属性和分类属性等现象,提出了一种基于k-means的量化关联规则挖掘方法。该方法利用聚类算法k-means对量化属性进行合理分区,将量化属性转化为布尔型;利用改进的布尔关联规则方法对此进行关联规则挖掘,找出学生的受教育属性和就业属性之间的关联性;对挖掘出的规则进行分析和运用。就业信息数据实验证明,文中所提方法对就业信息进行挖掘是有效的、可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号