首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为提高低风速地区的风能利用率,研究风轮实度对低风速风电机组气动性能的影响。考虑影响风轮实度因素(叶片数量、弦长及安装角),设计2组不同弦长叶片与可调安装角轮毂。安装角改变时不仅会引起实度变化,还会使叶尖速比发生改变。通过车载试验验证安装角不同时对风轮气动性能的影响主要与叶尖速比相关。根据不同风轮表面压力分布数值模拟结果得出:相同风速下,弦长由叶根到叶尖逐渐增大的叶片更易启动。相同条件下,试验机组输出功率与数值模拟机组输出功率最大相差5.37%,说明数值模拟结果可信。随着风轮实度的增加,风速5 m/s时,其风能利用系数呈增大趋势,风速8 m/s时,其风能利用系数呈减小趋势,两趋势相交时实度为25.38%,得出该实度下风轮气动性能较优,即可得到适合低风速地区的风轮实度。  相似文献   

2.
The main objective of this paper is to categorize practical families of horizontal-axis wind turbine rotors, which are optimized to produce the largest possible power output. Refined blade geometry is obtained from the best approximation of the calculated theoretical optimum chord and twist distributions of the rotating blade. The mathematical formulation is based on dimensionless quantities so as to make the aerodynamic analysis valid for any arbitrary turbine models having different rotor sizes and operating at different wind regimes. The selected design parameters include the number of blades, type of airfoil section and the blade root offset from hub center. The effects of wind shear as well as tower shadow are also examined. A computer program has been developed to automate the overall analysis procedures, and several numerical examples are given showing the variation of the power and thrust coefficients with the design tip speed ratio for various rotor configurations.  相似文献   

3.
The aerodynamic interactions that can occur within a wind farm can result in the constituent turbines generating a lower power output than would be possible if each of the turbines were operated in isolation. Tightening of the constraints on the siting of wind farms is likely to increase the scale of the problem in the future. The aerodynamic performance of turbine rotors and the mechanisms that couple the fluid dynamics of multiple rotors can be most readily understood by simplifying the problem and considering the interaction between only two rotors. The aerodynamic interaction between two rotors in both co‐axial and offset configurations has been simulated using the Vorticity Transport Model. The aerodynamic interaction is a function of the tip speed ratio, and both the streamwise and crosswind separation between the rotors. The simulations show that the momentum deficit at a turbine operating within the wake developed by the rotor of a second turbine is governed by the development of instabilities within the wake of the upwind rotor, and the ensuing structure of the wake as it impinges on the downwind rotor. If the wind farm configuration or wind conditions are such that a turbine rotor is subject to partial impingement by the wake produced by an upstream turbine, then significant unsteadiness in the aerodynamic loading on the rotor blades of the downwind turbine can result, and this unsteadiness can have considerable implications for the fatigue life of the blade structure and rotor hub. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

4.
The chord and twist angle radial profiles of a fixed-pitch fixed-speed (FPFS) horizontal-axis wind turbine blade are based on a particular design wind speed and design tip speed ratio. Because the tip speed ratio varies with wind speed, the originally optimized chord and twist angle radial profiles for a preliminary blade design through optimum rotor theory do not necessarily provide the highest annual energy production (AEP) for the wind turbine on a specific site with known wind resources. This paper aims to demonstrate a novel optimal blade design method for an FPFS wind turbine through adopting linear radial profiles of the blade chord and twist angle and optimizing the slope of these two lines. The radial profiles of the blade chord and twist angle are linearized on a heuristic basis with fixed values at the blade tip and floating values at the blade root based on the preliminary blade design, and the best solution is determined using the highest AEP for a particular wind speed Weibull distribution as the optimization criteria with constraints of the top limit power output of the wind turbine. The outcomes demonstrate clearly that the proposed blade design optimization method offers a good opportunity for FPFS wind turbine blade design to achieve a better power performance and low manufacturing cost. This approach can be used for any practice of FPFS wind turbine blade design and refurbishment.  相似文献   

5.
Scaled wind turbine experiments were conducted in order to evaluate the beneficial effect of closely-spaced lateral wind turbine configurations on the performance of a wind farm. Two outer wind turbines were spaced apart with a particular gap distance and the longitudinal setback of a central rotor was varied at each gap width. The turbine placement resulted in tip-to-tip separation distances that ranged from 1 diameter (D) to 0.25D. Additionally, the performance of a wind farm layout in rough and smooth boundary layers, designed to mimic onshore and offshore conditions, respectively, was evaluated. It was observed that a narrow gap between several laterally-aligned rotors creates an in-field blockage effect that results in beneficial flow acceleration through the gap. This increase in speed increases the power output of the central turbine when its longitudinal setback is between 0D and 2.5D. A cumulative increase in power output of 17% was observed when 3 rotors were aligned in a lateral plane with a blade tip separation of 0.5D or 0.25D, compared to the same number of rotors in isolation. While the benefits of closely-spaced wind turbines were observed in both of the tested boundary layers, the performance benefits with a smooth boundary layer were smaller than with a rough boundary layer. These results may lead to new wind farm design methodologies for certain topology- and wind distribution-specific sites and suggest that wind turbines can be closely-spaced in the lateral direction in order to obtain substantial increases in power.  相似文献   

6.
Wind tunnel and numerical study of a small vertical axis wind turbine   总被引:2,自引:0,他引:2  
This paper presents a combined experimental and computational study into the aerodynamics and performance of a small scale vertical axis wind turbine (VAWT). Wind tunnel tests were carried out to ascertain overall performance of the turbine and two- and three-dimensional unsteady computational fluid dynamics (CFD) models were generated to help understand the aerodynamics of this performance.Wind tunnel performance results are presented for cases of different wind velocity, tip-speed ratio and solidity as well as rotor blade surface finish. It is shown experimentally that the surface roughness on the turbine rotor blades has a significant effect on performance. Below a critical wind speed (Reynolds number of 30,000) the performance of the turbine is degraded by a smooth rotor surface finish but above it, the turbine performance is enhanced by a smooth surface finish. Both two bladed and three bladed rotors were tested and a significant increase in performance coefficient is observed for the higher solidity rotors (three bladed rotors) over most of the operating range. Dynamic stalling behaviour and the resulting large and rapid changes in force coefficients and the rotor torque are shown to be the likely cause of changes to rotor pitch angle that occurred during early testing. This small change in pitch angle caused significant decreases in performance.The performance coefficient predicted by the two dimensional computational model is significantly higher than that of the experimental and the three-dimensional CFD model. The predictions show that the presence of the over tip vortices in the 3D simulations is responsible for producing the large difference in efficiency compared to the 2D predictions. The dynamic behaviour of the over tip vortex as a rotor blade rotates through each revolution is also explored in the paper.  相似文献   

7.
The hydrodynamic forces imparted on a tidal turbine rotor, whilst causing it to rotate and hence generate power, will also cause the blades to deform. This deformation will affect the turbine's performance if not included in the early design phase and could lead to a decrease in power output and a reduction in operational life. Conversely, designing blades to allow them to deform slightly may reduce localised stress and therefore prolong the life of the blades and allow the blades to deform in to their optimum operational state. The aim of this paper is to better understand the kinetic energy extraction by varying the material modulus of a turbine blade. Shaft torque/power, blade tip displacement, and axial thrust results are presented for 2, 3 and 4 bladed rotor configurations at peak power extraction. For the rotor design studied the FSI model data show that there is a low sensitivity to blade deformation for the 2, 3 and 4 bladed rotors. However, the results reveal that the 3 bladed rotor displayed maximum hydrodynamic performance as a rigid structure which then decreased as the blade deformed. The 2 and 4 bladed rotor configurations elucidated a slight increase in hydrodynamic performance with deflection.  相似文献   

8.
An extension of the spectrum of applicability of rotors with active aerodynamic devices is presented in this paper. Besides the classical purpose of load alleviation, a secondary objective is established: optimization of power capture. As a first step, wind speed regions that contribute little to fatigue damage have been identified. In these regions, the turbine energy output can be increased by deflecting the trailing edge (TE) flap in order to track the maximum power coefficient as a function of local, instantaneous speed ratios. For this purpose, the TE flap configuration for maximum power generation has been using blade element momentum theory. As a first step, the operation in non‐uniform wind field conditions was analysed. Firstly, the deterministic fluctuation in local tip speed ratio due to wind shear was evaluated. The second effect is associated with time delays in adapting the rotor speed to inflow fluctuations caused by atmospheric turbulence. The increase in power generation obtained by accounting for wind shear has been demonstrated with an increase in energy production of 1%. Finally, a control logic based on inflow wind speeds has been devised, and the potential of enhanced power generation has been shown by time‐domain simulations. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
设计叶尖速比是风力机叶片设计中需要考虑的重要因素,文中分析了叶尖速比对叶片的弦长、载荷、气动性能、整机的功率和发电量等的影响,讨论了设计叶尖速比的选择。并分析得出增大设计叶尖速比,能够减小叶片弦长、载荷、成本,提高气动性能,但会使机组发电量有所下降的结论。  相似文献   

10.
Wells turbines provide a practical solution for wave energy harvesting. The low aerodynamic efficiency of Wells turbines tangibly reduces their output power. Both the turbine efficiency and output power depend on the turbine solidity. The turbine solidity decreases from rotor hub to rotor tip for the commonly used rotors with constant chord‐length blades. The present work introduces a novel Wells turbine rotor geometry. This geometry was obtained by numerically optimizing the rotor's radial solidity distribution. The turbine performance with different rotor geometries was numerically simulated by solving the three‐dimensional Reynolds‐averaged Navier–Stocks equation under incompressible and steady state flow conditions. Simple and multi‐objective optimization were implemented in order to obtain the optimum rotor geometry. The present work showed that an improved turbine performance can be achieved by optimizing the turbine radial solidity distribution. Two different optimized rotor geometries were obtained and presented. The first rotor geometry improved the turbine efficiency by up to 4.7% by reducing its pressure drop. The second rotor geometries enhanced the turbine output power by up to 10.8%. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
This paper presents a design tool for optimizing wind turbine blades. The design model is based on an aerodynamic/aero‐elastic code that includes the structural dynamics of the blades and the Blade Element Momentum (BEM) theory. To model the main aero‐elastic behaviour of a real wind turbine, the code employs 11 basic degrees of freedom corresponding to 11 elastic structural equations. In the BEM theory, a refined tip loss correction model is used. The objective of the optimization model is to minimize the cost of energy which is calculated from the annual energy production and the cost of the rotor. The design variables used in the current study are the blade shape parameters, including chord, twist and relative thickness. To validate the implementation of the aerodynamic/aero‐elastic model, the computed aerodynamic results are compared to experimental data for the experimental rotor used in the European Commision‐sponsored project Model Experiments in Controlled Conditions, (MEXICO) and the computed aero‐elastic results are examined against the FLEX code for flow past the Tjæreborg 2 MW rotor. To illustrate the optimization technique, three wind turbine rotors of different sizes (the MEXICO 25 kW experimental rotor, the Tjæreborg 2 MW rotor and the NREL 5 MW virtual rotor) are applied. The results show that the optimization model can reduce the cost of energy of the original rotors, especially for the investigated 2 MW and 5 MW rotors. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
Wind turbine upscaling is motivated by the fact that larger machines can achieve lower levelized cost of energy. However, there are several fundamental issues with the design of such turbines, and there is little public data available for large wind turbine studies. To address this need, we develop a 20 MW common research wind turbine design that is available to the public. Multidisciplinary design optimization is used to define the aeroservoelastic design of the rotor and tower subject to the following constraints: blade‐tower clearance, structural stresses, modal frequencies, tip‐speed and fatigue damage at several sections of the tower and blade. For the blade, the design variables include blade length, twist and chord distribution, structural thicknesses distribution and rotor speed at the rated. The tower design variables are the height, and the diameter distribution in the vertical direction. For the other components, mass models are employed to capture their dynamic interactions. The associated cost of these components is obtained by using cost models. The design objective is to minimize the levelized cost of energy. The results of this research show the feasibility of a 20 MW wind turbine and provide a model with the corresponding data for wind energy researchers to use in the investigation of different aspects of wind turbine design and upscaling. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

13.
A modeling framework is proposed and validated to simulate turbine wakes and associated power losses in wind farms. It combines the large-eddy simulation (LES) technique with blade element theory and a turbine-model-specific relationship between shaft torque and rotational speed. In the LES, the turbulent subgrid-scale stresses are parameterized with a tuning-free Lagrangian scale-dependent dynamic model. The turbine-induced forces and turbine-generated power are modeled using a recently developed actuator-disk model with rotation (ADM-R), which adopts blade element theory to calculate the lift and drag forces (that produce thrust, rotor shaft torque and power) based on the local simulated flow and the blade characteristics. In order to predict simultaneously the turbine angular velocity and the turbine-induced forces (and thus the power output), a new iterative dynamic procedure is developed to couple the ADM-R turbine model with a relationship between shaft torque and rotational speed. This relationship, which is unique for a given turbine model and independent of the inflow condition, is derived from simulations of a stand-alone wind turbine in conditions for which the thrust coefficient can be validated. Comparison with observed power data from the Horns Rev wind farm shows that better power predictions are obtained with the dynamic ADM-R than with the standard ADM, which assumes a uniform thrust distribution and ignores the torque effect on the turbine wakes and rotor power. The results are also compared with the power predictions obtained using two commercial wind-farm design tools (WindSim and WAsP). These models are found to underestimate the power output compared with the results from the proposed LES framework.  相似文献   

14.
Savonius风机是一种典型的垂直轴风力机。针对传统风机的发电机部分采用转子、定子一动一静的设计布局,提出了一种新型的发电机结构,从而提高风机发电效率。通过有限元分析软件ANSYS/CFX,对风力机模型进行流体分析,计算Savonius风力机的效率,验证本设计分析方法的正确性。  相似文献   

15.
L型叶尖小翼对风力机性能影响的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用标准的k-ε湍流模型对添加L型叶尖小翼叶片与原叶片在不同风速条件下进行三维流场的数值研究。通过分析叶尖区域流场和压力分布得到:对比原叶片,L型小翼对通过叶尖的气流具有导流作用,使通过叶尖的气流变得平缓流畅,同时小翼能有效改善叶尖吸力面的气流分离,使得气流分离位置远离叶片前缘,减小压差阻力。L型叶尖小翼加大叶尖部位吸力面与压力面的压差,增大风轮转矩,使风力机出力增加。添加L型小翼后,风力机推力系数最大增幅为0.81%,风力机功率最大增幅为4.2%。  相似文献   

16.
D. D. Chao  C. P. van Dam 《风能》2007,10(6):529-550
The effects of modifying the inboard portion of the experimental NREL Phase VI rotor using a thickened, blunt trailing‐edge (or flatback) version of the S809 design airfoil are studied using a compressible, three‐dimensional, Reynolds‐averaged Navier–Stokes method. A motivation for using such a thicker airfoil design coupled with a blunt trailing edge is to alleviate structural constraints while reducing blade weight and maintaining the power performance of the rotor. The numerical results for the baseline Phase VI rotor are benchmarked against wind tunnel measurements obtained at freestream velocities of 5, 7 and 10ms?1. The calculated results for the modified rotor are compared against those of the baseline rotor. The results of this study demonstrate that a thick, blunt trailing‐edge blade profile is viable as a bridge to connect structural requirements with aerodynamic performance in designing future wind turbine rotors. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

17.
Small propeller-type wind turbines have a low Reynolds number, limiting the number of usable airfoil materials. Thus, their design method is not sufficiently established, and their performance is often low. The ultimate goal of this research is to establish high-performance design guidelines and design methods for small propeller-type wind turbines. To that end, we designed two rotors: Rotor A, based on the rotor optimum design method from the blade element momentum theory, and Rotor B, in which the chord length of the tip is extended and the chord length distribution is linearized. We examined performance characteristics and flow fields of the two rotors through wind tunnel experiments and numerical analysis. Our results revealed that the maximum output tip speed ratio of Rotor B shifted lower than that of Rotor A, but the maximum output coefficient increased by approximately 38.7%. Rotors A and B experienced a large-scale separation on the hub side, which extended to the mean in Rotor A. This difference in separation had an impact on the significant decrease in Rotor A’s output compared to the design value and the increase in Rotor B’s output compared to Rotor A.  相似文献   

18.
为量化评估工程应用的气冷低压涡轮带冠转子叶片的叶尖间距大小对涡轮气动性能的影响,综合现有涡轮部件试验能力,以单级轴流低压涡轮性能试验件为基础,通过控制圆度的机加方式磨削转子外环内壁以实现叶尖间距的变化,采用控制冷气流量比的方法,开展5次不同叶尖间距大小的涡轮级性能试验,得到多工况下涡轮效率、换算流量和换算功率等特性参数。采用加载冷气及考虑转子叶冠结构的数值模型进行三维仿真计算,并与试验结果对比分析。研究表明:叶尖间距由0.6 mm增加至3.2 mm,低压涡轮流通能力增大1%,叶冠泄漏量增多3.4%,但做功能力下降2.3%。涡轮效率变化与叶尖间距大小近似呈线性关系,叶尖间距每增加1 mm,效率约降低0.7%,同时,叶尖间距的增加导致了叶冠腔的旋涡结构、气流掺混及主流入侵强度逐渐增大,引起动叶总压损失的增大,叶尖间距增加至3.2 mm导致叶间位置总压损失由0.88增至2.3。  相似文献   

19.
Presented is a robust optimization strategy for the aerodynamic design of horizontal axis wind turbine rotors including the variability of the annual energy production because of the uncertainty of the blade geometry caused by manufacturing and assembly errors. The energy production of a rotor designed with the proposed robust optimization approach features lower sensitivity to stochastic geometry errors with respect to that of a rotor designed with the conventional deterministic optimization approach that ignores these errors. The geometry uncertainty is represented by normal distributions of the blade pitch angle, and the twist angle and chord of the airfoils. The aerodynamic module is a blade‐element momentum theory code. Both Monte Carlo sampling and the univariate reduced quadrature technique, a novel deterministic uncertainty analysis method, are used for uncertainty propagation. The performance of the two approaches is assessed in terms of accuracy and computational speed. A two‐stage multi‐objective evolution‐based optimization strategy is used. Results highlight that, for the considered turbine type, the sensitivity of the annual energy production to rotor geometry errors can be reduced by reducing the rotational speed and increasing the blade loading. The primary objective of the paper is to highlight how to incorporate an efficient and accurate uncertainty propagation strategy in wind turbine design. The formulation of the considered design problem does not include all the engineering constraints adopted in real turbine design, but the proposed probabilistic design strategy is fairly independent of the problem definition and can be easily extended to turbine design systems of any complexity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Drag type wind turbines have strong potential in small and medium power applications due to their simple design. However, a major disadvantage of this design is the noticeable low conversion efficiency. Therefore, more research is required to improve the efficiency of this design. The present work introduces a novel design of a three-rotor Savonius turbine with rotors arranged in a triangular pattern. The performance of the new design is assessed by computational modeling of the flow around the three rotors. The 2D computational model is firstly applied to investigate the performance of a single rotor design to validate the model by comparison with experimental measurements. The model introduced an acceptable accuracy compared to the experimental measurements. The performance of the new design is then investigated using the same model. The results indicated that the new design performance has higher power coefficient compared with single rotor design. The peak power coefficient of the three rotor turbine is 44% higher than that of the single rotor design (relative increase). The improved performance is attributed to the favorable interaction between the rotors which accelerates the flow approaching the downstream rotors and generates higher turning moment in the direction of rotation of each rotor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号