首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Because of the coupling between semiconducting and piezoelectric properties in wurtzite materials, strain-induced piezo-charges can tune the charge transport across the interface or junction, which is referred to as the piezotronic effect. For devices whose dimension is much smaller than the mean free path of carriers (such as a single atomic layer of MoS2), ballistic transport occurs. In this study, transport in the monolayer MoS2 piezotronic transistor is studied by presenting analytical solutions for two-dimensional (2D) MoS2. Furthermore, a numerical simulation for guiding future 2D piezotronic nanodevice design is presented.
  相似文献   

2.
We demonstrate a facile and effective approach to significantly improve the photoluminescence of bulk MoS2 via laser thinning followed by gold particle decoration. Upon laser thinning of exfoliated bulk MoS2, photoluminescence emerges from the laser-thinned region. After further treatment with an AuCl3 solution, gold particles self-assemble on the laser-thinned region and thick edges, further increasing the fluorescence of bulk MoS2 28 times and the Raman response 3 times. Such fluorescence enhancement can be attributed to both surface plasmon resonance and p-type doping induced by gold particles. The combination of laser thinning and AuCl3 treatment enables the functionalization of bulk MoS2 for optoelectronic applications. It can also provide a viable strategy for mask-free and area-selective p-type doping on single MoS2 flakes.
  相似文献   

3.
Recent studies have indicated that two-dimensional (2D) MoS2 exhibits low in-plane and inter-plane thermal conductivities. This poses a significant challenge to heat management in MoS2-based electronic devices. To address this challenge, we have designed MoS2-graphene interfaces that fully utilize graphene, a 2D material that exhibits very high thermal conductivity. First, we performed ab initio atomistic simulations to understand bonding and structural stability at the interfaces. The interfaces that we designed, which were connected via strong covalent bonds between Mo and C atoms, were energetically stable. We then performed molecular dynamics simulations to investigate interfacial thermal conductance in these materials. Surprisingly, the interfacial thermal conductance was high and comparable to those of covalently bonded graphene-metal interfaces. Importantly, each interfacial Mo–C bond served as an independent thermal channel, enabling modulation of the interfacial thermal conductance by controlling the Mo vacancy concentration at the interface. The present work provides a viable heat management strategy for MoS2-based electronic devices.
  相似文献   

4.
Nanomaterials with unique edge sites have received increasing attention due to their superior performance in various applications. Herein, we employed an effective ethylenediaminetetraacetic acid (EDTA)-assisted method to synthesize a series of exotic Bi2Se3 nanostructures with distinct edge sites. It was found that the products changed from smooth nanoplates to half-plate-containing and crown-like nanoplates upon increasing the molar ratio of EDTA to Bi3+. Mechanistic studies indicated that, when a dislocation source and relatively high supersaturation exist, the step edges in the initially formed seeds can serve as supporting sites for the growth of epilayers, leading to the formation of half-plate-containing nanoplates. In contrast, when the dislocation source and a suitably low supersaturation are simultaneously present in the system, the dislocation-driven growth mode dominates the process, in which the step edges form at the later stage of the growth responsible for the formation of crown-like nanoplates.
  相似文献   

5.
Typically, molybdenum disulfide (MoS2) synthesized by chemical vapor deposition (CVD) is polycrystalline; as a result, the scattering of charge carriers at grain boundaries can lead to performances lower than those observed in exfoliated single-crystal MoS2. Until now, the electrical properties of grain boundaries have been indirectly studied without accurate knowledge of their location. Here, we present a technique to measure the electrical behavior of individual grain boundaries in CVD-grown MoS2, imaged with the help of aligned liquid crystals. Unexpectedly, the electrical conductance decreased by three orders of magnitude for the grain boundaries with the lowest on/off ratio. Our study provides a useful technique to fabricate devices on a single-crystal area, using optimized growth conditions and device geometry. The photoresponse, studied within a MoS2 single grain, showed that the device responsivity was comparable with that of the exfoliated MoS2-based photodetectors.
  相似文献   

6.
Two-dimensional (2D) semiconductors, represented by 2D transition metal dichalcogenides (TMDs), exhibit rich valley physics due to strong spin-orbit/spin-valley coupling. The most common way to probe such 2D systems is to utilize optical methods, which can monitor light emissions from various excitonic states and further help in understanding the physics behind such phenomena. Therefore, 2D TMDs with good optical quality are in great demand. Here, we report a method to directly grow epitaxial WS2 and MoS2 monolayers on hexagonal boron nitride (hBN) flakes with a high yield and high optical quality; these monolayers show better intrinsic light emission features than exfoliated monolayers from natural crystals. For the first time, the valley Zeeman splitting of WS2 and MoS2 monolayers on hBN has been visualized and systematically investigated. This study paves a new way to produce high optical quality WS2 and MoS2 monolayers and to exploit their intrinsic properties in a multitude of applications.
  相似文献   

7.
The clinical translation of many inorganic nanomaterials is severely hampered by toxicity issues because of the long-term retention of these nanomaterials in the body. In this study, we developed a bio-clearable theranostic agent based on ultra-small MoS2 nanodots, which were synthesized by a facile bottom-up approach through one-step solvothermal decomposition of ammonium tetrathiomolybdate. After modification by glutathione (GSH), the obtained MoS2-GSH nanodots exhibited sub-10-nm hydrodynamic diameters without aggregation in various physiological buffers. Without showing appreciable in vitro toxicity, such MoS2-GSH nanodots with strong near-infrared (NIR) absorbance could induce remarkable photothermal ablation of cancer cells. Upon intravenous (i.v.) injection, efficient tumor accumulation of MoS2-GSH nanodots was observed by photoacoustic imaging, and further confirmed by analysis of the biodistribution of Mo. Notably, the MoS2-GSH nanodots, in contrast to conventional MoS2 nanoflakes with larger sizes, showed rather efficient body clearance via urine, where the majority of the injected dose was cleared within just seven days. Photothermal ablation of tumors on mice was then realized with the MoS2-GSH nanodots, achieving excellent therapeutic efficacy. This study presents a new type of ultra-small nanoparticle with efficient tumor homing/treatment abilities, as well as rapid body clearance behavior, making it promising for cancer theranostics without long-term toxicity concerns.
  相似文献   

8.
Electrical and optical enhancements of single-layer semiconducting materials such as transition metal dichalcogenides have recently been studied to achieve sensitive properties via external treatments, such as the formation of organic/inorganic protecting layers on field-effect transistors (FETs), thermal annealing, and nano-dot doping of sensors and detectors. Here, we propose a new analytical approach to electrical and optical enhancement through a passivation process using atomic layer deposition (ALD), and demonstrate a synthesized MoS2 monolayer incorporated with Al atoms in an Al2O3 passivation layer. The incorporated Al atoms in the MoS2 monolayer are clearly observed by spherical aberration-corrected scanning transmission electron microscopy (Cs-STEM) and TEM-energy-dispersive X-ray spectroscopy results. We demonstrate that the chemically incorporated FETs exhibit highly enhanced mobilities of approximately 3.7 cm2·V?1·s?1, forty times greater than that of as-synthesized MoS2, with a three-fold improvement in the photoluminescence properties.
  相似文献   

9.
Herein, we report a bottom-up solvothermal route to synthesize a flexible, highly efficient MoS2@SWNT electrocatalyst for hydrogen evolution reactions (HER). Characterization revealed that branch-like MoS2 nanosheets containing sulfurrich sites were in situ uniformly dispersed on free-standing single-walled carbon nanotube (SWNT) film, which could expose more unsaturated sulfur atoms, allowing excellent electrical contact with active sites. The flexible catalyst exhibited excellent HER performance with a low overpotential (~150 mV at 10 mA/cm2) and small Tafel slope (41 mV/dec). To further explain the improved performance, the local electronic structure was investigated by X-ray absorption near-edge structure (XANES) analysis, proving the presence of unsaturated sulfur atoms and strong electronic coupling between MoS2 and SWNT. This study provides an in-situ synthetic route to create new multifunctional flexible hybridized catalysts and useful insights into the relationships among the catalyst microstructure, electronic structure, and properties.
  相似文献   

10.
Bismuth telluride (Bi2Te3) is one of the most important commercial thermoelectric materials. In recent years, the discovery of topologically protected surface states in Bi chalcogenides has paved the way for their application in nanoelectronics. Determination of the fracture toughness plays a crucial role for the potential application of topological insulators in flexible electronics and nanoelectromechanical devices. Using depth-sensing nanoindentation tests, we investigated for the first time the fracture toughness of bulk single crystals of Bi2Te3 topological insulators, grown using the Bridgman-Stockbarger method. Our results highlight one of the possible pitfalls of the technology based on topological insulators.
  相似文献   

11.
The size and density of Ag nanoparticles on n-layer MoS2 exhibit thicknessdependent behavior. The size and density of these particles increased and decreased, respectively, with increasing layer number (n) of n-layer MoS2. Furthermore, the surface-enhanced Raman scattering (SERS) of Ag on this substrate was observed. The enhancement factor of this scattering varied with the thickness of MoS2. The mechanisms governing the aforementioned thickness dependences are proposed and discussed.
  相似文献   

12.
Two-dimensional (2D) materials have received significant attention due to their unique physical properties and potential applications in electronics and optoelectronics. Recent studies have demonstrated that exfoliated PdSe2, a layered transition metal dichalcogenide (TMD), exhibits ambipolar field-effect transistor (FET) behavior with notable performance and good air stability, and thus serves as an emerging candidate for 2D electronics. Here, we report the growth of bilayer PdSe2 on a graphene-SiC(0001) substrate by molecular beam epitaxy (MBE). A bandgap of 1.15 ± 0.07 eV was revealed by scanning tunneling spectroscopy (STS). Moreover, a bandgap shift of 0.2 eV was observed in PdSe2 layers grown on monolayer graphene as compared to those grown on bilayer graphene. The realization of nanoscale electronic junctions with atomically sharp boundaries in 2D PdSe2 implies the possibility of tuning its electronic or optoelectronic properties. In addition, on top of the PdSe2 bilayers, PdSe2 nanoribbons and stacks of nanoribbons with a fixed orientation have been fabricated. The bottom-up fabrication of low-dimensional PdSe2 structures is expected to enable substantial exploration of its potential applications.
  相似文献   

13.
We have demonstrated the improved performance of oxygen evolution reactions (OER) using Au/nickel phosphide (Ni12P5) core/shell nanoparticles (NPs) under basic conditions. NPs with a Ni12P5 shell and a Au core, both of which have well-defined crystal structures, have been prepared using solution-based synthetic routes. Compared with pure Ni12P5 NPs and Au-Ni12P5 oligomer-like NPs, the core/shell crystalline structure with Au shows an improved OER activity. It affords a current density of 10 mA/cm2 at a small overpotential of 0.34 V, in 1 M KOH aqueous solution at room temperature. This enhanced OER activity may relate to the strong structural and effective electronic coupling between the single-crystal core and the shell.
  相似文献   

14.
Liquid-phase exfoliation (LPE) is an attractive method for the scaling-up of exfoliated MoS2 sheets compared to chemical vapor deposition and mechanical cleavage. However, the MoS2 nanosheet yield from LPE is too small for practical applications. We report a facile method for the scaling-up of exfoliated MoS2 nanosheets using freeze-dried silk fibroin powders. Compared to MoS2 dispersion in the absence of silk fibroin powder, sonicated MoS2 dispersions with silk fibroin powder (MoS2/Silk dispersion) show noticeably higher exfoliated MoS2 nanosheet yields, with suspended MoS2 concentrations in MoS2/Silk dispersions sonicated for 2 and 5 h of 1.03 and 1.39 mg·mL–1, respectively. The MoS2 concentration in the MoS2/Silk dispersion after centrifugation above 10,000 rpm is more than four times that without the silk fibroin. The size of the dispersed silk fibroin is controlled by the change of centrifugation rate, showing the removal of silk fibroin above tens of micrometers in size after centrifugation at 2,000 rpm. Size-controlled silk fibroin biomolecules combined with MoS2 nanosheets are expected to increase the practical use of such materials in fields related to tissue engineering, biosensors and electrochemical electrodes. Atomic force microscopy and Raman spectroscopy provide the height of the MoS2 nanosheets spin-cast from MoS2 /Silk dispersions, showing thicknesses of 3–6 nm. X-ray photoelectron spectroscopy and X-ray diffraction indicate that the outermost surface layer of the hydrophobic MoS2 crystals interact with oxygen-containing functional groups that exist in the hydrophobic part of silk fibroins. The amphiphilic properties of silk fibroin combined with the MoS2 nanosheets stabilize dispersions by enhancing solvent-material interactions. The large quantities of exfoliated MoS2 nanosheets suspended in the as-synthesized dispersions can be utilized for the fabrication of vapor and electrochemical devices requiring high MoS2 nanosheets contents.
  相似文献   

15.
Artificial photosynthesis uses a catalyst to convert CO2 into valuable hydrocarbon products by cleaving the C=O bond. However, this technology is strongly limited by two issues, namely insufficient catalytic efficiency and complicated catalyst-fabrication processes. Herein, we report the development of a novel spray-drying photocatalyst-engineering process that addresses these two issues. Through one-step spray drying, with a residence time of 1.5 s, nanocomposites composed of tin oxide (SnO2) nanoparticles and edge-oxidized graphene oxide (eo-GO) sheets were fabricated without post-treatment. These nanocomposites exhibited 28-fold and five-fold enhancements in photocatalytic efficiency during CO2 reduction compared to SnO2 and commercialized TiO2 (P25), respectively, after irradiation with simulated sunlight for 4 h. This scalable approach, based on short residence times and facile equipment setup, promotes the practical application of artificial photosynthesis through the potential mass production of efficient photocatalysts.
  相似文献   

16.
A facile strategy was designed for the fabrication of Fe3O4-nanoparticle-decorated TiO2 nanofiber hierarchical heterostructures (FTHs) by combining the versatility of the electrospinning technique and the hydrothermal growth method. The hierarchical architecture of Fe3O4 nanoparticles decorated on TiO2 nanofibers enables the successful integration of the binary composite into batteries to address structural stability and low capacity. In the resulting unique architecture of FTHs, the 1D heterostructures relieve the strain caused by severe volume changes of Fe3O4 during numerous charge-discharge cycles, and thus suppress the degradation of the electrode material. As a result, FTHs show excellent performance including higher reversible capacity, excellent cycle life, and good rate performance over a wide temperature range owing to the synergistic effect of the binary composition of TiO2 and Fe3O4 and the unique features of the hierarchical nanofibers.
  相似文献   

17.
Multi-shelled CoFe2O4 hollow microspheres with a tunable number of layers (1–4) were successfully synthesized via a facile one-step method using cyclodextrin as a template, followed by calcination. The structural features, including the shell number and shell porosity, were controlled by adjusting the synthesis parameters to produce hollow spheres with excellent capacity and durability. This is a straightforward and general strategy for fabricating metal oxide or bimetallic metal oxide hollow microspheres with a tunable number of shells.
  相似文献   

18.
Semiconducting 2H-MoS2 with high chemical stability is a promising alternative to the existing electrocatalysts for the hydrogen evolution reaction (HER); however, the HER performance largely suffers from the limited number of active S sites and low mobility for charge transport. In this work, we demonstrate that the limitations of 2H-MoS2 for the HER can be overcome by forming hybrid structures with metallic nanowires. Taking the integration with Pd as a proofof- concept, we show with solid experimental evidence that the one-dimensional structure of metallic nanowires facilitates electron transport to active S sites, while the interfacial charge polarization between MoS2 and Pd increases the electron density of the S sites for improved activity. As a result, the hybrid structure exhibits a current density of 122 mA·cm-2 at -300 mV versus RHE and a Tafel slope of 44 mV·decade-1 with excellent durability, well exceeding the performances of bare 2H-MoS2 and metallic 1T-MoS2. This work provides insights into electrocatalyst design based on charge transport and polarization, which can be extended to other hybrid structures.
  相似文献   

19.
Conducting polymers generally show high specific capacitance but suffer from poor rate capability and rapid capacitance decay, which greatly limits their practical applications in supercapacitor electrodes. To this end, many studies have focused on improving the overall capacitive performance by synthesizing nanostructured conducting polymers or by depositing a range of coatings to increase the active surface area exposed to the electrolyte and enhance the charge transport efficiency and structural stability. Despite this, simultaneously achieving high specific capacitance, good rate performance, and long cycle life remains a considerable challenge. Among the various two-dimensional (2D) layered materials, octahedral (1T) phase molybdenum disulfide (MoS2) nanosheets have high electrical conductivity, large specific surface areas, and unique surface chemical characteristics, making them an interesting substrate for the controlled growth of nanostructured conducting polymers. This paper reports the rational synthesis of carbon shell-coated polyaniline (PANI) grown on 1T MoS2 monolayers (MoS2/PANI@C). The composite electrode comprised of MoS2/PANI@C with a ~3 nm carbon shell exhibited a remarkable specific capacitance of up to 678 F·g–1 (1 mV·s–1), superior capacity retention of 80% after 10,000 cycles and good rate performance (81% at 10 mV·s–1) due to the multiple synergic effects between the PANI nanostructure and 1T MoS2 substrates as well as protection by the uniform thin carbon shell. These properties are comparable to the best overall capacitive performance achieved for conducting polymers-based supercapacitor electrodes reported thus far.
  相似文献   

20.
Photoluminescence (PL) of transition metal dichalcogenides (TMDs) can be engineered by controlling the density of defects, which provide active sites for electron-hole recombination, either radiatively or non-radiatively. However, the implantation of defects by external stimulation, such as uniaxial tension and irradiation, tends to introduce local damages or structural non-homogeneity, which greatly degrades their luminescence properties and impede their applicability in constructing optoelectronic devices. In this paper, we present a strategy to introduce a controllable level of defects into the MoS2 monolayers by adding a hydrogen flow during the chemical vapor deposition, without sacrificing their luminescence characteristics. The density of the defect is controlled directly by the concentration of hydrogen. For an appropriate hydrogen flux, the monolayer MoS2 sheets have three times stronger PL emission at the excitonic transitions, compared with those samples with nearly perfect crystalline structure. The defect-bounded exciton transitions at lower energies arising in the defective samples and are maximized when the total PL is the strongest. However, the B exciton, exhibits a monotonic decline as the defect density increases. The Raman spectra of the defective MoS2 reveal a redshift (blueshift) of the in-plane (out-of-plane) vibration modes as the hydrogen flux increases. All the evidence indicates that the generated defects are in the form of sulfur vacancies. This study renders the high-throughput synthesis of defective MoS2 possible for catalysis or light emitting applications.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号