共查询到20条相似文献,搜索用时 0 毫秒
1.
Study on zero CO2 emission atmospheric pressure SOFC hybrid power system integrated with OTM 下载免费PDF全文
In order to further reduce the energy consumption of CO2 capture from the traditional SOFC hybrid power system, based on the principle of energy cascade utilization and system integration, a zero CO2 emission atmospheric pressure solid oxide fuel cell (SOFC) hybrid power system integrated with oxygen ion transport membrane (OTM) is proposed. The oxygen is produced by the OTM for the oxy‐fuel combustion afterburner of SOFC. With the Aspen‐plus software, the models of the overall SOFC hybrid power systems with or without CO2 capture are developed. The thermal performance of new system is investigated and compared with other systems. The effects of the fuel utilization factor of SOFC and the pressure ratio between two sides of OTM membrane on the overall system performance are analyzed and optimized. The research results show that the efficiency of the zero CO2 emission atmospheric pressure SOFC hybrid power system integrated with OTM is around 58.36%, only 2.48% lower than that of the system without CO2 capture (60.84%) but 0.96% higher than that of the zero CO2 emission atmospheric pressure SOFC hybrid system integrated with the cryogenic air separation unit. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
2.
A new zero CO2 emission solid oxide fuel cell (SOFC) hybrid power system integrated with the oxygen ion transport membrane using CO2 as sweep gas is proposed in this paper. The pure oxygen is picked up from the cathode outlet gas by the oxygen ion transport membrane with CO2 as sweep gas; the oxy‐fuel combustion mode in the afterburner of SOFC is employed. Because the combustion product gas only consists of CO2 and steam, CO2 is easily captured with lower energy consumption by the condensation of steam. With the aspen plus soft, this paper builds the simulation model of the overall SOFC hybrids system with CO2 capture. The exergy loss distributions of the overall system are analyzed, and the effects of the key operation parameters on the overall system performance are also investigated. The research results show that the new system still has a high efficiency after CO2 recovery. The efficiency of the new system is around 65.03%, only 1.25 percentage points lower than that of the traditional SOFC hybrid power system(66.28%)without CO2 capture. The research achievements from this paper will provide the valuable reference for further study on zero CO2 emission SOFC hybrid power system with higher efficiency. Copyright © 2013 John Wiley & Sons, Ltd. 相似文献
3.
4.
A new comprehensive techno‐economic analysis method for power generation systems with CO2 capture is proposed in this paper. The correlative relationship between the efficiency penalty, investment increment, and CO2 avoidance cost is established. Through theoretical derivation, typical system analysis, and variation trends investigation, the mutual influence between technical and economic factors and their impacts on the CO2 avoidance cost are studied. At the same time, the important role that system integration plays in CO2 avoidance is investigated based on the analysis of a novel partial gasification CO2 recovery system. The results reveal that for the power generation systems with CO2 capture, the efficiency penalty not only affects the costs on fuel, but the incremental investment cost for CO2 capture (U.S.$ kW−1) as well. Consequently, it will have a decisive impact on the CO2 avoidance cost. Therefore, the added attention should be paid to improve the technical performance in order to reduce the efficiency penalty in energy system with CO2 capture and storage. Additionally, the system integration may not only decrease the efficiency penalty, but also simplify the system structure and keep the investment increment at a low level, and thereby it reduces the CO2 avoidance cost significantly. For example, for the novel partial gasification CO2 recovery system, owing to system integration, its efficiency can reach 42.2%, with 70% of CO2 capture, and its investment cost is only 87$ kW−1 higher than that of the reference IGCC system, thereby the CO2 avoidance cost is only 6.23$ t−1 CO2. The obtained results provide a comprehensive technical–economical analysis method for energy systems with CO2 capture useful for reducing the avoidance costs. Copyright © 2009 John Wiley & Sons, Ltd. 相似文献
5.
Recovery of CO2 with monoethanolamine (MEA) and hot potassium carbonate (K2CO3) absorption processes in an integrated gasification combined cycle (IGCC) power plant was studied for the purpose of development of greenhouse gas control technology. Based on energy and exergy analysis of the two systems, improvement options were provided to further reduce energy penalty for the CO2 separation in the IGCC system. In the improvement options, the energy consumption for CO2 separation is reduced by about 32%. As a result, the thermal efficiency of IGCC system is increased by 2.15 percentage‐point for the IGCC system with MEA absorption, and by 1.56 percentage‐point for the IGCC system with K2CO3 absorption. Copyright © 2004 John Wiley & Sons, Ltd. 相似文献
6.
7.
Post‐combustion CO2 capture using monoethanolamine (MEA) is a mature technology; however, the high energy input requirements for solvent regeneration are still a challenge for MEA‐based CO2 capture. In this paper, a novel approach is presented in which a conventional CO2 absorption–desorption system is integrated with capacitive deionization (CDI) in such a way to minimize the heat duty requirement of the stripper. The CO2‐rich solution drawn from the absorber column is first sent to CDI where ionic species are adsorbed at oppositely charged electrodes during the charging cycle, and an ion‐free solution is sent back to the absorber. The adsorbed ions released during the regeneration cycle are sent to the stripper column. The concentrated solution from the CDI process that was sent to the stripper required low heat duty to regenerate the solvent because of the high CO2 loading of the solution. The feasibility of the suggested modelling technique is verified at various stripper inlet temperatures and lean CO2 loadings. The results indicate that 10–45% of the total energy supplied to the stripper can be conserved at a lean CO2 loading of 0.0000–0.0323 using the suggested process model. Moreover, the required size of the stripper column will be small due to the small volume of the concentrated ionic solutions from the CDI cell, eliminating the initial cost of the CO2 capture system. Copyright © 2014 John Wiley & Sons, Ltd. 相似文献
8.
A CO2‐capturing H2O turbine power generation system based on oxy‐fuel combustion method is proposed to decrease CO2 emission from an existing thermal power generation system (TPGS) by utilizing steam produced in the TPGS. A high efficient combined cycle power generation system (CCPS) with reheat cycle is adopted as an example of existing TPGSs into which the proposed system is retrofitted. First, power generation characteristics of the proposed CO2‐capturing system, which requires no modification of the CCPS itself, are estimated. It is shown through simulation study that the proposed system can reduce 26.8% of CO2 emission with an efficiency decrease by 1.20% and an increase power output by 23.2%, compared with the original CCPS. Second, in order to improve power generation characteristics and CO2 reduction effect of the proposed system, modifications of the proposed system are investigated based on exergetic flow analyses, and revised systems are proposed based on the obtained results. Finally, it is shown that a revised proposed system, which has the same turbine inlet temperature as the CCPS, can increase power output by 33.6%, and reduce 32.5% of CO2 emission with exergetic efficiency decrease by 1.58%, compared with the original CCPS. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
9.
Detailed analyses based on mass and energy balances of lignite‐fired air‐blown gasification‐based combined cycles with CO2 pre‐combustion capture are presented and discussed in this work. The thermodynamic assessment is carried out with a proprietary code integrated with Aspen Plus® to carefully simulate the selective removal of both H2S and CO2 in the acid gas removal station. The work focuses on power plants with two combustion turbines, with lower and higher turbine inlet temperatures, respectively, as topping cycle. A high‐moisture lignite, partially dried before feeding the air‐blown gasification system, is used as fuel input. Because the raw lignite presents a very low amount of sulfur, a particular technique consisting of an acid gas recycle to the absorber, is adopted to fulfill the requirements related to the presence of H2S in the stream to the Claus plant and in the CO2‐rich stream to storage. Despite the operation of the H2S removal section representing a significant issue, the impact on the performance of the power plant is limited. The calculations show that a significant lignite pre‐drying is necessary to achieve higher efficiency in case of CO2 capture. In particular, considering a wide range (10–30 wt.%) of residual moisture in the dried lignite, higher heating value (HHV) efficiency presents a decreasing trend, with maximum values of 35.15% and 37.12% depending on the type of the combustion turbine, even though the higher the residual moisture in the dried coal, the lower the extraction of steam from the heat recovery steam cycle. On the other hand, introducing the specific primary energy consumption for CO2 avoided (SPECCA) as a measure of the energy cost related to CO2 capture, lower values were predicted when gasifying dried lignite with higher residual moisture content. In particular, a SPECCA value as low as 2.69 MJ/kgCO2 was calculated when gasifying lignite with the highest (30 wt.%) residual moisture content in a power plant with the advanced combustion turbine. Ultimately, focusing on the power plants with the advanced combustion turbine, air‐blown gasification of lignite brings about a reduction in HHV efficiency equal to almost 1.5 to 2.8 percentage points, depending on the residual moisture in the dried lignite, if compared with similar cases where bituminous coal is used as fuel input. Copyright © 2016 John Wiley & Sons, Ltd. 相似文献
10.
M. A. Habib H. M. Badr S. F. Ahmed R. Ben‐Mansour K. Mezghani S. Imashuku G. J. la O' Y. Shao‐Horn N. D. Mancini A. Mitsos P. Kirchen A. F. Ghoneim 《国际能源研究杂志》2011,35(9):741-764
Fossil fuels provide a significant fraction of the global energy resources, and this is likely to remain so for several decades. Carbon dioxide (CO2) emissions have been correlated with climate change, and carbon capture is essential to enable the continuing use of fossil fuels while reducing the emissions of CO2 into the atmosphere thereby mitigating global climate changes. Among the proposed methods of CO2 capture, oxyfuel combustion technology provides a promising option, which is applicable to power generation systems. This technology is based on combustion with pure oxygen (O2) instead of air, resulting in flue gas that consists mainly of CO2 and water (H2O), that latter can be separated easily via condensation, while removing other contaminants leaving pure CO2 for storage. However, fuel combustion in pure O2 results in intolerably high combustion temperatures. In order to provide the dilution effect of the absent nitrogen (N2) and to moderate the furnace/combustor temperatures, part of the flue gas is recycled back into the combustion chamber. An efficient source of O2 is required to make oxy‐combustion a competitive CO2 capture technology. Conventional O2 production utilizing the cryogenic distillation process is energetically expensive. Ceramic membranes made from mixed ion‐electronic conducting oxides have received increasing attention because of their potential to mitigate the cost of O2 production, thus helping to promote these clean energy technologies. Some effort has also been expended in using these membranes to improve the performance of the O2 separation processes by combining air separation and high‐temperature oxidation into a single chamber. This paper provides a review of the performance of combustors utilizing oxy‐fuel combustion process, materials utilized in ion‐transport membranes and the integration of such reactors in power cycles. The review is focused on carbon capture potential, developments of oxyfuel applications and O2 separation and combustion in membrane reactors. The recent developments in oxyfuel power cycles are discussed focusing on the main concepts of manipulating exergy flows within each cycle and the reported thermal efficiencies. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
11.
Medhat A. Nemitallah Ahmed A. Abdelhafez Asif Ali Ibrahim Mansir Mohamed A. Habib 《国际能源研究杂志》2019,43(14):7790-7822
The use of fossil fuel is expected to increase significantly by midcentury because of the large rise in the world energy demand despite the effective integration of renewable energies in the energy production sector. This increase, alongside with the development of stricter emission regulations, forced the manufacturers of combustion systems, especially gas turbines, to develop novel combustion techniques for the control of NOx and CO2 emissions, the latter being a greenhouse gas responsible for more than 60% to the global warming problem. The present review addresses different burner designs and combustion techniques for clean power production in gas turbines. Combustion and emission characteristics, flame instabilities, and solution techniques are presented, such as lean premixed air‐fuel (LPM) and premixed oxy‐fuel combustion techniques, and the combustor performance is compared for both cases. The fuel flexibility approach is also reviewed, as one of the combustion techniques for controlling emissions and reducing flame instabilities, focusing on the hydrogen‐enrichment and the integrated fuel‐flexible premixed oxy‐combustion approaches. State‐of‐the‐art burner designs for gas turbine combustion applications are reviewed in this study, including stagnation point reverse flow (SPRF) burner, dry low NOx (DLN) and dry low‐emission (DLE) burners, EnVironmental burners (including EV, AEV, and SEV burners), perforated plate (PP) burner, and micromixer (MM) burner. Special emphasis is made on the MM combustor technology, as one of the most recent advances in gas turbines for stable premixed flame operation with wide turndown and effective control of NOx emissions. Since the generation of pure oxygen is prerequisite to oxy‐combustion, oxygen‐separation membranes became of immense importance either for air separation for clean oxy‐combustion applications or for conversion/splitting of the effluent CO2 into useful chemical and energy products. The different carbon‐capture technologies, along with the most recent carbon‐utilization approaches towards CO2 emissions control, are also reviewed. 相似文献
12.
Carbon capture and storage from flue gases is the most common method to reduce greenhouse gas emissions. Using a primary amine as the solvent of CO2 capture unit is popular because of its high activity and ability to be used for streams with low concentration and low partial pressure of CO2. Monoethanolamine(MEA) and Diglycolamine(DGA) are the most common kinds of primary amines which have been traditionally used in many natural gas sweetening plants. In this research, the capture plant has been designed for these two solvents at various CO2 concentrations in the feed flue gas. This paper proposes different possible alters to overcome the high energy requirements of capture plant. It also presents the results of technical evaluation of different parameters, in order to design an actual plant with minimum energy requirement. The results of different parameters show that for DGA solvent, there will be an improvement in overall energy usage in the capture plant rather than MEA for some special cases. To gain the practical results, actual stages have been used for absorber and stripper instead of equilibrium stages. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
13.
Aristide Giuliano Massimo Poletto Diego Barletta 《International Journal of Hydrogen Energy》2018,43(41):19279-19292
The CO2 capture in Integrated Gasification Combined Cycle (IGCC) plants causes a significant increase of the cost of electricity (COE) and thus determines high CO2 mitigation cost (cost per ton of avoided CO2 emissions). In this work the economic sustainability of the co-production of pure hydrogen in addition to the electricity production was assessed by detailed process simulations and a techno-economic analysis. To produce pure hydrogen a Water Gas Shift reactor and a Selexol® process was combined with H2 selective palladium membranes. This innovative process section was compared with the more conventional Pressure Swing Adsorption in order to produce amount of pure hydrogen up to 20% of the total hydrogen available in the syngas.Assuming for a base case a hydrogen selling price of 3 €/kg and a palladium membrane cost of 9200 €/m2, a cost of electricity (COE) of 64 €/MWh and a mitigation cost of 20 €/tonCO2 were obtained for 90% captured CO2 and 10% hydrogen recovery. An increase of the hydrogen recovery up to 20% determines a reduction of the COE and of the mitigation cost to 50 €/MWh and 5 €/tonCO2, respectively. A sensitivity analysis showed that even a 50% increase of cost of the membrane per unit surface could determine a COE increase of only about 10% and a maximum increase of the mitigation cost of further 5 €/tonCO2. 相似文献
14.
A promising scheme for coal-fired power plants in which biomass co-firing and carbon dioxide capture technologies are adopted and the low-temperature waste heat from the CO2 capture process is recycled to heat the condensed water to achieve zero carbon emission is proposed in this paper. Based on a 660 MW supercritical coal-fired power plant, the thermal performance, emission performance, and economic performance of the proposed scheme are evaluated. In addition, a sensitivity analysis is conducted to show the effects of several key parameters on the performance of the proposed system. The results show that when the biomass mass mixing ratio is 15.40% and the CO2 capture rate is 90%, the CO2 emission of the coal-fired power plant can reach zero, indicating that the technical route proposed in this paper can indeed achieve zero carbon emission in coal-fired power plants. The net thermal efficiency decreases by 10.31%, due to the huge energy consumption of the CO2 capture unit. Besides, the cost of electricity (COE) and the cost of CO2 avoided (COA) of the proposed system are 80.37 $/MWh and 41.63 $/tCO2, respectively. The sensitivity analysis demonstrates that with the energy consumption of the reboiler decreasing from 3.22 GJ/tCO2 to 2.40 GJ/ tCO2, the efficiency penalty is reduced to 8.67%. This paper may provide reference for promoting the early realization of carbon neutrality in the power generation industry. 相似文献
15.
The utility of polyamine-based solvent-activators for the possible application in postcombustion CO2 capture technology has drawn considerable attention recently owing to its higher loading capacity as well as superior kinetics. The current work involves a comprehensive experimental cum theoretical investigation on the equilibrium solubility of CO2 pertaining to aqueous N-(3-aminopropyl)-1,3-propanediamine and its blends with N-methyldiethanolamine and 2-amino-2-methyl-1-propanol. The analysis was conducted within the operating temperature and CO2 partial pressure range of 303.2-323.2 K and 2-200 kPa, respectively. Two different mathematical models based on nonrigorous approaches such as equilibrium based modified Kent-Eisenberg (KE) model and a multilayer feedforward neural network model have been developed to correlate the CO2 solubility data over a wide range of experimental conditions. Both the model predictions are well-validated with the experimental results. The reaction scheme as well as the prevalence of important reaction products was further confirmed with qualitative 13C NMR as well as ATR-FTIR analysis. Apart from these some of the important thermally induced transport properties viz, density, viscosity, and surface tension of the aqueous single and blended systems were measured and correlated with various consistent empirical models such as Redlich-Kister and Grunberg-Nissan model while surface tension data are modeled using temperature-based multiple linear regression technique. 相似文献
16.
This work reports a newly proposed system for electrical energy storage. The new system combines a direct open nitrogen (cryogen) expansion cycle with a natural gas‐fuelled closed Brayton cycle and the CO2 produced in the system is captured in the form of dry ice. Thermodynamic analyses are carried out on the system under the baseline conditions of 1 kg s?1 natural gas, a combustor operating pressure of 8 bars and a cryogen topping pressure of 100 bars. The results show that the exergy efficiency of the proposed system is as high as 64% under the baseline conditions, whereas the corresponding electricity storage efficiency is about 54%. A sensitivity analysis has also been carried out on the main operating conditions. The results indicate that the baseline performance can be enhanced by increasing the gas turbine (GT) inlet temperature, decreasing the approach temperature of the heat exchange processes, operating the combustor at an optimal pressure of ~7 bars and operating the cryogen topping pressure at ~90 bars. Further enhancement can be achieved by increasing the isentropic efficiency of the GT and the liquefaction process. The results of this work also suggest that the power capacity installation of peak‐load units and fuel consumption could be reduced by as much as 50% by using the newly proposed system. Further work is suggested for an economic analysis of the system. Copyright © 2010 John Wiley & Sons, Ltd. 相似文献
17.
A novel solid oxide fuel cell (SOFC)/gas turbine (GT) hybrid cycle system with CO2 capture is proposed based on a typical topping cycle SOFC/GT hybrid system. The H2 gas is separated from the outlet mixture gas of SOFC1 anode by employing the advanced ceramic proton membrane technology, and then, it is injected into SOFC2 to continue a new electrochemical reaction. The outlet gas of SOFC1 cathode and the exhaust gas from SOFC2 burn in the afterburner 1. The combustion gas production of the afterburner1 expands in the turbine 1. The outlet gas of SOFC1 anode employs the oxy‐fuel combustion mode in the afterburner 2 after H2 gas is separated. Then, the combustion gas production expands in the turbine 2. To ensure that the flue gas temperature does not exceed the maximum allowed turbine inlet temperature, steam is injected into the afterburner 2. The outlet gas of the afterburner 2 contains all the CO2 gas of the system. When the steam is removed by condensation, the CO2 gas can be captured. The steam generated by the waste heat boiler is used to drive a refrigerator and make CO2 gas liquefied at a lower temperature. The performance of the novel quasi‐zero CO2 emission SOFC/GT hybrid cycle system is analyzed with a case study. The effects of key parameters, such as CO2 liquefaction temperature, hydrogen separation rate, and the unit oxygen production energy consumption on the new system performance, are investigated. Compared with the other quasi‐zero CO2 emission power systems, the new system has the highest efficiency of around 64.13%. The research achievements will provide the valuable reference for further study of quasi‐zero CO2 emission power system with high efficiency. Copyright © 2011 John Wiley & Sons, Ltd. 相似文献
18.
A natural gas (NG) fired power plant is designed with virtually zero emissions of pollutants, including CO2. The plant operates in a gas turbine-steam turbine combined cycle mode. NG is fired in highly enriched oxygen (99.7%) and recycled CO2 from the flue gas. Liquid oxygen (LOX) is supplied by an on-site air separation unit (ASU). By cross-integrating the ASU with the CO2 capture unit, the energy consumption for CO2 capture is significantly reduced. The exergy of LOX is used to liquefy CO2 from the flue gas, thereby saving compression energy and also delivering product CO2 in a saleable form. By applying a new technique, the gas turbine efficiency is increased by about 2.9%. The net thermal efficiency (electricity out/heat input) is estimated at 45%, compared to a plant without CO2 capture of 54%. However, the relatively modest efficiency loss is amply compensated by producing saleable byproducts, and by the virtue that the plant is pollution free, including NOx, SO2 and particulate matter. In fact, the plant needs no smokestack. Besides electricity, the byproducts of the plant are condensed CO2, NO2 and Ar, and if operated in cogeneration mode, steam. 相似文献
19.
《International Journal of Hydrogen Energy》2019,44(14):7137-7148
IGCC is a pre-combustion technology that can be effectively used to produce both hydrogen and electricity while reducing the greenhouse gas (GHG) emissions. Two process models are developed in Aspen Plus® software and are compared techno-economically. The conventional design of IGCC process is taken as case 1, whereas, case 2 represents the conceptual design of sequential integration of reforming model with the gasification unit to enhance the syngas yield. The case 2 utilizes the steam generated in the gasification process to sustain the methane reforming process which consequently enhances both the H2 production capacity and cold gas efficiency. It has been analyzed from results that case 2 can enhance the process performance by 4.77% and economics in terms of cost of electricity by 5.9% compared to the conventional process. However, the utilization of natural gas in the case 2 is considered as a standalone fuel so the process performance of NGCC power plants has been also incorporated to ensure the realistic analysis. The results also showed that case 2 design offers 3.9% higher process performance than the cumulative (IGCC + NGCC) processes, respectively. Moreover, the CO2 specific emissions and LCOE for the case 2 is also lower than the case. 相似文献
20.
In this article, a novel cycle configuration has been studied, termed the extended chemical looping combustion integrated in a steam‐injected gas turbine cycle. The products of this system are hydrogen, heat, and electrical power. Furthermore, the system inherently separates the CO2 and hydrogen that is produced during the combustion. The core process is an extended chemical looping combustion (exCLC) process which is based on classical chemical looping combustion (CLC). In classical CLC, a solid oxygen carrier circulates between two fluidized bed reactors and transports oxygen from the combustion air to the fuel; thus, the fuel is not mixed with air and an inherent CO2 separation occurs. In exCLC the oxygen carrier circulates along with a carbon carrier between three fluidized bed reactors, one to oxidize the oxygen carrier, one to produces and separate the hydrogen, and one to regenerate the carbon carrier. The impacts of process parameters, such as flowrates and temperatures have been studied on the efficiencies of producing electrical power, hydrogen, and district heating and on the degree of capturing CO2. The result shows that this process has the potential to achieve a thermal efficiency of 54% while 96% of the CO2 is captured and compressed to 110 bar. Copyright © 2005 John Wiley & Sons, Ltd. 相似文献