首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, the performance of two solar domestic hot waters (SDHW) with drain water heat recovery (DWHR) units is investigated. Both SDHW systems are recently installed at the Archetype Sustainable Twin Houses at Kortright Center, Vaughan, Ontario. The first SDWH system in House A consists of a flat plate solar thermal collector in combination with a gas boiler and a DWHR unit. The second SDHW system in House B includes an evacuated tube solar collector, an electric tank, and a DWHR unit. Both systems are modeled in TRNSYS, and the models are validated by experimental data. The addition of the DWHR and the flat‐plate solar thermal collector would result in 1831 kWh of annual energy saving in House A. While the addition of the DWHR and the evacuated tube collector in House B would result in an annual energy saving of 1771 kWh. Subsequently, the models are used to investigate the performance of similar systems for five major Canadian cities of Halifax, Montreal, Toronto, Edmonton, and Vancouver. The conjunctions of solar thermal collectors with DWHR units are found most beneficial in Edmonton. It is also noted from experimental and simulated results that flat‐plate solar collector‐based water heater produced more thermal energy than the system based on the evacuated tube solar collector for all major Canadian cities. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
A hybrid solar hot water and Bi2Te3-based thermoelectric generator (TEG) unit using a heat pipe evacuated tube collector with mini-compound parabolic concentrator (mini-CPC) is proposed. In this unit, the heat from the heat pipe evacuated tube solar collector is transferred to the hot side of TEG. Simultaneously, water cooling is used at the cold side to maintain the temperature difference. Electricity is generated by TEG and the remaining heat is transferred to water at the same time. This paper investigates how to convert excess solar heat into electricity more effectively. A mathematical model regarding this unit is developed and validated. It is found that the mini-CPC can significantly improve the electrical efficiency. The optimal thermal conductance of TEG is determined, which could make the best use of excess solar heat. The excess solar heat can be effectively converted into electricity when ZT of Bi2Te3 can be improved from 100 °C to 200 °C. Using TEG with ZT = 1.0 and a geometrical concentrating ratio at 0.92, electrical and thermal efficiencies of this system are predicted to be 3.3% and 48.6% when solar radiation and water temperature are 800 Wm−2 and 20 °C, respectively.  相似文献   

3.
真空玻璃盖板热管平板式太阳能热水器的研制   总被引:4,自引:0,他引:4  
介绍了研究成功的采用真空玻璃盖板的热管平板式太阳能热水器,测试了其性能,并与全玻璃真空管太阳能热水器和蜂窝热管太阳能热水器进行了比较。实测得到,真空玻璃盖板热管平板式热水器的日平均效率比后两分别大13.3%和6.5%,平均热损系数比后两分别小52.5%和21.5%。真空玻璃盖板平板式太阳能热水器性能优越,有很好的应用前景。  相似文献   

4.
袁航  张红  许辉  纪腾飞 《水电能源科学》2013,31(10):253-256
为提高太阳能热水系统的输出温度,将CPC聚光技术应用于热管式真空集热管中,开发了一种新型的CPC内聚光式热管集热管。对该集热管建立数学模型,模拟计算其传热过程,获得了导热肋片温度、热管冷凝段温度等参数随太阳辐射强度的变化规律,并通过试验验证了数学模型的可靠性;与常规热管式真空管集热管传热特性相对比,证实了该集热管可大幅提高太阳能热水器输出温度。  相似文献   

5.
An evacuated tubular solar collector was fabricated from acrylics for improved resistance to shattering. A plasmatron was employed to apply a thin gas-barrier coating to the surfaces of the plastic tube to prevent/alleviate gas infiltration. Experiments were conducted to investigate the effect of vacuum level on the performance of the non-glass vacuum-tube solar collector. Inserted in the evacuated tube was a finned heat pipe for solar energy collection and heat transfer to a water tank. Time variations of temperatures on the heat pipe surface and in the water tank were recorded and analyzed for different degrees of vacuum in the collector. The steady-state temperature of the non-glass collector was compared to that of a commercial glass vacuum-tube collector to assess the feasibility of the use of evacuated plastic tubes for solar energy collection. A simple analytical model was also developed to assist in understanding and analyzing the transient behavior and heat losses of the vacuum-tube solar collector.  相似文献   

6.
There are various types of solar water heater system available in the commercial market to fulfill different customers’ demand, such as flat plate collector, concentrating collector, evacuated tube collector and integrated collector storage. A cost effective cum easy fabricated V-trough solar water heater system using forced circulation system is proposed. Integrating the solar absorber with the easily fabricated V-trough reflector can improve the performance of solar water heater system. In this paper, optical analysis, experimental study and cost analysis of the stationary V-trough solar water heater system are presented in details. The experimental result has shown very promising results in both optical efficiency of V-trough reflector and the overall thermal performance of the solar water heater.  相似文献   

7.
Phase change materials (PCMs) have good properties such as high thermal capacity and constant phase change temperature. Their potential use in solar energy storage is promising. Tests of exposure and constant flow rate are performed to investigate the thermal performance of a domestic solar water heater with solar collector coupled phase-change energy storage (DSWHSCPHES). Due to the low thermal conductivity and high viscosity of PCM, heat transfer in the PCM module is repressed. The thermal performance of the DSWHSCPHES under exposure is inferior to that of traditional water-in-glass evacuated tube solar water heaters (TWGETSWH) with an identical collector area. DSWHSCPHES also performs more efficiently with a constant flow rate than under the condition of exposure. Radiation and initial water temperature have impacts on system performance; with the increase of proportion of diffuse to global radiation and/or initial water temperature, system performance deteriorates and vice versa.  相似文献   

8.
Non-concentrated evacuated tube heat pipe solar collectors have been reported to show higher fluid temperatures with improved thermal performance in the low to medium temperature range (?60 °C) due to low heat losses but suffer higher heat losses at the medium to higher temperature range (?80 °C) which reduces their efficiency compared to concentrated evacuated tube heat pipe solar collectors. To operate as stand-alone systems capable of attaining temperatures in the range of 70-120 °C, an innovative concentrator augmented solar collector can be an attractive option. The performance of a combined low-concentrator augmented solar collector in an array of evacuated tube heat pipe solar collectors defined as concentrator augmented evacuated tube heat pipe array (CAETHPA) and an array of evacuated tube heat pipe collectors (ETHPC) were tested and compared and results presented in this paper. The analysis of the experimental data allows concluding that the use of a CAETHPA is a more efficient alternative for integrating renewable energy into buildings with higher fluid temperature response, energy collection and lower heat loss coefficient compared to the use of evacuated tube heat pipe collector array (ETHPA).  相似文献   

9.
The thermal performance of thermosyphon flat-plate solar water heater with a mantle heat exchanger was investigated to show its applicability in China. The effect on the performance of the collector of using a heat exchanger between the collector and the tank was analyzed. A “heat exchanger penalty factor” for the system was determined and energy balance equation in the system was presented. Outdoor tests of thermal performance of the thermosyphon flat-plate solar water heater with a mantle heat exchanger were taken in Kunming, China. Experimental results show that mean daily efficiency of the thermosyphon flat plate solar water heater with a mantle heat exchanger with 10 mm gap can reach up to 50%, which is lower than that of a thermosyphon flat-plate solar water heater without heat exchanger, but higher than that of a all-glass evacuated tubular solar water heater.  相似文献   

10.
全玻璃真空管太阳能热水器影响因素的数值模拟研究   总被引:1,自引:0,他引:1  
利用热能工程专业基础知识和场协同原理,结合计算流体力学配套商业软件,对反光板、倾斜角度、辐照强度、集热管尺寸和水箱大小等因素,影响全玻璃真空管太阳能热水器的传热传质特性进行了数值模拟研究和可视化分析,通过数值模拟研究给出了全玻璃真空管太阳能热水器的的最佳条件。  相似文献   

11.
In the research presented in this paper the thermal performance of a solar water heater combined with a heat pump is studied. A solar collector was modified from corrugated metal roofing with a copper tube attached beneath. The performance of the solar water heater was tested, and models for the collector efficiency and storage tank were developed and used for the evaluation of their performance when combined with a heat pump system.  相似文献   

12.
为对比分析自然循环竖排管、强制循环竖排管和强制循环横排管3种集热方式对全玻璃真空管太阳热水器有效集热量、平均有效集热效率和瞬时有效集热量等的影响,以3组30支Φ58×1800 mm的全玻璃真空管太阳热水器为研究对象,在兰州地区搭建试验平台,在太阳辐射为19.0~25.7 MJ/m2,风速为0.5~1.3 m/s,平均环境温度为8.9~12.0℃的情况下进行连续5 d的试验。试验结果表明:自然循环竖排管热水器有效集热量和平均有效集热效率比强制循环竖排管热水器分别高6.6~8.3 MJ、10.8%~14.8%;强制循环竖排管热水器有效集热量和平均有效集热效率比强制循环横排管热水器分别高0.9~3.4 MJ、1.6%~5.0%。从有效集热面积、真空管内部换热强度、循环管道热损失共3个方面解释不同集热方式产生差异的原因。  相似文献   

13.
设计一种使用简化CPC(非追踪式复合抛物线聚光板)集热板和新型开放式热管组合的全真空玻璃集热管中温太阳能空气集热装置。每个集热单元包括一个简化CPC集热板,一根全真空玻璃集热管,在玻璃集热管内安装一个铜管和外部的一个蒸汽包连接构成一个开放式热管结构。蒸汽包内安装螺旋换热管加热通过换热管的流动空气工质。分别使用水和CuO纳米流体作为热管工质,以空气作为集热工质,对热管式中温空气集热器的传热特性进行了实验研究。分析了不同工作压力、不同工质及纳米流体质量分数对热管集热传热特性的影响,详细比较了热管水工质和纳米流体工质在集热传热性能上的优劣。试验结果表明:本系统只使用2根玻璃集热管构成集热器,空气最大出口温度在夏天可达到200℃,在冬天可接近160℃,系统平均集热效率达到0.4以上,整个系统表现了良好的中温集热特性。以纳米流体为工质的热管热阻比以水为工质时平均降低了20%左右  相似文献   

14.
全玻璃真空管太阳热水器数值模拟研究   总被引:2,自引:0,他引:2  
基于FLUENT软件及TECPLOT软件,通过对均匀加热条件下的全玻璃真空管太阳热水器内流场及温度场的数值模拟,研究了热水器的对流换热与传质过程;分析了集热管倾角、真空管双面受热对热水器内流场及温度场的影响和真空管与水箱连接处、垂直等温面上的流体速度、温度分布。结果表明,在真空管与水箱连接处出现随机的涡流和真空管内出现分段的小环流,对传热传质过程不利,特别是对于带反射板的双面受热的集热器,应采取措施确保管内对流换热流动的有序性。建议加装导流板,并初步探讨了导流板的长度,确立了最佳板长模拟结构,为后续的理论研究与试验打下基础。  相似文献   

15.
Heat transfer fluids (HTFs) play an essential role in solar water heating systems by transferring collected energy from the collector, perhaps via a heat exchanger to the store. If the store is at a much higher temperature than the fluid, the store acts as a heat source, whereas the fluid acts as a coolant, thus reversing the collection process. This action must be avoided through good controls. Experimental performance analysis and comparison of three different types of solar collectors; a non‐concentrating evacuated tube heat pipe and two concentrating single‐sided and double‐sided coated evacuated tube heat pipes collectors are installed and tested using Dow‐corning 550® silicon oil as an HTF under the same operating in‐door control conditions, and results are presented in this paper. The performance of these solar collectors was determined from the overall increase in inlet and outlet fluid temperatures, overall fluid temperature differential, energy collection rate, optical efficiencies, and thermal performances. Temperature differential, energy, and collection efficiency diagrams plotted against time were used to represent and compare the solar collectors. Finally, a comparative analysis of these solar collectors using either pressurised water or Dow‐corning 550 silicon oil as HTF is presented. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, a semi-dynamic model of a concentric evacuated tube solar water heater is developed to investigate the effect of working fluid design on technical and economic performance of a typical solar water heater in a household located at Sydney, Australia. The model is validated against experimental data. The effects of using water, ammonia, acetone, methanol, and pentane as working fluids of the built-in heat pipe are discussed comparatively during a typical day of operation. Water is identified as the best working fluid amongst the others. The variation of thermal resistance and critical heat flux of the heat pipes due to change in weather condition is presented and discussed. Three hypothetical working fluids are then proposed for further analysis which led to a working fluid design superior to water in performance. It is shown that the performance of the solar water heater can be significantly enhanced up to 28% and 50% from economical and technical points of view, respectively.  相似文献   

17.
This study investigates the load characteristics of heat pipe thermoelectric solar collector (HPTSC) in practice. Heat pipe thermoelectric solar collector converts the heat generated by the Sun directly into electrical energy and produces hot water as well. The maximum power in HPTSC is obtained when the internal resistance of the thermoelectric module is equal to the load resistance. It has been observed to be possible to produce both hot water and electricity by improving available solar collectors or producing new generation HPTSC. While it is possible to generate an electrical power of 160 W from a HPTSC of one square meter using the thermoelectric method, the power produced with an average photovoltaic panel with the same area is only 132 W. Accordingly, HPTSC is a superior alternative not only to available solar collectors, but also to available PV panels. HPTSC, involving three different technologies, is environmentally friendly and certainly a product that allows for more efficient use of solar energy.  相似文献   

18.
A transparent honeycomb insulated ground integrated‐collector‐storage system has been investigated for the engineering design and solar thermal performance. The system consists of a network of pipes embedded in a concrete slab whose surface is blackened and covered with transparent insulation materials (TIM) and the bottom is insulated by the ground. Heat may be retrieved by the flow of fluid through the pipe. A simulation model has been developed; it involves the solution of the two‐dimensional transient heat conduction equation using an explicit finite‐difference scheme. Computational results have been used to determine the effect of such governing parameters as depth as well as pitch of the pipe network and collector material on the thermal performance of the system. The pipe network depth of 10 cm and the TIM cover made of 5 cm compounded honeycomb seem suitable for the proposed system. Solar gain (solar collection efficiency of 30–50% corresponding to collection temperature of 40–60°C) and the diurnal heat storage characteristics of the system are found to be of the right order of magnitude for solar water heating applications. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
An optical evaluation and analysis of an internal low-concentrating evacuated tube heat pipe solar collector designed to enhance the collection of solar radiation for medium temperature applications is presented in this paper. The internal low-concentrating evacuated tube heat pipe solar collector was designed with an acceptance angle of 20° given a geometrical concentration ratio of 2.92. The truncation of the upper part of the reflector giving a geometrical concentration ratio of 1.95 was carried and enabled the internal low-concentrating evacuated tube heat pipe collector to be enclosed by a borosilicate glass tube with 100 mm and 93 mm outer and inner diameters, respectively. Ray trace analysis at different transverse angles determines optical efficiencies, related optical losses and flux distribution on the absorber of the internal low-concentrating evacuated tube heat pipe solar collector. A detailed two dimensional ray trace techniques considering only the direct insolation component predicated overall ray’s acceptance of 93.72% and optical efficiency of 79.13% from transverse angles of 0° to 20°.  相似文献   

20.
This paper describes a solar heat pipe thermoelectric generator (SHP-TEG) unit comprising an evacuated double-skin glass tube, a finned heat pipe and a TEG module. The system takes the advantage of heat pipe to convert the absorbed solar irradiation to a high heat flux to meet the TEG operating requirement. An analytical model of the SHP-TEG unit is presented for the condition of constant solar irradiation, which may lead to different performance characteristics and optimal design parameters compared with the condition of constant temperature difference usually dealt with in other studies. The analytical model presents the complex influence of basic parameters such as solar irradiation, cooling water temperature, thermoelement length and cross-section area and number of thermoelements, etc. on the maximum power output and conversion efficiency of the SHP-TEG. Simulation based on the analytical model has been carried out to study the performance and design optimization of the SHP-TEG.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号