首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study deals with the exergetic performance assessment of a combined heat and power (CHP) system installed in Eskisehir city of Turkey. Quantitative exergy balance for each component and the whole CHP system was considered, while exergy consumptions in the system were determined. The performance characteristics of this CHP system were evaluated using exergy analysis method. The exergetic efficiency of the CHP system was accounted for 38.16% with 49 880 kW as electrical products. The exergy consumption occurred in this system amounted to 80 833.67 kW. The ways of improving the exergy efficiency of this system were also analysed. As a result of these, a simple way of increasing the exergy efficiency of the available CHP system was suggested that the valves‐I–III and the MPSC could be replaced by a 3500 kW‐intermediate pressure steam turbine (IPST). If the IPST is installed to the CHP system (called the modified CHP (MCHP) system), the exergetic efficiency of the MCHP system is calculated to be 40.75% with 53 269.53 kW as electrical products. The exergy consumption is found to be 77 444.14 kW in the MCHP system. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
Energy and exergy analysis comparison of lauric and stearic acid phase‐change material (PCM)–based energy storage system integrated with engine exhaust have been investigated in the present study, which provides more realistic assessment than the conventional energy analysis. On the basis of thermodynamic laws, energy, exergy, charging efficiencies, and availability of PCM thermal storage with various mass fractions have been investigated at engine full load. The exergy saved for PCMs in the overall system is quantified and were compared. The results revealed a considerable enhancement in energy and exergy efficiency for thermal energy storage with lauric acid PCM due to its enhanced thermophysical properties. Energy and exergy of the storage medium for lauric acid PCM with 0.4 kg mass fraction, increased by 68% and 57.5% compared with stearic acid PCM thermal storage integrated with a diesel engine. Also, energy and exergy efficiency of charging and integrating the system with stearic acid PCM decrease with increase in mass fractions. Thus, lauric acid PCM can be used as thermal storage medium at high temperatures for exhaust heat recovery from engines and also an option for green technology.  相似文献   

3.
Kalina循环发电系统是一种典型的低温热源发电系统,具有广阔的应用前景。盐梯度太阳池能够实现连续聚热和跨季节蓄热,可广泛应用于光热发电系统和光热供热系统。文章提出了一种以太阳池储热量为热源的盐梯度太阳池Kalina循环发电系统,并利用Aspen Hysys软件对该系统进行建模。而后根据模拟结果,研究了提热温度、运行压力和氨水浓度对该系统各项性能的影响。此外,还分析了典型工况下,该系统的热力性能。分析结果表明:随着提热温度逐渐升高,盐梯度太阳池Kalina循环发电系统的发电功率、热效率和效率均逐渐增加;随着运行压力逐渐升高,该系统的热效率和效率逐渐升高,并且存在最佳的运行压力1.75 MPa,使得该系统获得最大发电功率;随着氨水浓度逐渐增大,该系统的发电功率也会逐渐增大,但热效率和效率却逐渐降低;当氨水浓度为85%、运行压力为1.75 MPa、提热温度为90℃时,该系统的热效率和效率分别为7.93%,57.59%。  相似文献   

4.
Energy and exergy analyses of an ice-on-coil thermal energy storage system   总被引:1,自引:0,他引:1  
Mehmet Akif Ezan  Aytunç Erek 《Energy》2011,36(11):6375-6386
In this study, energy and exergy analyses are carried out for the charging period of an ice-on-coil thermal energy storage system. The present model is developed using a thermal resistance network technique. First, the time-dependent variations of the predicted total stored energy, mass of ice, and outlet temperature of the heat transfer fluid from a storage tank are compared with the experimental data. Afterward, performance of an ice-on-coil type latent heat thermal energy storage system is investigated for several working and design parameters. The results of a comparative study are presented in terms of the variations of the heat transfer rate, total stored energy, dimensionless energetic/exergetic effectiveness and energy/exergy efficiency. The results indicate that working and design parameters of the ice-on-coil thermal storage tank should be determined by considering both energetic and exergetic behavior of the system. For the current parameters, storage capacity and energy efficiency of the system increases with decreasing the inlet temperature of the heat transfer fluid and increasing the length of the tube. Besides, the exergy efficiency increases with increasing the inlet temperature of the heat transfer fluid and increasing the length of the tube.  相似文献   

5.
《Renewable Energy》2000,19(1-2):135-143
This communication presents a second law analysis based on an exergy concept for a solar thermal power system. Basic energy and exergy analysis for the system components (viz. parabolic trough collector/receiver and Rankine heat engine, etc.) are carried out for evaluating the respective losses as well as exergetic efficiency for typical solar thermal power systems under given operating conditions. It is found that the main energy loss takes place at the condenser of the heat engine part, whereas the exergy analysis shows that the collector–receiver assembly is the part where the losses are maximum. The analysis and results can be used for evaluating the component irreversibilities which can also explain the deviation between the actual efficiency and ideal efficiency of a solar thermal power system.  相似文献   

6.
This paper deals with the utilization of a renewable energy‐based integrated system with the latent heat storage option for building thermal management systems. Both energy and exergy‐based assessments of the current combined system are conducted. For this purpose, phase change material (PCM)‐embedded radiant wall heating system using solar heating and ground source heat pump (GSHP) is studied thermodynamically. Heat is essentially stored within the PCMs as used in the panels to increase the effectiveness. The stored heat is released when the solar energy is not available. In the thermal energy storage analyses, four different PCMs are considered. The present results show that the overall first ‐ law (energy) and second ‐ law (exergy) efficiencies of the PCM‐free radiant heating system are much lower than the case with the PCM‐embedded radiant heating system. Therefore, it is confirmed that the energy efficiency increases from 62% to 87% while the exergy efficiency rises from 14% to 56% with the option where SP26E PCM is employed accordingly.  相似文献   

7.
The development of efficient long-term heat storage systems could significantly increase the use of solar thermal energy for building heating. Among the different heat storage technologies, the absorption heat storage system seems promising for this application. To analyze the potential of this technology, a numerical model based on mass, species, energy, and exergy balances has been developed. The evolution over time of the storage imposes a transient approach. Simulations were performed considering temperature conditions close to those of a storage system used for space heating coupled to solar thermal collectors (as the heat source), with ground source heat exchangers (as the cold source). The transient behavior of the system was analyzed in both the charging and discharging phases. This analysis highlights the lowering of energetic and exergetic performance during both phases, and these phenomena are discussed. The thermal efficiency and the energy storage density of the system were determined, equal to 48.4 % and 263 MJ/m3, respectively. The exergetic efficiency is equal to 15.0 %, and the exergy destruction rate is 85.8 %. The key elements in terms of exergy destruction are the solution storage tank, the generator, and the absorber. The impact of using a solution heat exchanger (SHX) was studied. The risk of the solution crystallizing in the SHX was taken into account. With a SHX, the thermal efficiency of the system can reach 75 %, its storage density was 331 MJ/m3, and its exergetic efficiency and exergy destruction rate was 23.2 and 77.3 %, respectively.  相似文献   

8.
This communication presents second law analysis based on exergy concept for a solar thermal power system. Basic energy and exergy analysis for the system components (viz. parabolic trough collector/receiver and Rankine heat engine etc.) are carried out for evaluating the energy and exergy losses as well as exergetic efficiency for typical solar thermal power system under given operating conditions. Relevant energy flow and exergy flow diagrams are drawn to show the various thermodynamic and thermal losses. It is found that the main energy loss takes place at the condenser of the heat engine part whereas the exergy analysis shows that the collector-receiver assembly is the part where the losses are maximum. The analysis and results can be used for evaluating the component irreversibilities which can also explain the deviation between the actual efficiency and ideal efficiency of solar thermal power system.  相似文献   

9.
In this study, both energetic and exergetic performances of a combined heat and power (CHP) system for vehicular applications are evaluated. This system proposes ammonia-fed solid oxide fuel cells based on proton conducting electrolyte (SOFC-H+) with a heat recovery option. Fuel consumption of combined fuel cell and energy storage system is investigated for several cases. The performance of the portable SOFC system is studied in a wide range of the cell’s average current densities and fuel utilization ratios. Considering a heat recovery option, the system exergy efficiency is calculated to be 60-90% as a function of current density, whereas energy efficiency varies between 60 and 40%, respectively. The largest exergy destructions take place in the SOFC stack, micro-turbine, and first heat exchanger. The entropy generation rate in the CHP system shows a 25% decrease for every 100 °C increase in average operating temperature.  相似文献   

10.
Exergy analysis of micro-organic Rankine heat engines is performed to identify the most suitable engine for driving a small scale reverse osmosis desalination system. Three modified engines derived from simple Rankine engine using regeneration (incorporation of regenerator or feedliquid heaters) are analyzed through a novel approach, called exergy-topological method based on the combination of exergy flow graphs, exergy loss graphs, and thermoeconomic graphs. For the investigations, three working fluids are considered: R134a, R245fa and R600. The incorporated devices produce different results with different fluids. Exergy destruction throughout the systems operating with R134a was quantified and illustrated using exergy diagrams. The sites with greater exergy destruction include turbine, evaporator and feedliquid heaters. The most critical components include evaporator, turbine and mixing units. A regenerative heat exchanger has positive effects only when the engine operates with dry fluids; feedliquid heaters improve the degree of thermodynamic perfection of the system but lead to loss in exergetic efficiency. Although, different modifications produce better energy conversion and less exergy destroyed, the improvements are not significant enough and subsequent modifications of the simple Rankine engine cannot be considered as economically profitable for heat source temperature below 100 °C. As illustration, a regenerator increases the system’s energy efficiency by 7%, the degree of thermodynamic perfection by 3.5% while the exergetic efficiency is unchanged in comparison with the simple Rankine cycle, with R600 as working fluid. The impacts of heat source temperature and pinch point temperature difference on engine’s performance are also examined. Finally, results demonstrate that energy analysis combined with the mathematical graph theory is a powerful tool in performance assessments of Rankine based power systems and permits meaningful comparison of different regenerative effects based on their contribution to systems improvements.  相似文献   

11.
In this paper, the thermodynamic study of a combined geothermal power-based hydrogen generation and liquefaction system is investigated for performance assessment. Because hydrogen is the energy of future, the purpose of this study is to produce hydrogen in a clear way. The results of study can be helpful for decision makers in terms of the integrated system efficiency. The presented integrated hydrogen production and liquefaction system consists of a combined geothermal power system, a PEM electrolyzer, and a hydrogen liquefaction and storage system. The exergy destruction rates, exergy destruction ratios and exergetic performance values of presented integrated system and its subsystems are determined by using the balance equations for mass, energy, entropy, energy and exergy and evaluated their performances by means of energetic and exergetic efficiencies. In this regard, the impact of some design parameters and operating conditions on the hydrogen production and liquefaction and its exergy destruction rates and exergetic performances are investigated parametrically. According to these parametric analysis results, the most influential parameter affecting system exergy efficiency is found to be geothermal source temperature in such a way that as geothermal fluid temperature increases from 130 °C to 200 °C which results in an increase of exergy efficiency from 38% to 64%. Results also show that, PEM electrolyzer temperature is more effective than reference temperature. As PEM electrolyzer temperature increases from 60 °C to 85 °C, the hydrogen production efficiency increases from nearly 39% to 44%.  相似文献   

12.
The exergetic efficiency of heat receiver in solar thermal power system is optimized by considering the heat loss outside the receiver and fluid viscous dissipation inside the receiver. The physical models of heat loss and pumping power consumption for solar heat receiver are first proposed, and associated exergetic efficiency is further induced. As the flow velocity rises, the pumping power consumption and heat absorption efficiency significantly rises, and the maximum absorption efficiency and optimal incident energy flux also increase. Along the flow direction of solar receiver, the exergy flux increment and the flow exergy loss almost linearly increase, while the exergetic efficiency varies very slowly at high flow velocity. According to the exergetic efficiency loss from flow viscou’s dissipation, the exergetic efficiency of solar heat receiver will first increase and then decrease with the flow velocity. Because of the coupling effects of heat absorption efficiency and exergetic efficiency from fluid internal energy, the exergetic efficiency of solar heat receiver will approach to the maximum at proper inlet temperature. As a result, the exergetic efficiency of solar heat receiver will reach the maximum at optimal inlet temperature, incident energy flux and flow velocity.  相似文献   

13.
Increasing global energy demand and the continued reliance on non-renewable energy sources, especially in developing countries, will cause continued increases in greenhouse gas emissions unless alternative electricity generation methods are employed. Although renewable energy sources can provide a clean way to produce electricity, the intermittent nature of many existing renewable energy sources, such as energy from the wind or sun, can cause instability in the energy balance. Energy storage systems such as power-to-gas may provide a clean and efficient way to store the overproduced electricity. In this work, a power-to-gas energy storage system coupled with a chemical looping combustion combined-cycle power generation system is proposed to provide base and intermediate load power from the unused electricity from the grid. Enhanced process integration was employed to achieve optimal heat and exergy recovery. The simulation results using ASPEN Plus V8.8 suggest that electric power generation with an overall energy efficiency of 56% can be achieved by using a methane chemical looping combustion power generation process with additional hydrogen produced from a solid oxide electrolysis cell. The proposed system was also evaluated to further improve the system's total energy efficiency by changing the key operating parameters.  相似文献   

14.
Solar-assisted multi-generation systems are eco-friendly with exceptional thermal performance. In the present study, a novel solar-assisted multi-generational system is proposed and investigated for multiple outputs. The proposed system consists of solar tower with heliostat, combined cycle (topping is Brayton cycle, while bottoming is Rankine cycle with reheat and regeneration processes), single effect Lithium-Bromide/water absorption chiller, heat pump, water-based thermal energy storage system and an electrolyzer. The system is integrated with high temperature phase change material (PCM) based thermal storage system for the continuous system operation. The salt PCM KF-MgF2 is selected from the literature having melting temperature of 1280 K with high density and latent heat of fusion. The storage system ensures the stable and continuous working of the system during off sun hours. The aim of the present study is to thermodynamically and exergo-environmentally investigate the performance of PCM based solar driven multi-generation system.The results of the study depict that energy efficiency of single and multi-generation system is approximately 20.93% and 51.62%, while exergy efficiency is almost 22.51% and 53.45%, respectively. Hydrogen production rate and exergetic sustainability index of the proposed system is approximately 0.00742 kg/s and 0.078, respectively. Energy efficiency of multigeneration system is approximately 15.9% and 61% higher than tri-generation and co-generation systems at concentration ratio of 1000. Exergo-environmental impact index decreases to almost 5% by increasing direct normal irradiation, while exergetic sustainability index and exergy stability factor are increased to 125% and 54.2%, accordingly. Finally, energy efficiency of the single generation and multi generation systems are optimized at 23.56% and 56.83%, respectively.  相似文献   

15.
In this paper, a new renewable energy-based cogeneration system for hydrogen and electricity production is developed. Three different methods for hydrogen production are integrated with Rankine cycle for electricity production using solar energy as an energy source. In addition, a simple Rankine cycle is utilized for producing electricity. This integrated system consists of solar steam reforming cycle using molten salt as a heat carrier, solar steam reforming cycle using a volumetric receiver reactor, and electrolysis of water combined with the Rankine cycle. These cycles are simulated numerically using the Engineering Equation Solver (EES) based on the thermodynamic analyses. The overall energetic and exergetic efficiencies of the proposed system are determined, and the exergy destruction and entropy generation rates of all subcomponents are evaluated. A comprehensive parametric study for evaluating various critical parameters on the overall performance of the system is performed. The study results show that both energetic and exergetic efficiencies of the system reach 28.9% and 31.1%, respectively. The highest exergy destruction rates are found for the steam reforming furnace and the volumetric receiver reforming reactor (each with about 20%). Furthermore, the highest entropy generation rates are obtained for the steam reforming furnace and the volumetric receiver reforming reactor, with values of 174.1 kW/K and 169.3 kW/K, respectively. Additional parametric studies are undertaken to investigate how operating conditions affect the overall system performance. The results report that 60.25% and 56.14% appear to be the highest exergy and energy efficiencies at the best operating conditions.  相似文献   

16.
This paper presents an investigation on finite time thermodynamic (FTT) evaluation of a solar‐dish Stirling heat engine. FTTs has been applied to determine the output power and the corresponding thermal efficiency, exergetic efficiency, and the rate of entropy generation of a solar Stirling system with a finite rate of heat transfer, regenerative heat loss, conductive thermal bridging loss, and finite regeneration process time. Further imperfect performance of the dish collector and convective/radiative heat transfer mechanisms in the hot end as well as the convective heat transfer in the heat sink of the engine are considered in the developed model. The output power of the engine is maximized while the highest temperature of the engine is considered as a design parameter. In addition, thermal efficiency, exergetic efficiency, and the rate of entropy generation corresponding to the optimum value of the output power is evaluated. Results imply that the optimized absorber temperature is some where between 850 K and 1000 K. Sensitivity of results against variations of the system parameters are studied in detail. The present analysis provides a good theoretical guidance for the designing of dish collectors and operating the Stirling heat engine system.  相似文献   

17.
A mathematical model for the overall exergetic efficiency of two phase change materials named PCM1 and PCM2 storage system with a concentrating collector for solar thermal power based on finite-time thermodynamics is developed. The model takes into consideration the effects of melting temperatures and number of heat transfer unit of PCM1 and PCM2 on the overall exergetic efficiency. The analysis is based on a lumped model for the PCMs which assumes that a PCM is a thermal reservoir with a constant temperature of its melting point and a distributed model for the air which assumes that the temperature of the air varies in its flow path. The results show that the overall exergetic efficiency can be improved by 19.0-53.8% using two PCMs compared with a single PCM. It is found that melting temperatures of PCM1 and PCM2 have different influences on the overall exergetic efficiency, and the overall exergetic efficiency decreases with increasing the melting temperature of PCM1, increases with increasing the melting temperature of PCM2. It is also found that for PCM1, increasing its number of heat transfer unit can increase the overall exergetic efficiency, however, for PCM2, only when the melting temperature of PCM1 is less than 1150 K and the melting temperature of PCM2 is more than 750 K, increasing the number of heat transfer unit of PCM2 can increase the overall exergetic efficiency. Considering actual application of solar thermal power, we suggest that the optimum melting temperature range of PCM1 is 1000-1150 K and that of PCM2 is 750-900 K. The present analysis provides theoretical guidance for applications of two PCMs storage system for solar thermal power.  相似文献   

18.
This paper investigates the performance of a high temperature Polymer Electrolyte Membrane (PEM) electrolyzer integrated with concentrating solar power (CSP) plant and thermal energy storage (TES) to produce hydrogen and electricity, concurrently. A finite-time-thermodynamic analysis is conducted to evaluate the performance of a PEM system integrated with a Rankine cycle based on the concept of exergy. The effects of solar intensity, electrolyzer current density and working temperature on the performance of the overall system are identified. A TES subsystem is utilized to facilitate continuous generation of hydrogen and electricity. The hydrogen and electricity generation efficiency and the exergy efficiency of the integrated system are 20.1% and 41.25%, respectively. When TES system supplies the required energy, the overall energy and exergy efficiencies decrease to 23.1% and 45%, respectively. The integration of PEM electrolyzer enhances the exergy efficiency of the Rankine cycle, considerably. However, it causes almost 5% exergy destruction in the integrated system due to conversion of electrical energy to hydrogen energy. Also, it is concluded that increase of working pressure and membrane thickness leads to higher cell voltage and lower electrolyzer efficiency. The results indicate that the integrated system is a promising technology to enhance the performance of concentrating solar power plants.  相似文献   

19.
Direct steam generation (DSG) is the process by which steam is directly produced in parabolic trough fields and supplied to a power block. This process simplifies parabolic trough plants and improves cost effectiveness by increasing the permissible temperature of the working fluid. Similar to all solar‐based technologies, thermal energy storage is needed to overcome the intermittent nature of solar. In the present work, an innovative DSG‐based parabolic trough collector (PTC) plant hybridized with a biomass boiler is proposed and analyzed in detail. Two additional configurations comprising indirect steam generation PTC plants were also analyzed to compare their energy and exergy performance. To consider a wide range of operation, the share of biomass input to the hybridized system is varied. Energy and exergy analyses of DSG are conducted and compared with an existing indirect steam generation PTC power plants such as Andasol. The analyses are conducted on a 50 MW regenerative reheat Rankine cycle. The results obtained indicate that the proposed DSG‐based PTC plant is able to increase the overall system efficiency by 3% in comparison with indirect steam generation when linked to a biomass boiler that supplies 50% of the energy.  相似文献   

20.
A combined system model consisting of a high-temperature polymer electrolyte membrane fuel cell (HT-PEMFC), a regenerator and a thermoelectric generator (TEG) is proposed, where the TEG is applied to harness the generated waste heat in the HT-PEMFC for extra electricity production. The TEG considers not only the Seebeck effect and Peltier effect but also the Thomson effect. The mathematical expressions of power output, energy efficiency, exergy destruction rate and exergy efficiency for the proposed system are derived. The energetic and exergetic performance characteristics for the whole system are revealed. The optimum operating ranges for some key performance parameters of the combined system are determined using the maximum power density as the objective function. The combined system maximum power density and its corresponding energy efficiency and exergy efficiency allow 19.1%, 12.4% and 12.6% higher than that of a stand-alone HT-PEMFC, while the exergy destruction rate density is only increased by 8.6%. The system performances are compared between the TEG with and without the Thomson effect. Moreover, the impacts of comprehensive parameters on the system performance characteristics are discussed. The obtained results are helpful in developing and designing such an actual combined system for efficient and clean power production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号