首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We examined the pharmacological profile of 1-aminoindan-1,5-dicarboxylic acid (AIDA), a rigid (carboxyphenyl)glycine derivative acting on metabotropic glutamate receptors (mGluRs). In cells transfected with mGluR1a, AIDA competitively antagonized the stimulatory responses of glutamate and (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD] on phosphoinositide hydrolysis (pA2 = 4.21). In cells transfected with mGluR5a, AIDA displayed a much weaker antagonist effect. In transfected cells expressing mGluR2, AIDA (< or = 1 mM) did not affect the inhibition of forskolin-stimulated adenylate cyclase activity induced by (1S,3R)-ACPD, but at large concentrations, it displayed a modest agonist activity. In rat hippocampal or striatal slices, AIDA (0.1-1 mM) reduced the effects of (1S,3R)-ACPD on phospholipase C but not on adenylate cyclase responses, whereas (+)-alpha-methyl-4-carboxyphenylglycine (0.3-1 mM) was an antagonist on both transduction systems. In addition, AIDA (0.3-1 mM) had no effect on mGluRs coupled to phospholipase D, whereas (+)-alpha-methyl-4-carboxy-phenylglycine (0.5-1 mM) acted as an agonist with low intrinsic activity. In rat cortical slices, AIDA antagonized the stimulatory (mGluR1-mediated) effect of (1S,3R)-ACPD on the depolarization-induced outflow of D-[3H]aspartate, disclosing an inhibitory effect ascribable to (1S,3R)-ACPD activating mGluR2 and/or mGluR4. Finally, mice treated with AIDA (0.1-10 nmol i.c.v.) had an increased pain threshold and difficulties in initiating a normal ambulatory behavior. Taken together, these data suggest that AIDA is a potent, selective and competitive mGluR1 a antagonist.  相似文献   

2.
The four isomers of 4-aminopyrrolidine-2,4-dicarboxylate (APDC) were prepared and evaluated for their effects at glutamate receptors in vitro. (2R,4R)-APDC (2a), an aza analog of the nonselective mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate (1S,3R)-ACPD, 1), was found to possess relatively high affinity for metabotropic glutamate receptors (mGluRs) (ACPD-sensitive [3H]glutamate binding IC50 = 6.49 +/- 1.21 microM) with no effects on radioligand binding to NMDA, AMPA, or kainate receptors up to 100 microM. None of the other APDC isomers showed significant mGluR binding affinity, indicating that this interaction is highly stereospecific. Both 1 and 2a were effective in decreasing forskolin-stimulated cAMP formation in the adult rat cerebral cortex (EC50 = 8.17 +/- 2.21 microM for 1; EC50 = 14.51 +/- 5.54 microM for 2a); however, while 1 was also effective in stimulating basal tritiated inositol monophosphate production in the neonatal rat cerebral cortex (EC50 = 27.7 +/- 5.2 microM), 2a (up to 100 microM) was ineffective in stimulating phosphoinositide hydrolysis in this tissue preparation, further supporting our previous observations that 2a is a highly selective agonist for mGluRs negatively coupled to adenylate cyclase. Microelectrophoretic application of either 1 or 2a to intact rat spinal neurons produced an augmentation of AMPA-induced excitation (95 +/- 10% increase for 1, 52 +/- 6% increase for 2a). Intracerebral injection of 1 (400 nmol) produced characteristic limbic seizures in mice which are not mimicked by 2a (200-1600 nmol, ic). However, the limbic seizures induced by 1 were blocked by systemically administered 2a in a dose-dependent manner (EC50 = 271 mg/kg, ip). It is concluded that (2R,4R)-APDC (2a) is a highly selective, systemically-active agonist of mGluRs negatively coupled to adenylate cyclase and that selective activation of these receptors in vivo can result in anticonvulsant effects.  相似文献   

3.
4.
(2S,4S)-2-Amino-4-(4,4-diphenylbut-1-yl)-pentane-1,5-dioic acid 1m, is a novel metabotropic glutamate receptor (mGluR) antagonist with insignificant ionotropic affinity. It is selective antagonist of negatively-coupled cAMP-linked mGluRs with no effect on phosphoinositide coupled mGluRs. A series of 4-substituted glutamic acid analogues were prepared and it was found that compound 1k is tenfold more potent than 1m. Compound 1k has neither significant affinity for ionotropic glutamate receptors nor group 1 and 3 metabotropic receptors.  相似文献   

5.
While it is well documented that the overactivation of ionotropic glutamate receptors leads to seizures and excitotoxic injury, little is known about the role of metabotropic glutamate receptors (mGluRs) in epileptogenesis and neuronal injury. Intracerebroventricular (i.c.v.) infusion of the group I mGluR specific agonist (R,S)-3,5-dihydroxyphenylglycine (3,5-DHPG) (1.5 micromol) to conscious rats produced severe and delayed seizures (onset at 4 hr) in 70% of the animals. The i.c.v. infusion of the group I mGluR non-selective agonist 1S,3R-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) (2 micromol) produced a similar rate of severe seizures, but with an early onset (0.6 hr). The analysis of motor activity showed that 3,5-DHPG elicited higher central stimulatory action than did 1S,3R-ACPD. Histopathological analysis of the hippocampus showed that 3,5-DHPG produced severe neuronal damage mainly in the CA1 pyramidal neurons and, to a lesser extent, in the CA3. Although 1S,3R-ACPD infusion also induced a slight injury of the CA1 and CA3 pyramidal neurons, damage was greater in the CA4 and dentate gyrus cells. In conclusion, the in vivo activation of group I mGluRs with the selective agonist 3,5-DHPG produces hyperexcitatory effects that lead to seizures and neuronal damage, these effects being more severe than those observed after infusion of the non-selective agonist 1S,3R-ACPD.  相似文献   

6.
Of the six metabotropic glutamate receptors (mGluRs) only mGluR1 and mGluR5, which possess a large carboxyl terminal domain, are positively linked to phosphoinositide (PI) hydrolysis. We expressed a 3' deletion of mGluR1 alpha (mGluR1T) lacking the terminal 290 codons and the full length mGluR1 alpha cDNAs in human embryonic kidney 293 cells. Agonist stimulation of both mGluR1 alpha and mGluR1T stimulated PI hydrolysis. Glutamate activation of PI hydrolysis was reduced by pertussis toxin when mediated via mGluR1 alpha, while mGluR1T required the presence of extracellular Ca2+. Glutamate-mediated reduction of adenylyl cyclase stimulation by forskolin occurred only in mGluR1T-expressing cells. The results suggest that the carboxyl terminal extension directs the coupling of mGluR1 with different signal transduction pathways.  相似文献   

7.
The effect of metabotropic glutamate receptor (mGluR) agonists and antagonists on the spinal cord network underlying locomotion in the lamprey has been analysed. The specific group I mGluR agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) and the broad-spectrum mGluR agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S,3R-ACPD) both increased the burst frequency of N-methyl-D-aspartic acid (NMDA)-induced fictive locomotion and depolarized grey matter neurons. The burst frequency increase induced by the mGluR agonists was counteracted by the mGluR antagonists (+)-alpha-methyl-4-carboxyphenylglycine ((+)-MCPG), cyclopropan[b]chromen-1a-carboxylic acid ethylester (CPCCOEt) and (RS)-1-aminoindan-1,5-dicarboxylic acid (AIDA). Application of CPCCOEt alone reduced the locomotor burst frequency, indicating that mGluRs are endogenously activated during fictive locomotion. The mGluR antagonist CPCCOEt had no effect on NMDA-, or (S)-alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid (AMPA)-induced depolarizations. The mGluR agonists 1S,3R-ACPD and DHPG increased the amplitude of NMDA-induced depolarizations, a mechanism which could account for the increase in burst frequency. The group III mGluR agonist L-2-amino-4-phosphonobutyric acid reduced intraspinal synaptic transmission and burst frequency.  相似文献   

8.
1. We have previously shown that chronic antagonism of group I metabotropic glutamate receptors (mGluRs), in the brain, attenuates the precipitated morphine withdrawal syndrome in rats. In the present investigation we assessed the effects of chronic antagonism of group II and III mGluRs on the severity of withdrawal symptoms in rats treated chronically with subcutaneous (s.c.) morphine. 2. Concurrently with s.c. morphine we infused intracerebroventricularly (i.c.v.) one of a series of phenylglycine derivatives selective for specific mGluR subtypes. Group II mGluRs (mGluR2,3), which are negatively coupled to adenosine 3':5'-cyclic monophosphate (cyclic AMP) production, were selectively antagonized with 2s, 1's, 2's-2-methyl-2-(2'-carboxycyclopropyl) glycine (MCCG). Group III mGluRs (mGluR4,6,7 and 8), which are also negatively linked to cyclic AMP production, were selectively antagonized with alpha-methyl-L-amino-4-phosphonobutanoate (MAP4). The effects of MCCG and MAP4 were compared with alpha-methyl-4-carboxyphenylglycine (MCPG), which non-selectively antagonizes group II mGluRs, as well as group I mGluRs (mGluR1,5) which are positively coupled to phosphatidylinositol (PI) hydrolysis. 3. Chronic i.c.v. administration of both MCCG and MAP4 significantly decreased the time spent in withdrawal, MCPG and MCCG reduced the frequency of jumps and wet dog shakes and attenuated the severity of agitation. 4. Acute i.c.v. injection of mGluR antagonists just before the precipitation of withdrawal failed to decrease the severity of abstinence symptoms. Rather, acute i.c.v. injection of MCCG significantly increased the time spent in withdrawal. 5. Our results suggest that the development of opioid dependence is affected by mGluR-mediated PI hydrolysis and mGluR-regulated cyclic AMP production.  相似文献   

9.
Metabotropic glutamate receptors (mGluRs) are a heterogeneous family of G protein-coupled glutamate receptors that are linked to multiple second messenger systems in the CNS. In this study the selectivity of mGluR agonists for different mGluR second messenger effects was characterized in slices of the rat hippocampus. The mGluR agonists (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid and (2S,3S,4S)alpha-(carboxycyclopropyl)glycine produced multiple effects on second messengers that included enhanced phosphoinositide hydrolysis in both adult and neonatal rat hippocampus, inhibition of forskolin-stimulated cyclic AMP (cAMP) formation in adult tissue, and increases in basal cAMP formation in the neonatal hippocampus. In contrast, 3,5-dihydroxyphenylglycine was potent and effective in increasing phosphoinositide hydrolysis in both adult and neonatal hippocampus but unlike the other mGluR agonists did not inhibit forskolin-stimulated cAMP formation (in the adult) or substantially enhance basal cAMP formation (in the neonate). Thus, in the rat hippocampus mGluR agonist-mediated increases or decreases in cAMP formation are not secondary to mGluR-mediated changes in phosphoinositide hydrolysis. Furthermore, 3,5-dihydroxyphenylglycine can be used to activate subpopulations of mGluRs coupled to phosphoinositide hydrolysis with minimal effects on cAMP-mGluR second messenger systems.  相似文献   

10.
Agonist activation of cholinergic receptors expressed in perifused hypothalamic and immortalized GnRH-producing (GT1-7) cells induced prominent peaks in GnRH release, each followed by a rapid decrease, a transient plateau, and a decline to below basal levels. The complex profile of GnRH release suggested that acetylcholine (ACh) acts through different cholinergic receptor subtypes to exert stimulatory and inhibitory effects on GnRH release. Whereas activation of nicotinic receptors caused a transient increase in GnRH release, activation of muscarinic receptors inhibited basal GnRH release. Nanomolar concentrations of ACh caused dose-dependent inhibition of cAMP production that was prevented by pertussis toxin (PTX), consistent with the activation of a plasma-membrane Gi protein. Micromolar concentrations of ACh also caused an increase in phosphoinositide hydrolysis that was inhibited by the M1 receptor antagonist, pirenzepine. In ACh-treated cells, immunoblot analysis revealed that membrane-associated G(alpha q/11) immunoreactivity was decreased after 5 min but was restored at later times. In contrast, immunoreactive G(alpha i3) was decreased for up to 120 min after ACh treatment. The agonist-induced changes in G protein alpha-subunits liberated during activation of muscarinic receptors were correlated with regulation of their respective transduction pathways. These results indicate that ACh modulates GnRH release from hypothalamic neurons through both M1 and M2 muscarinic receptors. These receptor subtypes are coupled to Gq and Gi proteins that respectively influence the activities of PLC and adenylyl cyclase/ion channels, with consequent effects on neurosecretion.  相似文献   

11.
The effect of (+)-5-oxo-D-prolinepiperidinamide monohydrate (NS-105), a novel cognition enhancer, on adenylate cyclase activity was investigated in cultured neurons of the mouse cerebral cortex. NS-105 (10(-7) and 10(-6) M) inhibited forskolin-stimulated cyclic AMP formation, an action that was dependent on pertussis toxin-sensitive G proteins. Conversely, in pertussis toxin-pretreated neurons, NS-105 (10(-7)-10(-5) M) significantly enhanced the forskolin-stimulated cyclic AMP formation, and this action was completely reversed by cholera toxin. A metabotropic glutamate receptor agonist (1S, 3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S, 3R-ACPD) produced similar bi-directional actions on the cyclic AMP formation. Both of these inhibitory and facilitatory actions of NS-105 and 1S, 3R-ACPD were blocked by L(+)-2-amino-3-phosphopropinoic acid (L-AP3). NS-105 (10(-6) M) and 1S, 3R-ACPD (10(-4) M) significantly enhanced isoproterenol- and adenosine-stimulated cyclic AMP formation. The enhancement of such Gs-coupled receptor agonists-stimulated cyclic AMP formation was also produced by quisqualate but not by L(+)-2-amino-4-phosphonobutanoate (L-AP4). The phosphoinositides hydrolysis was enhanced by 1S, 3R-ACPD (10(-4) M) but not by NS-105 (10(-6) M), however, 1S, 3R-ACPD-induced increase in phosphoinositides turnover was attenuated by NS-105. These findings suggest that NS-105 stimulates metabotropic glutamate receptor subclasses that are coupled both negatively and positively to adenylate cyclase, but it acts as an antagonist at the receptor subclasses that are linked to phosphoinositides hydrolysis.  相似文献   

12.
1. Phospholipase D (PLD) is the key enzyme in a signal transduction pathway leading to the formation of the second messengers phosphatidic acid and diacylglycerol. In order to define the pharmacological profile of PLD-coupled metabotropic glutamate receptors (mGluRs), PLD activity was measured in slices of adult rat brain in the presence of mGluR agonists or antagonists. Activation of the phospholipase C (PLC) pathway by the same agents was also examined. 2. The mGluR-selective agonist (1S,3R)-l-aminocyclopentane-1,3-dicarboxylic acid [(1S,3R)-ACPD] induced a concentration-dependent (10-300 microM) activation of PLD in the hippocampus, neocortex, and striatum, but not in the cerebellum. The effect was particularly evident in hippocampal slices, which were thus used for all subsequent experiments. 3. The rank order of potencies for agonists stimulating the PLD response was: quisqualate > ibotenate > (2S,3S,4S)-alpha-(carboxycyclopropyl)-glycine > (1S,3R)-ACPD > L-cysteine sulphinic acid > L-aspartate > L-glutamate. L-(+)-2-Amino-4-phosphonobutyric acid and the ionotropic glutamate receptor agonists N-methyl-D-aspartate, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid, and kainate failed to activate PLD. (RS)-3,5-dihydroxyphenylglycine (100300 microM), an agonist of mGluRs of the first group, stimulated PLC but inhibited the PLD response elicited by 100 microM (1S,3R)-ACPD. 4. (+)-alpha-Methyl-4-carboxyphenylglycine (0.1-1 mM), a competitive antagonist of mGluRs of the first and second group, elicited a significant PLD response. L-(+)-2-Amino-3-phosphonopropionic acid (1 mM), an antagonist of mGluRs of the first group, inhibited the 100 microM (1S,3R)-ACPD-induced PLC response but produced a robust stimulation of PLD. 5. 12-O-Tetradecanoylphorbol 13-acetic acid and phorbol 12,13-dibutyrate (PDBu), activators of protein kinase C, at 1 microM had a stimulatory effect on mGluRs linked to PLD but depressed (1S,3R)-ACPD-induced phosphoinositide hydrolysis. The protein kinase C inhibitor, staurosporine (1 and 10 microM) reduced PLD activation induced by 1 microM PDBu but not by 100 microM (1S,3R)-ACPD. 6. Our results suggest that PLD-linked mGluRs in rat hippocampus may be distinct from any known mGluR subtype coupled to PLC or adenylyl cyclase. Moreover, they indicate that independent mGluRs coupled to the PLC and PLD pathways exist and that mGluR agonists can stimulate PLD through a PKC-independent mechanism.  相似文献   

13.
The anticonvulsant or proconvulsant properties of ligands at metabotropic glutamate receptors (mGluRs) were examined in a chemoconvulsant model using pentylenetetrazole (PTZ). Mice received mGluR ligands by intracerebroventricular (i.c.v.) infusion prior to a subcutaneous injection of PTZ and the latency to onset of tonic convulsions was recorded. The group I mGluR antagonist 1-aminoindan-1,5-dicarboxylic acid (AIDA) dose-dependently antagonised PTZ-induced seizures with a mean ED50 value of 465 nmol. In contrast, the selective group I mGluR agonist, (S)-3,5-dihydroxyphenylglycine [(S)-DHPG], was proconvulsive and decreased the PTZ-induced seizure latency (ED50=60 nmol i.c.v.). A selective agonist of group II mGluRs, (1S,3S)-1-aminocyclopentane dicarboxylic acid [(1S,3S)-ACPD], was proconvulsive but did not affect PTZ-induced seizure latency. Moreover, the proconvulsant effect of (IS,3S)-ACPD was not blocked by the mGluR2 antagonist, alpha-methylserine-O-phosphate monophenyl ester but was blocked by AIDA suggesting the involvement of group I mGluRs. (2S,1'S,2'S,3'R)-2-(2'-carboxy-3'-phenylcyclopropyl)glycine (PCCG-IV), which is a potent mGluR2 antagonist and a group III mGluR agonist at higher doses, increased the PTZ-induced seizure latency (ED50=51 nmol) and this effect was fully reversed by the group III mGluR antagonist, (S)-2-amino-2-methyl-4-phosphonobutanoic acid (MAP4). Similarly, the group III mGluR agonist 1-amino-3-(phosphonomethylene)cyclobutanecarboxylate (cyclobutylene-AP5) increased the PTZ-induced seizure latency (ED50=12 nmol) in a MAP4-sensitive manner. Collectively, these data suggest that mGluR ligands modulate PTZ-induced seizure activity in mice by either antagonizing group I mGluRs or activating group III mGluRs.  相似文献   

14.
Metabotropic glutamate receptor (mGluR)-mediated inhibition of high-voltage-activated Ca2+ currents was investigated in pyramidal neurons acutely isolated from rat dorsal frontoparietal neocortex. Whole cell recordings were made at 30-32 degrees C, with Ca2+ as the charge carrier. Selective agonists were used to classify the subgroup of mGluRs mediating the response. Ca2+ currents were inhibited by (1S,3R)-1-aminocyclopentane-1,3-dicarboxylic acid (1S, 3R-ACPD) and by the group I agonist (RS)-3,5-dihydroxyphenylglycine (DHPG) but not by the group II agonist (2S,2'R,3'R)-2-(2', 3'-dicarboxycyclopropyl)glycine (DCG-IV) or the group III agonist (+)-2-amino-4-phosphonobutryic acid (-AP4). (2S,1'S, 2'S)-2-(carboxycyclopropyl)glycine (-CCG-I) was effective at 10 and 100 microM but not at 1 microM, consistent with involvement of group I mGluRs. Variable results were obtained with the putative mGluR5-selective agonist (RS)-2-chloro-5-hydroxyphenylglycine (CHPG) and the putative mGluR1-selective antagonist (S)-4-carboxyphenylglycine [(S)-4CPG], indicating that the group I mGluR subtypes may vary between cells or that these compounds were activating other receptors. The actions of (+)-alpha-methyl-4-carboxyphenylglycine [(+)-MCPG] were consistent with it being a low-potency antagonist. Several features of the Ca2+ current inhibition evoked by DHPG distinguished it from the rapid modulation typical of a direct action of G proteins on Ca2+ channels; the inhibition was slow to reach maximum (tens of seconds), current activation was not slowed or shifted in the positive voltage direction, and the inhibition was not relieved by positive prepulses. Nimodipine and omega-conotoxin GVIA blocked fractions of the current and also reduced the magnitude of the responses to DHPG, indicating that both L- and N-type Ca2+ channels were regulated. These results further differentiate the slow modulatory pathway observed in neocortical neurons when Ca2+ is used as the charge carrier from the rapid voltage-dependent mechanism reported to inhibit Ba2+ currents under Ca2+-free conditions.  相似文献   

15.
Microiontophoretic drug application and extracellular recording techniques were used to evaluate the effects of the selective metabotropic glutamate receptor (mGluR) agonist (1S,3R)-1-aminocyclopentane-1,3-dicarboxylate(1S,3R-ACPD) on dopamine (DA) neurons in the substantia nigra zona compacta (SNZC) of chloral hydrate-anesthetized rats. 1S,3R-ACPD had a biphasic effect on the firing rate of DA cells, initially decreasing, then increasing the firing rate. 1S,3R-ACPD also increased the burst-firing activity of DA neurons. Application of the ionotropic receptor (iGluR) agonists (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) or N-methyl-D-aspartate (NMDA) increased the firing rates of neurons which had responded to 1S,3R-ACPD, indicating that mGluRs and iGluRs reside on the same neurons. The initial inhibitory period was not antagonized by systemic haloperidol or iontophoretic bicuculline, indicating a lack of DA or gamma-amino-n-butyric acid (GABA) involvement in this effect. Combined application of the AMPA antagonist, 2,3-dihydroxy-6-nitro-7-sulfamoylbenzo(f)quinoxaline (NBQX), and the NMDA antagonist, (I)-3-(2-carboxypiperazin-4-yl)propyl-1-phosphoric acid (CPP), at currents which antagonized AMPA and NMDA, did not antagonize either the inhibitory or excitatory effects of 1S,3R-ACPD. Application of the metabotropic antagonist (S)-4-carboxy-phenylglycine antagonized both the inhibitory and excitatory effects of 1S,3R-ACPD. These results indicate that mGluRs may play a role in the modulation of dopaminergic activity in the SNZC.  相似文献   

16.
1. Previous reports have shown that group III metabotropic glutamate receptors (mGluRs) serve as autoreceptors at the lateral perforant path, but to date there has been no rigorous determination of the roles of other mGluRs as autoreceptors at this synapse. Furthermore, it is not known which of the mGluR subtypes serve as autoreceptors at the medial perforant path synapse. With the use of whole cell patch-clamp and field excitatory postsynaptic potential (fEPSP) recording techniques, we examined the groups of mGluRs that act as autoreceptors at lateral and medial perforant path synapses in adult rat hippocampal slices. 2. Consistent with previous reports, the group III mGluR agonist (D,L)-2-amino-4-phosphonobutyric acid reduced fEPSPs and excitatory postsynaptic currents (EPSCs) in the dentate gyrus. However, the group-II-selective agonist (2S,1'R,2'R,3'R)-2-(2,3-dicarboxycyclopropyl)glycine (DCG-IV) also reduced fEPSPs and EPSCs, suggesting that multiple mGluR subtypes may serve as autoreceptors at perforant path synapses. 3. Selective activation of either medial or lateral perforant pathways revealed that micromolar concentrations of (L)-2-amino-4-phosphonobutyric acid (L-AP4) reduce fEPSPs in lateral but not medial perforant path, suggesting group III involvement at the lateral perforant pathway. Conversely, DCG-IV and 2R, 4R-4-aminopyrrolidine-2,4-dicarboxylate, another group-II-selective mGluR agonist, potently reduced fEPSPs at the medial but not lateral perforant path, suggesting that a group II mGluR may act as an autoreceptor at the medial perforant path-dentate gyrus synapse. 4. Antagonist studies with group-selective antagonists such as (2S,3S,4S)-2-methyl-2-(carboxycyclpropyl)glycine (MCCG; group II) and alpha-methyl-L-AP4 (MAP4; group III) suggest differential involvement of each group at these synapses. The effect of L-AP4 at the lateral perforant path synapse was blocked by MAP-4, but not MCCG. In contrast, the effect of DCG-IV was blocked by application of MCCG, but not MAP4. 5. Previous studies suggest that the effect of L-AP4 at the lateral perforant path synapse is mediated by a presynaptic mechanism. In the present studies, we found that concentrations of DCG-IV that reduce transmission at the medial perforant path synapse reduce paired-pulse depression and do not reduce kainate-evoked currents recorded from dentate granule cells. This is consistent with the hypothesis that DCG-IV also acts by a presynaptic mechanism.  相似文献   

17.
The metabotropic glutamate receptors (mGluRs) can be classified into three families based on amino acid sequence homology, signal transduction mechanisms and pharmacological properties. Generally, class I mGluRs mediate an excitation of neurons while activation of class II and III mGluRs results in a depression of synaptic transmission. In this study we have analyzed the expression pattern of mGluRs in human hippocampus using a panel of polyclonal antibodies specific for mGluR1b, mGluR2/3, mGluR4a, and mGluR5. Immunoreactivity for mGluR1b and mGluR5, i.e., the subtypes representing class I mGluRs, was found in all hippocampal neurons. The mGluR1b antiserum stained perikarya and proximal dendrites, whereas immunoreactivity for mGluR5 was also detectable in the distal dendritic compartments. Immunoreactivity for mGluR2/3, members of class II mGluRs, was present in all principle neurons in the dentate gyrus as well as in the CA4, CA3 and CA2 regions. Pyramidal cells of the CA1 region exhibited only weak labeling for mGluR2/3. Glial cells were also mGluR2/3-immunoreactive. The reaction obtained with an antiserum directed against mGluR4a, a member of class III mGluRs, was confined to the mossy fiber projection field in CA3 stratum lucidum. These data demonstrate differential expression of mGluR variants in the human hippocampus and may provide an important basis for future studies of mGluRs under various neuropathological conditions such as temporal lobe epilepsy, ischemia and neurodegenerative disorders.  相似文献   

18.
Cloning and expression in a stable mammalian cell line co-transfected with a glutamate transporter (RGT cells) were used as tools for studying the functions and pharmacological properties of group III metabotropic glutamate receptors (mGluRs). Complementary DNAs (cDNAs) encoding the human mGluR4, human mGluR7, and human mGluR8 were isolated from human cerebellum, fetal brain or retinal cDNA libraries. The human mGluR4, mGluR7 and mGluR8 receptors were 912, 915 and 908 amino acid residues long and share 67-70% amino acid similarity with each other and 42-45% similarity with the members of mGluR subgroups I and II. The human mGluR4 and mGluR7 had amino acid identity of 96% and 99.5% with rat mGluR4 and 7, respectively, whereas the human mGluR8 has 98.8% amino acid identity with the mouse mGluR8. The nucleotide and amino acid sequences in the coding region of human mGluR4 and mGluR7 were found to be identical to the previously published sequences by Flor et al. and Makoff et al. Following stable expression in RGT cells, highly significant inhibitions of forskolin stimulation of cAMP production by group III agonists were found for each receptor. The relative potencies of the group III agonist L-AP4 varied greatly between the group III clones, being mGluR8>mGluR4 > mGluR7. The reported group II mGluR agonist L-CCG-I was a highly potent mGluR8 agonist (EC50=0.35 microM), with significant agonist activities at both mGluR4 (EC50=3.7 microM) and mGluR7 (EC50=47 microM). The antagonist potency of the purported group III mGluR antagonist MPPG also varied among the receptors being human mGluR8 > mGluR4 = mGluR7. The expression and second messenger coupling of human group III mGluRs expressed in the RGT cell line are useful to clearly define the subtype selectivities of mGluR ligands.  相似文献   

19.
3,5-Dihydroxyphenylglycine (DHPG), (S)-3-hydroxyphenylglycine and (S)-4-carboxy-3-hydroxyphenylglycine (S-4C3HPG) stimulated phosphoinositide hydrolysis in neonatal rat cortical slices, but with lower maximal effect, in comparison with 2S,1'S,2'S-2-(2'-carboxycyclopropyl)glycine (L-CCG I) or (1S,3R)-1-aminocyclo-pentane-1,3-dicarboxylic acid (1S,3R-ACPD). DHPG, 1S,3R-ACPD, and S-4C3HPG also evoked a rapidly desensitizing increase in [Ca2+]i in cortical layers of neonatal brain slices. (R,S)-alpha-methyl-4-tetrazolyl-phenylglycine (MTPG), and (R,S)-alpha-methyl-4-phosphono-phenylglycine (MPPG) inhibited the increase of phosphoinositide hydrolysis elicited by 1S,3R-ACPD but not that by R,S-DHPG. In contrast, the selective group II receptor agonist (1S,2S,5R,6S)-2-amino-bicyclo-[3.1.0]-hexane-2,6-dicarboxylate (LY 354740) potentiated the response of R,S-DHPG. Finally, 8-(4-chlorophenylthio)-cAMP, a membrane permeant analogue of cAMP, reversed the stimulatory effect of 1S,3R-ACPD and S-4C3HPG on phosphoinositide hydrolysis and [Ca2+]i mobilization, without affecting the response induced by R,S-DHPG. These data suggest that, in neonatal rat cortex, the activation of group II metabotropic glutamate receptors potentiates the phosphoinositide hydrolysis and [Ca2+]i responses mediated by group I metabotropic glutamate receptors.  相似文献   

20.
Metabotropic glutamate receptors (mGluRs) were identified in olfactory receptor neurons of the channel catfish, Ictalurus punctatus, by polymerase chain reaction. DNA sequence analysis confirmed the presence of two subtypes, mGluR1 and mGluR3, that were coexpressed with each other and with the putative odorant receptors within single olfactory receptor neurons. Immunocytochemical data showed that both mGluR subtypes were expressed in the apical dendrites and some cilia of olfactory neurons. Pharmacological analysis showed that antagonists to each mGluR subtype significantly decreased the electrophysiological response to odorant amino acids. alpha-Methyl-L-CCG1/(2S,3S,4S)-2-methyl-2-(carboxycyclopropyl++ +)glycine (MCCG), a known antagonist to mGluR3, and (S)-4-carboxyphenylglycine (S-4CPG), a specific antagonist to mGluR1, each significantly reduced olfactory receptor responses to L-glutamate. S-4CPG and MCCG reduced the glutamate response to 54% and 56% of control, respectively, which was significantly greater than their effect on a neutral amino acid odorant, methionine. These significant reductions of odorant response by the antagonists, taken with the expression of these receptors throughout the dendritic and ciliated portions of some olfactory receptor neurons, suggest that these mGluRs may be involved in olfactory reception and signal transduction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号