首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The metabolic fate of glutamate in astrocytes has been controversial since several studies reported > 80% of glutamate was metabolized to glutamine; however, other studies have shown that half of the glutamate was metabolized via the tricarboxylic acid (TCA) cycle and half converted to glutamine. Studies were initiated to determine the metabolic fate of increasing concentrations of [U-13C] glutamate in primary cultures of cerebral cortical astrocytes from rat brain. When astrocytes from rat brain were incubated with 0.1 mM [U-13C] glutamate 85% of the 13C metabolized was converted to glutamine. The formation of [1,2,3-13C3] glutamate demonstrated metabolism of the labeled glutamate via the TCA cycle. When astrocytes were incubated with 0.2-0.5 mM glutamate, 13C from glutamate was also incorporated into intracellular aspartate and into lactate that was released into the media. The amount of [13C] lactate was essentially unchanged within the range of 0.2-0.5 mM glutamate, whereas the amount of [13C] aspartate continued to increase in parallel with the increase in glutamate concentration. The amount of glutamate metabolized via the TCA cycle progressively increased from 15.3 to 42.7% as the extracellular glutamate concentration increased from 0.1 to 0.5 mM, suggesting that the concentration of glutamate is a major factor determining the metabolic fate of glutamate in astrocytes. Previous studies using glutamate concentrations from 0.01 to 0.5 mM and astrocytes from both rat and mouse brain are consistent with these findings.  相似文献   

2.
Pyruvate recycling is a well established pathway in the liver, but in the brain, the cellular localization of pyruvate recycling remains controversial and its physiological significance is unknown. In cultured cortical astrocytes, pyruvate formed from [U-13C]glutamate was shown to re-enter the TCA cycle after conversion to acetyl-CoA, as demonstrated by the labelling patterns in aspartate C-2 and C-3, lactate C-2, and glutamate C-4, which provides evidence for pyruvate recycling in astrocytes. This finding is in agreement with previous studies of astrocytic cultures, in which pyruvate recycling has been described from [U-13C]glutamine, in the presence of glutamate, and from [U-13C]aspartate. Pyruvate recycling in brain was studied in fasted rats receiving either an intraperitoneal or a subcutaneous injection of [1,2-13C]acetate followed by decapitation 30 min later. Extracts of cortical tissue were analysed with 13C-NMR spectroscopy and total amounts of amino acids quantified by HPLC. Plasma extracts were analysed with 1H- and 13C-NMR spectroscopy, and showed a significantly larger amount of [1, 2-13C]acetate in the intraperitoneal group compared to the subcutaneous group. Furthermore, a small amount of label was detected in glucose in both groups. In the subcutaneously injected rats, [4-13C]glutamate and [2-13C]GABA were less enriched than plasma glucose, which might have been the precursor. In the intraperitoneally injected rats, however, pyruvate formation from [1, 2-13C]acetate, and re-entry of this pyruvate into the TCA cycle was demonstrated by the presence of greater 13C enrichment in [4-13C]glutamate and [4-13C]glutamine compared to the subcutaneous group, probably resulting from the significantly higher [1, 2-13C]acetate concentration in brain and plasma.  相似文献   

3.
We investigated the activity of the cerebral GABA shunt relative to the overall cerebral tricarboxylic acid (TCA) cycle and the importance of the GABA shunt versus 2-oxoglutarate dehydrogenase for the conversion of 2-oxoglutarate into succinate in GABAergic neurons. Awake mice were dosed with [1-(13)C]glucose, and brain extracts were analyzed by 13C NMR spectroscopy. The percent enrichments of GABA C-2 and glutamate C-4 were the same: 5.0 +/- 1.6 and 5.1 +/- 0.2%, respectively (mean +/- SD). This, together with previous data, indicates that the flux through the GABA shunt relative to the overall cerebral TCA cycle flux equals the GABA/glutamate pool size ratio, which in the mouse is 17%. It has previously been shown that under the experimental conditions used in this study, the 13C labeling of aspartate from [1-(13)C]-glucose specifically reflects the metabolic activity of GABAergic neurons. In the present study, the reduction in the formation of [13C]aspartate during inhibition of the GABA shunt by gamma-vinyl-GABA indicated that not more than half the flux from 2-oxoglutarate to succinate in GABAergic neurons goes via the GABA shunt. Therefore, because fluxes through the GABA shunt and 2-oxoglutarate dehydrogenase in GABAergic neurons are approximately the same, the TCA cycle activity of GABAergic neurons could account for one-third of the overall cerebral TCA cycle activity in the mouse. Treatment with gamma-vinyl-GABA, which increased GABA levels dramatically, caused changes in the 13C labeling of glutamate and glutamine, which indicated a reduction in the transfer of glutamate from neurons to glia, implying reduced glutamatergic neurotransmission. In the most severely affected animals these alterations were associated with convulsions.  相似文献   

4.
Studies from several groups have provided evidence that glutamate and glutamine are metabolized in different compartments in astrocytes. In the present study we measured the rates of 14CO2 production from U-[14C]glutamate and U-[14C]glutamine, and utilized both substrate competition experiments and the transaminase inhibitor aminooxyacetic acid (AOAA) to obtain more information about the compartmentation of these substrates in cultured rat brain astrocytes. The rates of oxidation of 1 mM glutamine and glutamate were 26.4 +/- 1.4 and 63.0 +/- 7.4 nmol/h/mg protein, respectively. The addition of 1 mM glutamate decreased the rate of oxidation of glutamine to 26.3% of the control rate, demonstrating that glutamate can effectively compete with the oxidation of glutamine by astrocytes. In contrast, the addition of 1 mM glutamine had little or no effect on the rate of oxidation of glutamate by astrocytes, demonstrating that the glutamate produced intracellularly from exogenous glutamine does not dilute the glutamate taken up from the media. The addition of 5 mM AOAA decreased the rate of 14CO2 production from glutamine to 29.2% of the control rate, consistent with earlier studies by our group. The addition of 5 mM AOAA decreased the rate of oxidation of concentrations of glutamate < or = 0.1 mM by approximately 50%, but decreased the oxidation of 0.5-1 mM glutamate by only approximately 20%, demonstrating that a substantial portion of glutamate enters the tricarboxylic acid (TCA) cycle via glutamate dehydrogenase (GDH) rather than transamination, and that as the concentration of glutamate increases the relative proportion entering the TCA cycle via GDH also increases. To determine if the presence of an amino group acceptor (i.e. a ketoacid) would increase the rate of metabolism of glutamate, pyruvate was added in some experiments. Addition of 1 mM pyruvate increased the rate of oxidation of glutamate, and the increase was inhibited by AOAA, consistent with enhanced entry of glutamate into the TCA cycle via transamination in the presence of pyruvate. Enzymatic studies showed that pyruvate increased the activity of mitochondrial aspartate aminotransferase (AAT). Overall, the data demonstrate that glutamate formed intracellularly from glutamine enters the TCA cycle primarily via transamination, but does not enter the same TCA cycle compartment as glutamate taken up from the extracellular milieu. In contrast, extracellular glutamate enters the TCA cycle in astrocytes via both transamination and GDH, and can compete with, or dilute, the oxidation of glutamate produced intracellularly from glutamine.  相似文献   

5.
13C-NMR spectroscopy was used to evaluate the dynamic consequences of portacaval anastomosis on neuronal and astrocytic metabolism and metabolic trafficking between neurons and astrocytes. Glutamate is predominantly labeled from [1-13C]glucose, whereas [2-13C]acetate is more efficient in labeling glutamine, in accordance with its primary metabolism in astrocytes. Alanine and succinate labeling was only observed with [1-13C]glucose as precursor. Brain [1-13C]glucose metabolism in portacaval-shunted rats was similar to that in sham-operated controls with the exception of labeled glutamine and succinate formation, which was increased in shunted rats. The 13C enrichment was, however, decreased owing to an increase in total glutamine and succinate. Using [2-13C]acetate, on the other hand, flux of astrocytic label to neurons was severely decreased because label incorporation into glutamate, aspartate, and GABA was decreased following portacaval shunting. The latter amino acids are predominantly localized in neurons. These findings demonstrate that metabolic trafficking of amino acids from astrocytes to neurons is impaired in portacaval-shunted rats.  相似文献   

6.
JM Pascual  F Carceller  JM Roda  S Cerdán 《Canadian Metallurgical Quarterly》1998,29(5):1048-56; discussion 1056-7
BACKGROUND AND PURPOSE: Even though the utilization of substrates alternative to glucose may play an important role in the survival of brain cells under ischemic conditions, evidence on changes in substrate selection by the adult brain in vivo during ischemic episodes remains very limited. This study investigates the utilization of glutamate, glutamine, and GABA as fuel by the neuronal and glial tricarboxylic acid cycles of both cerebral hemispheres after partially reversible focal cerebral ischemia (FCI). METHODS: Right hemisphere infarct was induced in adult Long-Evans rats by permanent occlusion of the right middle cerebral artery and transitory occlusion of both common carotid arteries. (1,2-13C2) acetate was infused for 60 minutes in the right carotid artery immediately after carotid recirculation had been re-established (1-hour group) or 23 hours later (24-hour group). Extracts from both cerebral hemispheres were prepared and analyzed separately by 13C nuclear magnetic resonance and computer-assisted metabolic modeling. RESULTS: FCI decreased the oxidative metabolism of glucose in the brain in a time-dependent manner. Reduced glucose oxidation was compensated for by increased oxidations of (13C) glutamate and (13C) GABA in the astrocytes of the ipsilateral hemispheres of both groups. Increased oxidative metabolism of (13C) glutamine in the neurons was favored by increased activity of the neuronal pyruvate recycling system in the 24-hour group. CONCLUSIONS: Data were obtained consistent with time-dependent changes in the utilization of glutamate and GABA or glutamine as metabolic substrates for the glial or neuronal compartments of rat brain after FCI.  相似文献   

7.
To determine if lactate is produced during aerobic metabolism in peripheral nerve, we incubated pieces of rabbit vagus nerve in oxygenated solution containing D-[U-14C]glucose while stimulating electrically. After 30 min, nearly all the radioactivity in metabolites in the nerve was in lactate, glucose 6-phosphate, glutamate, and aspartate. Much lactate was released to the bath: 8.2 pmol (microg dry wt)(-1) from the exogenous glucose and 14.2 pmol (microg dry wt)(-1) from endogenous substrates. Lactate release was not increased when bath PO2 was decreased, indicating that it did not come from anoxic tissue. When the bath contained [U-14C]lactate at a total concentration of 2.13 mM and 1 mM glucose, 14C was incorporated in CO2 and glutamate. The initial rate of formation of CO2 from bath lactate was more rapid than its formation from bath glucose. The results are most readily explained by the hypothesis that has been proposed for brain tissue in which glial cells supply lactate to neurons.  相似文献   

8.
Nuclear magnetic resonance (NMR) was used to study the metabolic pathways involved in the conversion of glucose to glutamate, gamma-aminobutyrate (GABA), glutamine, and aspartate. D-[1-13C]Glucose was administered to rats intraperitoneally, and 6, 15, 30, or 45 min later the rats were killed and extracts from the forebrain were prepared for 13C-NMR analysis and amino acid analysis. The absolute amount of 13C present within each carbonatom pool was determined for C-2, C-3, and C-4 of glutamate, glutamine, and GABA, for C-2 and C-3 of aspartate, and for C-3 of lactate. The natural abundance 13C present in extracts from control rats was also determined for each of these compounds and for N-acetylaspartate and taurine. The pattern of labeling within glutamate and GABA indicates that these amino acids were synthesized primarily within compartments in which glucose was metabolized to pyruvate, followed by decarboxylation to acetyl-CoA for entry into the tricarboxylic acid cycle. In contrast, the labeling pattern for glutamine and aspartate indicates that appreciable amounts of these amino acids were synthesized within a compartment in which glucose was metabolized to pyruvate, followed by carboxylation to oxaloacetate. These results are consistent with the concept that pyruvate carboxylase and glutamine synthetase are glia-specific enzymes, and that this partially accounts for the unusual metabolic compartmentation in CNS tissues. The results of our study also support the concept that there are several pools of glutamate, with different metabolic turnover rates.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The cerebral tricarboxylic acid (TCA) cycle rate and the rate of glutamine synthesis were measured in rats in vivo under normal physiological and hyperammonemic conditions using 13C NMR spectroscopy. In the hyperammonemic animals, blood ammonia levels were raised from control values of approximately 0.05 mM to approximately 0.35 mM by an intravenous ammonium acetate infusion. Once a steady-state of cerebral metabolites was established, a [1-13C]glucose infusion was initiated, and 13C NMR spectra acquired continuously on a 7-tesla spectrometer to monitor 13C labeling of cerebral metabolites. The time courses of glutamate and glutamine C-4 labeling were fitted to a mathematical model to yield TCA cycle rate (V(TCA)) and the flux from glutamate to glutamine through the glutamine synthetase pathway (V(gln)). Under hyperammonemia the value of V(TCA) was 0.57 +/- 0.16 micromol/min per g (mean +/- SD, n = 6) and was not significantly different (unpaired t test; P > 0.10) from that measured in the control animals (0.46 +/- 0.12 micromol/min per g, n = 5). Therefore, the TCA cycle rate was not significantly altered by hyperammonemia. The measured rate of glutamine synthesis under hyperammonemia was 0.43 +/- 0.14 micromol/min per g (mean +/- SD, n = 6), which was significantly higher (unpaired t test; P < 0.01) than that measured in the control group (0.21 +/- 0.04 micromol/ min per g, n = 5). We propose that the majority of the glutamine synthetase flux under normal physiological conditions results from neurotransmitter substrate cycling between neurons and glia. Under hyperammonemia the observed increase in glutamine synthesis is comparable to the expected increase in ammonia transport into the brain and reported measurements of glutamine efflux under such conditions. Thus, under conditions of elevated plasma ammonia an increase in the rate of glutamine synthesis occurs as a means of ammonia detoxification, and this is superimposed on the constant rate of neurotransmitter cycling through glutamine synthetase.  相似文献   

10.
Glial synthesis of glutamine, citrate, and other carbon skeletons, as well as metabolic effects of the gliotoxin fluorocitrate, were studied in cultured astrocytes with 13C and 31P NMR spectroscopy. [2-13C]Acetate and [1-13C]glucose were used as labeled precursors. In some experiments glutamine (2.5 mM) was added to the culture medium. Fluorocitrate (20 microM) inhibited the tricarboxylic acid (TCA) cycle without affecting the level of ATP. The net export of glutamine was reduced significantly, and that of citrate increased similarly, consistent with an inhibition of aconitase. Fluorocitrate (100 microM) inhibited TCA cycle activity even more and (without addition of glutamine) caused a 40% reduction in the level of ATP. In the presence of 2.5 mM glutamine, 100 microM fluorocitrate did not affect ATP levels, although glutamine synthesis was nearly fully blocked. The consumption of the added glutamine increased with increasing concentrations of fluorocitrate, whereas the consumption of glucose decreased. This shows that glutamine fed into the TCA cycle, substituting for glucose as an energy substrate. These findings may explain how fluorocitrate selectively lowers the level of glutamine and inhibits glutamine formation in the brain in vivo, viz., not by depleting glial cells of ATP, but by causing a rerouting of 2-oxoglutarate from glutamine synthesis into the TCA cycle during inhibition of aconitase. Analysis of the 13C labeling of the C-2 versus the C-4 positions in glutamine obtained with [2-13C]acetate revealed that 57% of the TCA cycle intermediates were lost per turn of the cycle.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Primary cultures of murine cerebral cortical astrocytes or cerebellar granule neurons were exposed to 7 h of hypoxia (3 h in some cases). The culture medium was analyzed at the end of the hypoxic or normoxic period by 1H NMR spectroscopy and intracellular components were analyzed as perchloric acid extracts by 31P and 1H NMR spectroscopy. Lactate production in astrocytes increased only marginally, whereas high energy phosphate concentrations were reduced, during 7 h of hypoxia and after 17 h of reoxygenation. After 3 h of hypoxia full recovery was possible during reoxygenation. Citrate and glutamine secretion was reduced or unchanged, respectively, during 7 h of hypoxia. Succinate secretion was only observed during normoxia, whereas pyruvate was secreted during hypoxia. Cerebellar granule neurons were more efficient in increasing glycolysis and were, therefore, more resistant to the effects of hypoxia than astrocytes. In the neurons lactate production was doubled and no effects on levels of high energy phosphates were seen after 7 h of hypoxia. Astrocytes were reoxygenated for 17 h after hypoxia or normoxia in a medium containing [2-13C]acetate in order to access if astrocytes were still capable of supplying neurons with essential precursors. The media were subsequently analyzed by 13C NMR spectroscopy. After shorter periods of hypoxia (3 h) full recovery was possible. Citrate and glutamine production remained however decreased during reoxygenation after 7 h of hypoxia. 13C incorporation into glutamine was greatly reduced but that into citrate was unchanged. These results suggest that under the present conditions, neurons are more efficient than astrocytes in switching the energy metabolism from aerobic to anaerobic glycolysis and that astrocytes may suffer long term damage to mitochondria from longer periods of hypoxia. Furthermore, evidence is presented for the existence of several TCA cycles within astrocytes based on labeling ratios. During normoxia the labeling ratios in the C-2/C-4 positions in glutamine and in the equivalent positions in citrate were 0.27 and 0.11, respectively.  相似文献   

12.
The effects of ketone bodies on brain metabolism of glutamate and GABA were studied in three different systems: synaptosomes, cultured astrocytes and the whole animal. In synaptosomes the addition of either acetoacetate or 3-OH-butyrate was associated with diminished consumption of glutamate via transamination to aspartate and increased formation of labelled GABA from either L-[2H5-2,3,3,4, 4]glutamine or L-[15N]glutamine. There was no effect of ketone bodies on synaptosomal GABA transamination. An increase of total forebrain GABA and a diminution of aspartate was noted when mice were injected intraperitoneally with 3-OH-butyrate. In cultured astrocytes the addition of acetoacetate to the medium was associated with a significantly enhanced rate of citrate production and with a diminution in the rate of conversion of [15N]glutamate to [15N]aspartate. These data are consistent with the hypothesis that the metabolism of ketone bodies to acetyl-CoA results in a diminution of the pool of brain oxaloacetate, which is consumed in the citrate synthetase reaction (oxaloacetate + acetyl-CoA --> citrate). As less oxaloacetate is available to the aspartate aminotransferase reaction, thereby lowering the rate of glutamate transamination, more glutamate becomes accessible to the glutamate decarboxylase pathway, thereby favoring the synthesis of GABA.  相似文献   

13.
OBJECTIVES: A recent report (J Clin Invest 1993;92:831-9) found no effect of glutamate plus aspartate on metabolic pathways in the heart, but the experimental conditions did not model clinical cardioplegia. The purpose of this study was to determine the effects of glutamate and aspartate on metabolic pathways feeding the citric acid cycle during cardioplegic arrest in the presence of physiologic substrates. METHODS: Isolated rat hearts were supplied with fatty acids, lactate, pyruvate, glucose, and acetoacetate in physiologic concentrations. These substrates were enriched with 13C, which allowed a complete analysis of substrate oxidation by 13C-nuclear magnetic resonance spectroscopy in one experiment. Three groups of hearts were studied: arrest with potassium cardioplegic solution, arrest with cardioplegic solution supplemented with glutamate and aspartate (both in concentrations of 13 mmol/L), and a control group without cardioplegic arrest. RESULTS: In potassium-arrested hearts, the contributions of fatty acids and lactate to acetyl coenzyme A were reduced, and acetoacetate was the preferred substrate for oxidation in the citric acid cycle. The addition of aspartate and glutamate in the presence of cardioplegic arrest did not further alter patterns of substrate utilization substantially, although acetoacetate use was somewhat lower than with simple cardioplegic arrest. When [U-13C]glutamate (13 mmol/L) and [U-13C]aspartate (13 mmol/L) were supplied as the only compounds labeled with 13C, little enrichment in citric acid cycle intermediates could be detected. CONCLUSIONS: Glutamate and aspartate when added to potassium cardioplegic solutions have relatively minor effects on citric acid cycle metabolism.  相似文献   

14.
Increased ammonia has been considered a key factor in the pathogenesis of hepatic encephalopathy. The high concentration of ammonia interferes with oxidative metabolism in the brain through an inhibitory effect on the tricarboxylic acid cycle (TCA). Inhibition of the TCA cycle may result in depletion of ATP. Due to the involvement of astrocytes in brain detoxification of ammonia, these cells are good candidates for studying ammonia's effect on energy stores in the brain. C6-glioma cells, which have altered glycolytic rates, may show greater sensitivity to the toxicity of ammonium chloride than astrocytes. To study the effect of ammonium chloride on energy storage of both astrocytes and C6-glioma, we observed the acute and chronic effects of NH4Cl (7.5 or 15 mM) on the metabolism of isolated astrocytes and C6-glioma cells. Primary astrocytes were isolated from the cerebral hemispheres of 1-2 day old Sprague-Dawley rats, and C6-glioma cells were purchased from the American Type Culture Collection (ATCC). Following treatment of the cells with ammonia, glucose, lactate, glutamate, ATP, and PCr were assayed. Our data showed that at 15 min following treatment with NH4Cl, there were no significant differences in the concentration of metabolites measured in astrocytes. However, following 15 min of treatment with NH4Cl, the concentration of some metabolites, for example, ATP and lactate, changed significantly in C6-glioma cells. We have shown that 24 h of treatment was sufficient time to see significant biochemical changes but not morphological changes in either cell type. Simultaneous biochemical and morphological changes were observed 48 h following treatment in C6-glioma cells and at 9-10 days following treatment in primary astrocytes. In primary astrocytes at 24 h following treatment, glucose utilization increased. This high utilization of glucose was in accordance with the increase in lactate and glutamate production and the decrease in ATP and PCr formation. In C6-glioma cells the utilization of glucose increased but this high utilization of glucose was consistent with a significant decrease in the concentration of lactate, glutamate and ATP.  相似文献   

15.
Astrocytes play a pivotal role in cerebral glutamate homeostasis. After 90 minutes of middle cerebral artery occlusion in the rat, the changes induced in neuronal and astrocytic metabolism and in the neuronal-astrocytic interactions were studied by combining in vivo injection of [1-13C]glucose and [1,2-13C]acetate with ex vivo 13C nuclear magnetic resonance spectroscopy and HPLC analysis of amino acids of the lateral caudoputamen and lower parietal cortex, representing the putative ischemic core, and the upper frontoparietal cortex, corresponding to the putative penumbra. In the putative ischemic core, evidence of compromised de novo glutamate synthesis located specifically in the glutamatergic neurons was detected, and a larger proportion of glutamate was derived from astrocytic glutamine. In the same region, pyruvate carboxylase activity, representing the anaplerotic pathway in the brain and exclusively located in astrocytes, was abolished. However, astrocytic glutamate uptake and conversion to glutamine took place, and cycling of intermediates in the astrocytic tricarboxylic acid cycle was elevated. In the putative penumbra, glutamate synthesis was improved compared with the ischemic core, the difference appeared to be brought on by better neuronal de novo glutamate synthesis, combined with normal levels of glutamate formed from astrocytic glutamine. In both ischemic regions, gamma-aminobutyric acid synthesis directly from glucose was reduced to about half, indicating impaired pyruvate dehydrogenase activity; still, gamma-aminobutyric acid reuptake and cycling was increased. The results obtained in the current study demonstrate that by combining in vivo injection of [1-13C]glucose and [1,2-13C]acetate with ex vivo 13C nuclear magnetic resonance spectroscopy, specific metabolic alterations in small regions within the rat brain suffering a focal ischemic lesion can be studied.  相似文献   

16.
Changes in the protein content, maximal activity, and Km of phosphate-dependent glutaminase were measured in the lymphoid organs (thymus, spleen, and mesenteric lymph nodes) from just-weaned, mature (3 months), and aged rats (15 months). Also, [U-14C] glutamine transport and decarboxylation and the production of glutamate and aspartate from 2 and 20 mM glutamine were measured in incubated mesenteric lymph node lymphocytes. The ageing process induced a reduction in the protein content of the thymus and spleen, as well as the phosphate-dependent glutaminase activity in the thymus and isolated lymphocytes. The Km of phosphate-dependent glutaminase, however, was not affected by the process. Ageing reduced [U-14C] glutamine decarboxylation and increased glutamate and aspartate production in incubated lymphocytes. The results indicate that the ageing process does modify several aspects of glutamine metabolism in lymphocytes: reduces maximal glutaminase activity and [U-14C] glutamine decarboxylation and increases the Km for [U-14C] glutamine uptake and the production of glutamate and aspartate.  相似文献   

17.
The aim of the present study was to investigate the release of amino-acids in human cerebral cortex during membrane depolarization and simulated ischaemia (energy deprivation). Superfluous tissue from temporal Iobe resections for epilepsy was cut into 500 microns thick slices and incubated in vitro. Membrane depolarization with 50 mM K+ caused a release of glutamate, aspartate, GABA and glycine, but not glutamine or leucine. The release of glutamate and GABA was Ca(++)-dependent. Slices were exposed to simulated ischaemia (energy deprivation; ED) by combined glucose/oxygen deprivation. This caused a Ca(++)-independent release of glutamate, aspartate, GABA, glycine, and taurine which started after 8 min, peaked at the end or shortly after the 27 min period of ED, and returned to control levels within 11 min following termination of ED. Preloaded D-[3H]aspartate was released both during K(+)-stimulation and ED. Release of D-[3H]aspartate during ED was delayed compared to glutamate supporting an initial phase of synaptic glutamate release. Uptake of L-[3H]glutamate was increased during the period of glutamate release, suggesting passive diffusion across the cell membrane or enhanced transport efficacy in cellular elements with functioning uptake mechanisms.  相似文献   

18.
Because it is well known that excess branched-chain amino acids (BCAAs) have a profound influence on neurological function, studies were conducted to determine the impact of BCAAs on neuronal and astrocytic metabolism and on trafficking between neurons and astrocytes. The first step in the metabolism of BCAAs is transamination with alpha-ketoglutarate to form the branched-chain alpha-keto acids (BCKAs). The brain is unique in that it expresses two separate branched-chain aminotransferase (BCAT) isoenzymes. One is the common peripheral form [mitochondrial (BCATm)], and the other [cytosolic (BCATc)] is unique to cerebral tissue, placenta, and ovaries. Therefore, attempts were made to define the isoenzymes' spatial distribution and whether they might play separate metabolic roles. Studies were conducted on primary rat brain cell cultures enriched in either astroglia or neurons. The data show that over time BCATm becomes the predominant isoenzyme in astrocyte cultures and that BCATc is prominent in early neuronal cultures. The data also show that gabapentin, a structural analogue of leucine with anticonvulsant properties, is a competitive inhibitor of BCATc but that it does not inhibit BCATm. Metabolic studies indicated that BCAAs promote the efflux of glutamine from astrocytes and that gabapentin can replace leucine as an exchange substrate. Studying astrocyte-enriched cultures in the presence of [U-14C]glutamate we found that BCKAs, but not BCAAs, stimulate glutamate transamination to alpha-ketoglutarate and thus irreversible decarboxylation of glutamate to pyruvate and lactate, thereby promoting glutamate oxidative breakdown. Oxidation of glutamate appeared to be largely dependent on the presence of an alpha-keto acid acceptor for transamination in astrocyte cultures and independent of astrocytic glutamate dehydrogenase activity. The data are discussed in terms of a putative BCAA/BCKA shuttle, where BCATs and BCAAs provide the amino group for glutamate synthesis from alpha-ketoglutarate via BCATm in astrocytes and thereby promote glutamine transfer to neurons, whereas BCATc reaminates the amino acids in neurons for another cycle.  相似文献   

19.
Repeated applications of elevated K+ (50 or 75 mM) in cerebral cortical cup superfusates was used to evoke an efflux of gamma-aminobutyric acid (GABA), glutamate, aspartate, glycine, adenosine, and inosine from the in vivo rat cerebral cortex. K+ (50 mM) significantly elevated GABA levels in cup superfusates but had little effect on the efflux of glutamate, aspartate, glycine, adenosine, or inosine. K+ (75 mM) significantly enhanced the efflux of GABA, aspartate, adenosine, and inosine and caused nonsignificant increases in glutamate and glycine efflux. The adenosine A1 receptor agonist N6-cyclopentyladenosine (CPA), applied in cup superfusates at a concentration of 10(-10) M had no effect on either basal or K(+)-evoked release of any of the amino acids or purines measured. At 10(-6) M CPA significantly enhanced aspartate release, and depressed GABA efflux. The selective A2 adenosine receptor agonist 2-p(2-carboxyethyl) phenethylamino-5'-N-ethyl-carboxamidoadenosine (CGS 21680) (10(-8) M) was without effect on either basal, or K(+)-evoked, efflux of amino acids or purines. The enhancement of aspartate (an excitotoxic amino acid) efflux by higher concentrations of CPA is likely due to activation of adenosine A2b receptors. This observation may be of relevance when selecting adenosinergic agents to treat ischemic or traumatic brain injuries. Overall, the results suggest that effects of adenosine receptor agonists on K(+)-evoked efflux of transmitter amino acids from the in vivo rat cerebral cortex may not be comparable to those observed with in vitro preparations.  相似文献   

20.
Carbon metabolism was investigated in cerebellar and cortical astrocytes cultured for 15 or 35 days. The consumption rates of exogenous carbon sources--amino acids and glucose--and the production rates of exported metabolites--citrate, lactate, alanine and glutamine--were determined. The specific 13C-enrichment of lactate and glutamine carbons were determined after cell incubation with [1-13C]glucose. These data were used to evaluate the fluxes through metabolic pathways using a monocompartmental model of the cell metabolism including glycolysis and tricarboxylic acid cycle related pathways. The model concluded to a very large contribution of fatty acids as an endogenous carbon source of acetyl-CoA. As a consequence of the high fatty acid turn-over, there was an important recycling (via pyruvate) of the oxaloacetate molecules generated by citrate lyase activity. This recycling represented in fact the major part of the pyruvate carboxylase activity, which therefore was not directly related to metabolite export. Comparing the data from cerebellar and cortical astrocytes evidenced, on the other hand, some differences in metabolite contents which could be related to different cell maturation stages linked to their different tissular origins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号