首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 953 毫秒
1.
Oxidative DNA damage by NAD(P)H in the presence of metal ions has been characterized by using 32P 5' end-labeled DNA fragments obtained from human p53 tumor suppressor gene and c-Ha-ras-1 protooncogene. NADH, as well as other endogenous reductants, induced DNA damage in the presence of Cu(II). The order of inducing effect on Cu(II)-dependent DNA damage was ascorbate > reduced glutathione (GSH) > NADH > NADPH. Although NADH caused no or little DNA damage in the presence of Fe(III)-EDTA, the addition of H2O2 induced the DNA damage. The Cu(II)-mediated DNA damage induced by NADH was inhibited by catalase and bathocuproine, a Cu(I)-specific chelator; but not by scavengers of hydroxyl free radical (.OH), suggesting the involvement of active species derived from hydrogen peroxide (H2O2) and Cu(I) rather than .OH. The predominant cleavage sites were thymine residues located 5' and/or 3' to guanine. The cleavage pattern was similar to that induced by Cu(II) plus GSH, Cu(II) plus ascorbate, or Cu(I) plus H2O2. Formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine by NADH increased with its concentration in the presence of Cu(II). UV-visible spectroscopy indicated the facilitation of reduction of Cu(II) by NADH under some conditions. ESR spin-trapping experiments and mass spectrometry showed that the carbon-centered radical was formed during the reaction of NADH with Cu(II). These results suggest that optimal molar ratios of DNA/metal ion yield copper with a high redox potential which catalyzes NADH autoxidation to NAD. being further oxidized to NAD+ with generation of superoxide radical and that H2O2 reacts with Cu(I) to form active oxygen species such as copper(I)-peroxide complex causing DNA damage.  相似文献   

2.
Exposure of an aqueous, aerated solution (pH 7) of a double-stranded DNA to 193 nm light, of sufficient energy to ionise DNA, leads to selective, non-random modification at guanine in the form of frank single-strand break (ssb) and base modifications, revealed by treatment with either Escherichia coli formamidopyrimidine-DNA glycosylase (Fpg), Escherichia coli endonuclease III (Nth) or hot piperidine treatment. There is a similar neighbouring base sequence dependence for Fpg- and Nth-sensitive damage as that previously reported for both hot alkali-labile damage and prompt ssb. Low yields of photoproducts, namely pyrimidine dimers, are also revealed using the enzyme T4 endonuclease V (T4 endo V). Although irradiation of DNA with 193 nm light causes photoionisation of all the nucleic acid bases, these results indicate that guanine is the predominant site for localisation of the oxidative damage. These findings are consistent with migration of the radical cation to 'target' damage at guanine sites.  相似文献   

3.
There is currently much interest in the possibility that dietary antioxidants may confer protection from certain diseases, such as atherosclerosis and cancer. The importance of alpha-tocopherol (vitamin E) as a biological antioxidant is widely recognized. However, pro-oxidant properties of alpha-tocopherol have been observed in chemical systems, and it has been reported that the vitamin can induce tumor formation and act as a complete tumor promotor in laboratory animals. In the present communication, we find that alpha-tocopherol can act as a potent DNA-damaging agent in the presence of copper(II) ions, using a simplified, in vitro model. alpha-Tocopherol was found to promote copper-dependent reactive oxygen species formation from molecular oxygen, resulting in DNA base oxidation and backbone cleavage. Neither alpha-tocopherol nor Cu(II) alone induced DNA damage. Bathocuproine, a Cu(I)-specific chelator, and catalase inhibited the DNA damage, whereas free hydroxyl radical scavengers did not. The order of DNA cleavage sites was thymine, cytosine > guanine residues. Examinations using an oxygen electrode and cytochrome c indicate that molecular oxygen was consumed in the reaction of alpha-tocopherol and Cu(II) and that superoxide was formed. Stoichiometry studies showed that two Cu(II) ions could be reduced by each alpha-tocopherol molecule. Electron spin resonance spin-trapping investigations were then used to demonstrate that hydrogen peroxide interacts with Cu(I) to generate the reactive species responsible for DNA damage, which is either the hydroxyl radical or a species of similar reactivity. These findings may be of relevance to the tumorigenic properties of the vitamin reported in the literature. However, further studies are required to establish the significance of these reactions under in vivo conditions.  相似文献   

4.
In previous studies, benzo[a]pyrene-7,8-dione (BPQ), a polycyclic aromatic hydrocarbon (PAH) o-quinone, was found to be 200-fold more potent as a nuclease than (+/-)-anti-7,8-dihydroxy-9,10-epoxy-7,8,9, 10-tetrahydrobenzo[a]pyrene, a suspect human carcinogen. The mechanism of strand scission mediated by naphthalene-1,2-dione (NPQ) and BPQ was further characterized using either phiX174 DNA or poly(dG).poly(dC) as the target DNA. Strand scission was extensive, dependent on the concentration of o-quinone (0-10 microM), and required the presence of NADPH (1 mM) and CuCl2 (10 microM). The production of reactive species, i.e., superoxide anion radical, o-semiquinone anion (SQ) radical, hydrogen peroxide (H2O2), hydroxyl radical (OH.), and Cu(I), was measured in the incubation mixtures. The formation of SQ radicals was measured by EPR spectroscopy under anaerobic conditions in the presence of NADPH. A Cu(II)/Cu(I) redox cycle was found to be critical for DNA cleavage. No strand scission occurred in the absence of Cu(II) or when Cu(I) was substituted, yet Cu(I) was required for OH* production. Both DNA strand scisson and OH. formation were decreased to an equal extent, albeit not completely, by the inclusion of OH. scavengers (mannitol, soduim benzoate, and formic acid) or Cu(I) chelators (bathocuproine and neocuproine). In contrast, although the SQ radical signals of NPQ and BPQ were quenched by DNA, no strand scission was observed. When calf thymus DNA was treated with PAH o-quinones, malondialdehyde (MDA) was released by acid hydrolysis. The formation of MDA was inhibited by OH. scavengers suggesting that OH* cleaved the 2'-deoxyribose moiety in the DNA to produce base propenals. These studies indicate that for PAH o-quinones to act as nucleases, NADPH, Cu(II), Cu(I), H2O2, and OH*, were necessary and that the primary species responsible for DNA fragmentation was OH., generated by a Cu(I)-catalyzed Fenton reaction. The genotoxicity of PAH o-quinones may play a role in the carcinogenicity and mutagenicity of the parent hydrocarbons.  相似文献   

5.
tert.-Butyl hydroperoxide has been utilized to study the effect of oxidative stress on living cells; however, its effect on DNA bases in cells has not been characterized. In the present work, we have investigated DNA base damage in mammalian cells exposed to this organic hydroperoxide. SP2/0 derived murine hybridoma cells were treated with 4 concentrations of tert.-butyl hydroperoxide for varying periods of time. Chromatin was isolated from treated and control cells and subsequently analyzed by gas chromatography-mass spectrometry with selected-ion monitoring for DNA base damage. Quantification of damaged DNA bases was achieved by isotope-dilution mass spectrometry. The amounts of 8 products were significantly higher than control levels in cells treated with tert.-butyl hydroperoxide at a concentration range of 0.01-0.1 mM. At concentrations from 1.0 to 10 mM, product formation was inhibited and the amounts of products were similar to those in control cells. The bimodal nature of the dose-response may be qualitatively analogous to previous reports of bimodal killing of E. coli bacteria by hydrogen peroxide. The nature of the identified DNA base lesions suggests the involvement of the hydroxyl radical in their formation. tert.-Butyl hydroperoxide is known to produce the tert.-butoxyl radical in reactions with metal ions. However, it is unlikely that the tert.-butoxyl radical produces these DNA lesions. It is suggested that DNA base damage arises from tert.-butyl hydroperoxide-mediated oxidative stress in cells, resulting in formation of hydroxyl radicals in close proximity to DNA. The inhibition of product formation at high concentrations of tert.-butyl hydroperoxide may be explained by the scavenging of tert.-butoxyl radical by tert.-butyl hydroperoxide resulting in inhibition of oxidative stress. The plausibility of the scavenging mechanism was evaluated with a mathematical simulation of the dose-response for DNA damage in solutions containing hydrogen peroxide. The simulation model predicted a bimodal dose-response which agreed qualitatively with the results in this study and with other in vivo and in vitro studies reported in the literature.  相似文献   

6.
2,5-Dimethyl-4-hydroxy-3(2H)-furanone (2,5-DMHF), a caramel-like fragrant compound found in may processed foodstuff, has been reported to be mutagenic. 4,5-Dimethyl-3-hydroxy-2(5H)-furanone (4,5-DMHF), which is a similar characteristic fragrant compound, has no report concerning its mutagenicity. DNA damage by 2,5-DMHF and 4,5-DMHF was investigated by using DNA fragments obtained from the p53 tumor suppressor gene. 2,5-DMHF induced DNA damage extensively in the presence of Cu(II), but only slightly in the presence of Fe(III). 4,5-DMHF did not cause metal-dependent DNA damage. Bathocuproine, a Cu(I)-specific chelator, and catalase inhibited DNA damage induced by 2,5-DMHF plus Cu(II), whereas free hydroxyl radical scavengers did not. The order of DNA cleavage sites was thymine, cytosine > guanine residues. The site-specific DNA damage and effects of scavengers show that DNA-copper-oxygen complex rather than free .OH are involved in the DNA damage. Formation of 8-oxodeoxyguanosine (8-oxodG) by 2,5-DMHF increased with its concentration in the presence of Cu(II), whereas 8-oxodG formation increased only slightly in the presence of Fe(III). Degradation of 2,5-DMHF was efficiently accelerated by Cu(II), but only slightly accelerated by Fe(III). The degradation of 4,5-DMHF was little even in the presence of metal ions. Examination using cytochrome c suggest that superoxide was generated from 2,5-DMHF. Stoichiometric study of Cu(II) reduction revealed that autoxidation of 2,5-DMHF could offer 4-electron reduction. These results suggest that, at least in vitro and in an acellular system, 2,5-DMHF generates superoxide and subsequently hydrogen peroxide to induce metal-dependent DNA damage.  相似文献   

7.
Supercoiling is an important feature of DNA physiology in vivo. Given the possibility that the reaction of genotoxic molecules with DNA is affected by the alterations in DNA structure and dynamics that accompany superhelical tension, we have investigated the effect of torsional tension on DNA damage produced by five oxidizing agents: gamma-radiation, peroxynitrite, Fe2+/ EDTA/H2O2, Fe2+/H2O2, and Cu2+/H2O2. With positively supercoiled plasmid DNA prepared by a recently developed technique, we compared the quantity of strand breaks produced by the five agents in negatively and positively supercoiled pUC19. It was observed that strand breaks produced by gamma-radiation, peroxynitrite, and Fe2+/EDTA/H2O2 were insensitive to DNA superhelical tension. These results are consistent with a model in which chemicals that generate highly reactive intermediates (e.g., hydroxyl radical), but do not interact directly with DNA, will be relatively insensitive to the changes in DNA structure and dynamics caused by superhelical tension. In the case of Fe2+ and Cu2+, metals that bind to DNA, only Cu2+/H2O2 proved to be sensitive to DNA superhelical tension. Strand breaks produced by Cu2+/H2O2 in the positively supercoiled substrate occurred at lower Cu concentrations than in negatively supercoiled DNA. Furthermore, a sigmoidal Cu2+/H2O2 damage response was observed in the negatively supercoiled substrate but not in positively supercoiled DNA. The results with Cu2+ suggest that the redox activity, DNA binding orientation, or DNA binding affinity of Cu1+ or Cu2+ is sensitive to superhelical tension, while the results with the other oxidizing agents warrant further investigation into the role of supercoiling in base damage.  相似文献   

8.
Reactive oxygen species can cause extensive DNA modifications including modified bases. Some of the DNA base damage has been found to possess premutagenic properties. Therefore, if not repaired, it can contribute to carcinogenesis. We have found elevated amounts of modified bases in cancerous and precancerous tissues as compared with normal tissues. Most of the agents used in anticancer therapy are paradoxically responsible for induction of secondary malignancies and some of them may generate free radicals. The results of our experiments provide evidence that exposure of cancer patients to therapeutic doses of ionizing radiation and anticancer drugs causes base modifications in genomic DNA of lymphocytes. Some of these base damages could lead to mutagenesis in critical genes and ultimately to secondary cancers such as leukemias. This may point to an important role of oxidative base damage in cancer initiation. Alternatively, the increased level of the modified base products may contribute to genetic instability and metastatic potential of tumor cells.  相似文献   

9.
Conformational effects and affinities of VP-16 (etoposide) and its derivatives to DNA in the presence of Cu(II) ion were examined by circular dichroic (CD) spectra. The Cu(II)/Cu(I) redox kinetics and the hydroxyl radical (.OH) generation from the Cu(II)-complexes were estimated by the stopped-flow kinetics. Based on the results, DNA-cleaving activity of Cu(II)-complexes of VP-16 has been shown to be related with binding affinity of the complex to DNA, Cu(II)/Cu(I) redox and .OH generation, emphasising the mechanism of generated .OH attack to DNA.  相似文献   

10.
Oxidative DNA damage by a model Cr(V) complex, [CrO(ehba)2]-, with and without added H2O2, was investigated for the formation of base and sugar products derived from C1', C4', and C5' hydrogen atom abstraction mechanisms. EPR studies with 5,5-dimethylpyrroline N-oxide (DMPO) have shown that Cr(V)-ehba alone can oxidize the spin trap via a direct chromium pathway, whereas reactions of Cr(V)-ehba in the presence of H2O2 generated the hydroxyl radical. Direct (or metal-centered) Cr(V)-ehba oxidation of single-stranded (ss) and double-stranded (ds) calf thymus DNA demonstrated the formation of thiobarbituric acid-reactive species (TBARS) and glycolic acid in an O2-dependent manner, consistent with abstraction of the C4' H atom. A minor C1' H atom abstraction mechanism was also observed for direct Cr(V) oxidation of DNA, but no C5' H atom abstraction product was observed. Direct Cr(V) oxidation of ss- and ds-DNA also caused the release of all four nucleic acid bases with a preference for the pyrimidines cytosine and thymine in ds-DNA, but no base release preference was observed in ss-DNA. This base release was O2-independent and could not be accounted for by the H atom abstraction mechanisms in this study. Reaction of Cr(V)-ehba with H2O2 and DNA yielded products consistent with all three DNA oxidation pathways measured, namely, C1', C4', and C5' H atom abstractions. Cr(V)-ehba and H2O2 also mediated a nonpreferential release of DNA bases with the exception of the oxidatively sensitive purine, guanine. Direct and H2O2-induced Cr(V) DNA oxidation had opposing substrate preferences, with direct Cr(V) oxidation favoring ss-DNA while H2O2-induced Cr(V) oxidative damage favored ds-DNA. These results may help explain the carcinogenic mechanism of chromium(VI) and serve to highlight the differences and similarities in DNA oxidation between high-valent chromium and oxygen-based radicals.  相似文献   

11.
The antioxidant propyl gallate (PG) induced single strand breaks in PM2 DNA at concentrations higher than 0.25 microM when it was combined with copper concentrations at 5 microM and above. In combination with 100 microM CuCl2, extensive double strand breakage was also observed. Neither PG alone nor CuCl2 showed any strand breaking properties. DNA strand breakage was inhibited by addition of catalase or the Cu(I) chelator neocuproine, indicating the involvement of H2O2 and a Cu(II)/Cu(I) redox cycle in the DNA damage. DNA damage of PG/Cu(II) was also observed in human fibroblasts. Using the alkaline elution technique concentrations of 0.15-0.5 mM PG induced DNA strand breaks in combination with 2.5 mM CuCl2, while the single substances did not show any effect. At these concentrations cell viability measured by the MTT assay was not reduced by more than 10%; however, cell growth was inhibited by PG in combination with Cu(II). This growth inhibition was apparently due to the DNA damage incurred by PG/Cu(II). The synergistic interaction between PG and Cu(II) is probably caused by a redox reaction between both compounds, whereby reactive species such as ROS are formed, which are responsible for the observed genotoxic and cytotoxic effects. Our results demonstrate that the antioxidative and cytoprotective properties of propyl gallate may change to prooxidative, cytotoxic and genotoxic properties in the presence of Cu(II).  相似文献   

12.
Fumonisin B1 (FB1) is a frequently encountered mycotoxin that inhibits ceramide synthase, the enzyme that acylates sphinganine, sphingosine and other "sphingoid" bases. Exposure of rats, rabbits, pigs and nonhuman primates to fumonisin-contaminated feed elevates sphingoid base amounts in urine; therefore, this study examined the time course and reversibility of these changes. When an AIN-76 diet supplemented with >/=5 microg FB1/g was fed to male Sprague-Dawley rats, there was a significant increase in sphinganine (ca. 50-fold in urine from rats fed 50 microg FB1/g diet) and smaller changes in sphingosine within 5 to 7 d, compared to rats fed the same diet without FB1. No change occurred in sphingoid bases upon feeding 1 microg FB1/g for up to 60 d. When rats were fed FB1 (10 microg FB1/g diet for 10 d), then changed to the same diet minus FB1, urinary sphingoid bases returned to normal within 10 d. However, if the rats were fed 10 microg FB1/g for 10 d, then changed to 1 microg FB1/g, the amounts of sphingoid bases in urine were the same as for rats that were continuously fed 10 microg FB1/g. These results establish that consumption of FB1 causes dose-dependent and reversible elevations in the amounts of urinary sphingoid bases. The finding that 1 microg FB1/g (which does not, alone, alter urinary sphingoid bases) will sustain the elevation caused by previous exposure to 10 microg FB1/g raises the possibility that even low levels of fumonisins could be deleterious when an animal is occasionally exposed to higher amounts.  相似文献   

13.
At physiological pH values, Cu(II)-tetraglycine and Cu(II) complexes with peptides containing a histidyl residue at the N-terminal caused DNA strand breakage in the presence of H2O2, whereas Cu(II) complexes with peptides containing histidyl residue in the second or third position did not. Because of the correlation between the generation of hydroxyl radical and DNA strand scission, a mechanism for the reaction is proposed.  相似文献   

14.
Modification of bases in calf thymus DNA by treatment with the antipsoriatic drug anthralin was studied. The products of DNA bases were identified and their yields measured by gas chromatography-mass spectrometry with selected ion monitoring. Treatment of calf thymus DNA with anthralin significantly enhanced the amount of modified bases above control levels. Purine bases were modified to products identical with those known to be typical of DNA damage induced by hydroxyl radicals. The yields of Fapy-adenine, 8-hydroxyadenine, Fapy-guanine, and 8-hydroxyguanine were maximally increased at an anthralin concentration of 75 microM. A variety of structural analogues of anthralin were also tested at 75 microM were either weaker or stronger hydroxylating agents. It is likely that damage to DNA bases induced by anthrones contributes to their antiproliferative activity. The pharmacological implications of these characteristics of the action of anthralin on DNA bases are discussed.  相似文献   

15.
The interaction between the GGCC-specific Bsp RI DNA methyltransferase (M. Bsp RI) and substrate DNA was studied with footprinting techniques using a DNA fragment that was unmodified on both strands. Footprinting with DNase I revealed an approximately 14 bp protected region. Footprinting with dimethylsulfate detected major groove interactions with the guanine bases of the recognition sequence. Reaction with 1,10-phenanthroline-copper did not show protection, suggesting that minor groove interactions play little role in sequence-specific recognition by M. Bsp RI. Hydroxyl radical footprinting revealed a protected stretch of 6 nt. The hydroxyl radical footprint of M. Bsp RI differs markedly from the the footprint reported for the Hha I and Sss I methyltransferases. The pattern of protection from dimethylsulfate and hydroxyl radicals suggests that the interactions of M. Bsp RI with DNA are similar to those detected in the co-crystal structure of the Hae III methyltransferase.  相似文献   

16.
The type I DNA methyltransferase M.EcoR124I is a multi-subunit enzyme that binds to the sequence GAAN6RTCG, transferring a methyl group from S-adenosyl methionine to a specific adenine on each DNA strand. We have investigated the protein-DNA interactions in the complex by DNase I and hydroxyl radical footprinting. The DNase I footprint is unusually large: the protein protects the DNA on both strands for at least two complete turns of the helix, indicating that the enzyme completely encloses the DNA in the complex. The higher resolution hydroxyl radical probe shows a smaller, but still extensive, 18 bp footprint encompassing the recognition site. Within this region, however, there is a remarkably hyper-reactive site on each strand. The two sites of enhanced cleavage are co-incident with the two adenines that are the target bases for methylation, showing that the DNA is both accessible and highly distorted at these sites. The hydroxyl radical footprint is unaffected by the presence of the cofactor S-adenosyl methionine, showing that the distorted DNA structure induced by M.EcoR124I is formed during the initial DNA binding reaction and not as a transient intermediate in the reaction pathway.  相似文献   

17.
18.
The specific recognition of DNA modifications by repair endonucleases was used to characterize damage induced by 3-carbethoxypsoralen (3-CPs) plus UvA in M13mp8 replicative form I (RF-I) DNA. Under the conditions used, 3-CPs plus UVA generates DNA base modifications which are recognized by the UvrABC complex and the Fpg protein of E. coli. The rate of formation of UvrABC sensitive sites is 3-4-fold higher than that of Fpg sensitive sites. In addition a small number of sites of base loss (sensitive to Nfo protein) were observed. M13mp8 RF-I DNA treated with 3-CPs plus UVA was tested for transfection efficiency in E. coli mutants defective in either Fpg protein and/or UvrABC complex. The survival of 3-CPs plus UVA damaged M13mp8 RF-I DNA was significantly reduced when transfected into uvrA mutants compared to that in the wild-type strain. On the other hand, the survival of 3-CPs plus UVA damaged RF-I DNA was not altered in fpg-1 mutants. These results show that nucleotide excision repair mediated by the UvrABC complex is the major repair pathway involved in the elimination of lethal lesions induced in DNA by 3-CPs plus UVA. Our data suggest that in vitro exposure of M13mp8 RF-I DNA to 3-CPs plus UVA produces predominantly thymine photoaddition and to a lesser extent guanine photooxidation partially due to singlet oxygen generated during photoreaction. The photoaddition products are primarly responsible for the observed lethal effect.  相似文献   

19.
In the absence of light, tetracycline (TC) induced single- and double-strand breaks in PM2 DNA at micromolar concentrations in combination with CuCl2, whereas TC or CuCl2 alone had no effect. Strand break formation was completely suppressed by catalase and the specific Cu(I) scavenger neocuproine. The extent of strand break formation depended on the ratio of Cu(II):TC. At a ratio of > or = 2 most DNA damage was observed. The influence of the kind of Cu(II)/TC complexation on DNA strand break formation is discussed. The DNA damage in PM2 DNA provoked by TC/CuCl2 was indirectly detected also in human fibroblasts by the induction of DNA repair. The results are discussed with regard to human risk from TC/Cu(II).  相似文献   

20.
Exposure to the solar ultraviolet spectrum that penetrates the Earth's stratosphere (UVA and UVB) causes cellular DNA damage within skin cells. This damage is elicited directly through absorption of energy (UVB), and indirectly through intermediates such as sensitizer radicals and reactive oxygen species (UVA). DNA damage is detected as strand breaks or as base lesions, the most common lesions being 8-hydroxydeoxyguanosine (8OHdG) from UVA exposure and cyclobutane pyrimidine dimers from UVB exposure. The presence of these products in the genome may cause misreading and misreplication. Cells are protected by free radical scavengers that remove potentially mutagenic radical intermediates. In addition, the glutathione-S-transferase family can catalyze the removal of epoxides and peroxides. An extensive repair capacity exists for removing (1) strand breaks, (2) small base modifications (8OHdG), and (3) bulky lesions (cyclobutane pyrimidine dimers). UV also stimulates the cell to produce early response genes that activate a cascade of signaling molecules (e.g., protein kinases) and protective enzymes (e.g., haem oxygenase). The cell cycle is restricted via p53-dependent and -independent pathways to facilitate repair processes prior to replication and division. Failure to rescue the cell from replication block will ultimately lead to cell death, and apoptosis may be induced. The implications for UV-induced genotoxicity in disease are considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号