首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Constitutivemodelisamathematicalrepresentationofthedeformationresponseofamaterialtoexternallyap pliedloading ,includingenvironmentalfactors .Thepre ciseknowledgeoftheconstitutivebehaviorofthematerialisthefoundationofnumericalsimulationtechnologyofmateri…  相似文献   

2.
Superplastic behaviors of quasicrystal phase containing Mg-5.8Zn-1Y-0.48Zr alloy sheets fabricated by combination of extrusion and hot-rolling processes have been investigated at temperature ranging from 623 to 753 K and at the strain rates ranging from 10-4 to 10-2 s-1 by uniaxial tensile tests. An excellent superplasticity with the maximum elongation to failure of 1020% was obtained at 753 K and the strain rate of 1.04×10-3 s-1 and its strain rate sensitivity, m, is as high as up to 0.75. The microstructure was stable during superplastic deformation due to the uniformly distributed fine quasicrystal particles. In addition, micro-cavities and their coalescences were observed in the superplastic deformation of the ZW61 magnesium alloy. Grain boundary sliding (GBS) was considered to be the main deformation mechanism during the superplastic deformation. Dislocation creep controlled by atom diffusion through grain boundaries or interior grains is suggested mainly to accommodate the GBS in super-plastic deformation.  相似文献   

3.
High temperature plastic deformation behavior of non-orientated electrical steel was investigated by Gleeble 1500 thermo-mechanical simulator at strain rate of 0.01−10 s−1 and high temperature of 500–1 200 °C. The stress level factor (a), stress exponent (n), structural factor (A) and activation energy (Q) of high temperature plastic deformation process of non-orientated electrical steel in different temperature ranges were calculated by the Arrhenius model. The results show that, with dynamic elevation of deformation temperature, phase transformation from α-Fe to γ-Fe takes place simultaneously during plastic deformation, dynamic recovery and dynamic recrystallization process, leading to an irregular change of the steady flow stress. For high temperature plastic deformation between 500 and 800°C, the calculated values of a, n, A, and Q are 0.039 0 MPa−1, 7.93, 1.9×1018 s−1, and 334.8 kJ/mol, respectively, and for high temperature plastic deformation between 1 050 and 1 200 °C, the calculated values of a, n, A, and Q are 0.125 8 MPa−1, 5.29, 1.0×1028 s−1, and 769.9 kJ/mol, respectively. Foundation item: Project(2005038560) supported by the Postdoctoral Foundation of China; Project(05GK1002-2) supported by Key Program of Hunan Province  相似文献   

4.
RRE-Mg66 alloy with a composition of Mg-6.0%Zn-1.0%Y-0.6%Ce-0.6Zr was prepared by combinatorial processes of rapid solidification, reciprocating extrusion and extrusion. Microstructure was evaluated on SEM and TEM. The average grain size of the alloy is 0.7 ??m, the size of the second phase at grain boundary is 0.15 ??m, and the size of the intragranular precipitates in round shape is less than 20 nm. Superplastic behavior of the material was investigated in a temperature range of 150 to 250 °C and initial strain rate range of 3.3×10?4 to 3.3×10?2 s?1 in air. The highest elongation of 270% was obtained at 250 °C and 3.3× 10?3 s?1. High-strain-rate superplasticity and low-temperature superplasticity were achieved. The superplasticity results from intragranular sliding (IGS) at temperatures from 170 to < 200 °C and grain boundaries sliding (GBS) at 250 °C. At 200 °C a combination of IGS and GBS contributes to the superplastic flow.  相似文献   

5.
Gleeble-1500D thermal simulation tester was employed in the hot-compression investigation of as-cast nuclear 304 austenitic stainless steel under conditions: deformation temperature 950―1200℃; deformations 30% and 50%; deformation rates 0.01 and 0.1 s?1. The results show that the flow stress decreases with temperature rise under the same strain rate and deformation, that the flow stress increases with deformation under the same temperature and strain rate, and that the flow stress increases with strain rate...  相似文献   

6.
The experimental tests of tensile for lead-free solder Sn-3.5Ag were performed for the general work temperatures range from 11 to 90 °C and strain rate range from 5×10−5 to 2×10−2 s−1, and its stress—strain curves were compared to those of solder Sn-37Pb. The parameters in Anand model for solder Sn-3.5Ag were fitted based on experimental data and nonlinear fitting method, and its validity was checked by means of experimental data. Furthermore, the Anand model was used in the FEM analysis to evaluate solder joint thermal cycle reliability. The results show that solder Sn-3.5Ag has a better creep resistance than solder Sn-37Pb. The maximum stress is located at the upper right corner of the outmost solder joint from the symmetric center, and thermal fatigue life is predicted to be 3.796×104 cycles under the calculated conditions. Foundation item: Project(50376076) supported by the National Natural Science Foundation of China  相似文献   

7.
A high-Mg2Si content Al alloy was extruded by equal channel angular pressing (ECAP) for 8 passes at 250 °C and an ultrafine-grained structure with an average grain size of about 1.5 μm was achieved. The coarse skeleton-shaped Mg2Si phase presenting in the as-cast alloy are significantly fragmented into fine rod-shaped as well as equiaxed particles mostly less than about 230 nm and become relatively dispersed. The tensile strength 192.8 MPa and the elongation up to 31.3% at ambient temperature are attained in the 8-pass ECAPed alloy versus 163.3 MPa and 9.1% in the as-cast alloy. High-temperature creep test at 250 °C reveals that the ECAPed sample exhibits a high elongation close to 100% at a relatively high creep rate 7.64×10−5 s−1, compared to the elongation 56% at a low strain rate 1.74×10−7 s−1 in the as-cast alloy.  相似文献   

8.
The isothermal oxidation behavior at 900–1300°C for 20 h in air of bulk Ti3AlC2 with 2.8 wt% TiC sintered by means of hot pressing was investigated in the work. The isothermal oxidation behavior generally followed a parabolic rate law. The parabolic rate constants increased from 1.39×10−10 kg2·m−4·s−1 at 900°C to 5.56×10−9 kg2·m−4·s−1 at 1300°C. The calculated activation energy was 136.45 kJ/mol. It was demonstrated that Ti3AlC2 had excellent oxidation resistance due to the continuous, dense and adhesive protect scales consisted of a mass of α-Al2O3 and a little of TiO2 and/or Al2TiO5. In principle, the oxide scale was grown by the inward diffusion of O2− and the outward diffusion of Ti4+ and Al3+. The rapid outward diffusion of cations usually resulted in the formation of cracks, gaps, and holes.  相似文献   

9.
The characteristics of hot deformation of an α+β titanium alloy Ti-6.5Al-3.5Mo-1.5Zr-0.3Si with acicular microstructure were studied using isothermal hot compressive tests in a strain rate range of 0.01-10 s-1 at 860-1 100 °C. The true stress-true strain curves of alloy hot-compressed in the α+β region exhibit a peak stress followed by continuous flow softening; whereas in the β region,the flow stress attains a steady-state regime. At a strain rate of 10 s-1 and in a wide temperature range,the alloy exhibit...  相似文献   

10.
The deformation behavior of a new Al-Zn-Cu-Mg-Sc-Zr alloy was investigated with compression tests in temperature range of 380–470 °C and strain rate range of 0.001–10 s−1 using Gleeble 1500 system, and the associated microstructural evolutions were studied by metallographic microscopy and transmission electron microscopy. The results show that true stress—strain curves exhibit a peak stress, followed by a dynamic flow softening at low strains (ɛ<0.05). The stress decreases with increasing deformation temperature and decreasing strain rate, which can be represented by a Zener-Hollomon exponential equation with the activation energy for deformation of 157.9 kJ/mol. The substructure in the deformed specimens consists of few fine precipitates with equaixed polygonized subgrains in the elongated grains and developed serrations at the grain boundaries. The dynamic flow softening is attributed mainly to dynamic recovery and dynamic recrystallization. Foundation item: Project(2006AA03Z523) supported by the National High-Tech Research and Development Program of China  相似文献   

11.
1 INTRODUCTIONDuringhotworking ,severalmetallurgicalphenomenasuchaswork hardening (WH ) ,dynamicrecovery (DRV) ,anddynamicre crystallizaiton (DRX )occursimultaneous ly[1 5 ] .Especially ,theoccurrenceofDRX ,canrefinegrainandreducedeformationresistanceinpracticalhot w…  相似文献   

12.
The properties of low-heat Portland cement concrete(LHC) were studied in detail. The experimental results show that the LHC concrete has characteristics of a higher physical mechanical behavior, deformation and durability. Compared with moderate-heat Portland cement(MHC), the average hydration heat of LHC concrete is reduced by about 17.5%. Under same mixing proportion, the adiabatic temperature rise of LHC concrete was reduced by 2 ℃-3 ℃,and the limits tension of LHC concrete was increased by 10× 10^-6-15×10^-6 than that of MHC. Moreover, it is indicated that LHC concrete has a better anti-crack behavior than MHC concrete.  相似文献   

13.
In order to establish a model between the grain size and the process parameters, the hot deformation behaviors of Ti-49.5Al alloy was investigated by isothermal compressive tests at temperatures ranging from 800 to 1 100 ℃ with strain rates of 10^-3-10^-1 s^-1. Within this range, the deformation behavior obeys the power law relationship, which can be described using the kinetic rate equation. The stress exponent, n, has a value of about 5.0, and the apparent activation energy is about 320 J/mol, which fits well with the value estimated in previous investigations. The results show that, the dependence of flow stress on the recrystallized grain size can be expressed by the equation: σ = K1 drex^-0.56. The relationship between the deformed microstructure and the process control parameter can be expressed by the formula: lgdrex= -0.281 1gZ 3.908 1.  相似文献   

14.
A numerical method was used to study the natural ventilation in a rectangular enclosure with two symmetrical openings. In order to improve the natural ventilation efficiency, a fin was introduced into the enclosure. Steady-state heat transfer by laminar natural ventilation in a partially divided rectangular enclosure was investigated by numerically solving equations of mass, momentum and energy. Streamlines and isotherms were produced and heat transfer rate were calculated. A parametric study was carried out using the following parameters: Rayleigh number (1×103 − 1×106), dimensionless length (0–0.7) and position values (−0.7−0.7). It is found that the Nusselt number is an increasing function of Rayleigh number. By comparing with no-fin case, it is concluded that fin can effectively enhance the natural ventilation in the enclosure. Foundation item: Project(50408019) supported by the National Natural Science Foundation of China  相似文献   

15.
Dry machining will result in elevated temperatures at the tool surface (800—1000℃). So, coating materials that can provide protection for cutting tools at these temperatures are of great technological interests. ZrAlN coating is proposed to possess high-temperature stable structural and mechanical properties due to the addition of the alloying element. ZrAlN coatings were grown using a dc reactive magnetron sputtering. The XRD and nano indenter were employed to investigate the effects of reaction gas partial pressure and substrate bias on structural and mechanical properties, as well as high-temperature stability. The ZrAlN coating, when deposited under optimum conditions (-37 V substrate bias and 2×10-5 Pa N2 partial pressure), showed smooth surface with thermal stable hardness. Its internal stress was relaxed from 2.2 to 0.7 GPa after anneal- ing. Formation of Al2O3 and ZrO2 crystalline phases should be related to thermal stability of the coatings.  相似文献   

16.
Flow stress equation for multipass hot-rolling of aluminum alloys   总被引:7,自引:0,他引:7  
Theflowstressofamaterialrelatesnotonlytothestrain ,strainrate ,andtemperatureofde formation,butalsotothemicrostructure .Asanessentialinputforcomputermodelingthermome chanicalprocessingoperationsusingfiniteelementmethods,anaccurateflowstressvalueorflowstre…  相似文献   

17.
The adsorption properties of a novel macroporous weak acid resin (D152) for Pb2+ were investigated with chemical methods. The optimal adsorption condition of D152 resin for Pb2+ is at pH 6.00 in HAc-NaAc medium. The statically saturated adsorption capacity is 527 mg/g at 298 K. Pb2+ adsorbed on D152 resin can be eluted with 0.05 mol/L HCl quantitatively. The adsorption rate constants determined under various temperatures are k 288 K=2.22×10−5 st-1, k 298 K=2.51×10−5 s−1, and k 308 K= 2.95×10−5 s−1, respectively. The apparent activation energy, E a is 10.5 kJ/mol, and the adsorption parameters of thermodynamics are ΔH Θ=13.3 kJ/mol, ΔS Θ=119 J/(mol·K), and ΔG Θ 298 K =−22.2 kJ/mol, respectively. The adsorption behavior of D152 resin for Pb2+ follows Langmuir model. Foundation item: Project(2008F70059) supported by the Scientific and Technological Research Planning of Zhejiang Province, China  相似文献   

18.
60% white corundum used for aggregate, 5% aluminium powder for fixed additions and 35% various additives for matrix were prepared for specimens 1#,2#,3#. They were mixed uniformly with the suitable resin as a binder and pressed under pressure of 315 ton forging press, then dried at 200℃ for 24 h. Effects of various additives on 1500 ℃×2 h creep properties of Al3CON reinforced corundum composite were researched. The experimenal results show that creep coefficients of specimens 1#,2#,3# at 1500 ℃×2 h are 1.4×10^- 4, -9.4×10^-4, -22.6×10^-4, respectively. Crushing strength of the slide plate added with suitable additive A after fired at 1500 ℃ ×3 h reaches to 225 MPa, the creep rate is positive all the time from 0% to 0.014% at 1500 ℃ for 2 h. The microstructure result analysis shows that reinforced phases of Al3CON fiber composite have been formed after fired with Al powder in coke at high temperatures for specimen 1#, and the strength of the composite is increased. The hot modulus of rupture is up to 59 MPa at 1400 ℃ and the RUL is obviously higher than that at 1700 ℃. Its service life is two times as that of Al2O3-C slide plate when used in the process of pouring steel. The mechanism of creep rate resistance of the composites can be discovered by means of SEM and EDAX analysis. It is concluded that the active Al3CON and Al2O3 multiphases that were formed by N2 in gas, C, Al and Al2O3 inside the matrix of the composites during in-situ reaction,which gives the composites outstanding creep rate resistance for the dense zone resuiting from Al3CON oxidation that inhibits contraction at the high temperature. Besides, the matrix will turn into the multiphase with high refractoriness, N content and its Al3CON reinforced fiber will further increase accordingly. In addition, Al3CON formed by Al2O3 and C, Al in the matrix with N2 in gas will inhibit the creep rate and also greatly improve the creep rate resistance of the composites.  相似文献   

19.
B2O3-BaO-ZnO glass was prepared by using conventional melt quenching technology. The forming regularity and the relationship between the composition and the property of B2O3-BaO-ZnO glass were investigated. The results show that the composition range for forming B2O3-BaO-ZnO glass is very wide, but the content of B2O3 has a limit within mole fraction of 25%-75%. When the content of B2O3 is over the limit, the melt will be divided into two phases with different compositions and structures, whereas too low content of B2O3 will result in the crystallization of the melt during the cooling process. The thermal expansion coefficient, the transition temperature and the resistivity of the glass at room temperature are (5-10)×10-6 ℃-1, 480-620 ℃ and (1.5-3.0)×1010 Ω·m, respectively.  相似文献   

20.
The microstructure and flow stress of the Mg-12Gd-3Y-0.5Zr magnesium alloy was investigated by compression test at temperatures ranging from 350 to 500 ℃ and the strain rates ranging from 0.01 to 20 s-1. The flow stress of the magnesium alloy increased with strain rate and decreased with deformation temperature. Flow stress can be expressed in terms of the Zener-Hollomon parameter Z, which describes the combined influence of the strain rate and temperature using an Arrhenius function.The values of the deformation activation energy were estimated to be 245.9 and 171.5 kJ/mol at deformation temperatures below 400 ℃ and above 400 ℃, respectively. Two constitutive equations were developed to quantify the effect of the deformation conditions on the flow stress of the magnesium alloy. The effects of deformation temperature and strain rate on the microstructure of the magnesium alloy were also examined and quantified by measuring the volume fraction of dynamically recrystallized grain Xd. Xd increased with increasing of deformation temperature. When the deformation temperature was below 475 ℃, Xd decreased with strain rate until it reached 0.15 s-1, then it increased again. When the deformation temperature was above 475 ℃, Xd increased with strain rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号