首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用真空离子镀的方法在304不锈钢基体上喷涂厚度为3μm的TiN/Ti薄层,利用硬度计、三维形貌仪、划痕试验仪对涂层基本力学性能进行分析,通过球盘试验机分析涂层试样的摩擦磨损性能,根据波箔轴承性能测试实验台的测试结果:研究TiN/Ti涂层对基体表面耐磨减摩性能的影响。研究结果表明:TiN涂层硬度可达HV1 500,是基材硬度的5.5倍;TiN/Ti涂层平均摩擦因数为0.23,相对不锈钢304基材的平均摩擦因数0.71,降低了68%,磨损量也仅为基材的18.75%;GCr15与PTFE对磨的最大摩擦力矩可达2.4 N·mm,而TiN/Ti与PTFE对磨的最大摩擦力矩仅为1 N·mm,仅为GCr15的41.7%。TiN/Ti涂层表现出了优异的承载能力和耐磨减摩性能。  相似文献   

2.
The effects of the oxide layer formed on the wear tracks of a titanium nitride (TiN) coated silicon wafer on friction and wear characteristics were investigated. Silicon wafers were used as the substrate of coated disk specimens, which were prepared by depositing TiN coating with 1.74 m in coating thickness using the arc ion-plating method. SAE 52100 steel balls were used as the counter-faces. The tests were performed both in air for forming an oxide layer on the wear track and in nitrogen to avoid oxidation. This paper reports the characterization of the oxide layer and its effects on friction and wear characteristics using Auger electron spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The TiN coating with the oxides shows relatively high friction compared to that without an oxide layer. The thickness of the layer formed on the surfaces of the TiN coated silicon wafer is very thin compared to the thickness of the TiN coating. The oxide layer dominates the frictional characteristics between the two materials and induces a relative high friction.  相似文献   

3.
Nanoindentation and nanoscratch tests were performed for titanium nitride (TiN) coatings on different tool steel substrates to investigate the indentation/scratch induced deformation behavior of the coatings and the adhesion of the coating–substrate interfaces and their tribological property. In this work, TiN coatings with a thickness of about 500 nm were grown on GT35, 9Cr18 and 40CrNiMo steels using vacuum magnetic-filtering arc plasma deposition. In the nanoindentation tests, the hardness and modulus curves for TiN/GT35 reduced the slowest around the film thickness 500 nm with the increase of indentation depth, followed by TiN/9Cr18 and TiN/40CrNiMo. Improving adhesion properties of coating and substrate can decrease the differences of internal stress field. The scratch tests showed that the scratch response was controlled by plastic deformation in the substrate. The substrate plays an important role in determining the mechanical properties and wear resistance of such coatings. TiN/GT35 exhibited the best load-carrying capacity and scratch/wear resistance. As a consequence, GT35 is the best substrate for TiN coatings of the substrate materials tested.  相似文献   

4.
A tribological analysis of deformations and stresses generated and their influence on crack generation and surface fracture in a coated surface loaded by a sliding sphere in dry conditions is presented. A three-dimensional finite element method (3D FEM) model has been developed for calculating the first principal stress distribution in the scratch tester contact of a diamond spherical tip with 200 μm radius sliding with increasing load on a 2 μm thick titanium nitride coated steel surface. The model is comprehensive in that sense that it considers elastic, plastic and fracture behaviour of the surfaces. The hard coating will be stretched and accumulates high tensile stresses. At the same time, it is carrying part of the load and thus reducing the compressional stresses in the substrate under the sliding tip. The first crack is initiated at the top of the coating from bending and pulling actions and it grows down through the coating. The fracture toughness of the coating is calculated by identifying from a scratch test experiment the location of the first cracks and the crack density and using this as input data.  相似文献   

5.
Abstract

Constant load, progressive load and multipass nanoscratch (nanowear) tests were carried out on 500 and 1500 nm TiN coatings on M42 steel chosen as model systems. The influences of film thickness, coating roughness, scratch direction relative to the grinding grooves on the critical load in the progressive load test and number of cycles to failure in the wear test have been determined. Progress towards the development of a suitable methodology for determining the scratch hardness from nanoscratch tests is discussed.  相似文献   

6.
C-N films were deposited on the 20CrMo alloy steel substrate by the Plasma Source Ion Implantation (PSII) method and TiN films were coated on the same material by the Physical Vapor Deposition (PVD) method. It was found that friction coefficient of C-N coating were relatively lower than TiN coating. And with the load increased, the friction coefficients of C-N coating and TiN coating were both decreased. Then the author puts forward the test rig, working under the conditions of 1,800 rpm, 20 N·m for 100 h. The observations by microscope showed the wear reduced. The antiwearing performance enhanced prominently. But the TiN coated gear had a more serious friction phenomenon than C-N coated gear. This is caused by that coating of TiN, which was made at a high temperature about 500°C. The high temperature led to the substrate intenerated and the surface hardness had decreased from 850 HV to 630 HV. PSII method eliminates the tempering problem of the coating of C-N films, which had better wear resistance than TiN films. The friction and wear resistance of gears which coated by C-N films ameliorated significantly.  相似文献   

7.
高速钢刀具镀氮化碳超硬涂层研究   总被引:3,自引:0,他引:3  
为了在高速钢刀具上制备先进的氮化碳超硬涂层,采用DC反应磁控溅射和电弧离子镀相结合的方法在高速钢上沉积氮化碳一氮化钛复合膜,经X射线衍射分析,复合膜中存在α-C3N4和β-C3N4两种硬度相。复合膜的显微硬度(HK)为50.5-54.1GPa,用划痕试验测量它与高速钢基体的附着力,测得临界载荷Lc=40-80N,多种刀具试用证实,该涂层具有很高的耐磨性,与未涂层和镀TiN的刀具相比,大幅度提高了刀具的耐用度。  相似文献   

8.
《Wear》2006,260(7-8):832-837
The reactive plasma spraying (RPS) of titanium powders in a nitrogen containing plasma gas produces thick coatings characterised by microdispersed titanium nitride phases in a titanium matrix. In this paper, the wear resistance properties of Ti–TiN coatings deposited on carbon steel substrates by means of RPS technique are studied. Wear tests were performed in block-on-ring configuration and dry sliding conditions, at different applied loads (45 and 100 N) and sliding velocities (in the range 0.4–2.0 m s−1) by using hardened and stress relieved AISI O2 disks as counterpart. At low applied load the wear volumes are low, and tend to slightly increase as the sliding velocity increases. At high applied load and low sliding velocities the highest wear volumes for the coated samples are observed, due to adhesion in the contact area with the tool steel counterpart and decohesion of coating particles. As the sliding velocity is increased, the wear volume of the coated samples tends to decrease owing to oxidation phenomena.  相似文献   

9.
G. Kermouche  N. Aleksy  J.L. Loubet  J.M. Bergheau   《Wear》2009,267(11):1945-92
Scratch tests is one of the most efficient tests to investigate the mechanical resistance of coated and uncoated surfaces. Nevertheless, the complexity of material and interface makes difficult the comprehension of this test. For that purpose, efficient computational modeling is required. In this paper, we present a remeshing procedure specially developed for the computational modeling of scratch tests of coated materials. This procedure allows to perform scratch tests with high ratio penetration depth over layer thickness. Then, it is used to investigate the influence of the scratching velocity on the scratch behavior of a polymer substrate coated with a hard elastic coating. The substrate is considered as an elastic–viscoplastic solids and the coating follows a linear elastic behavior. First macroscopic results such as material deformation, scratch hardness and apparent friction coefficient are presented. Then the stress distribution in the film and at the coating/substrate interface are analyzed regarding the cohesive or interfacial failure of the system. A simple interfacial failure criterion is also proposed.  相似文献   

10.
A comparative study of the wear behaviors of a selected titanium alloy and AISI H13 steel as a function of temperature and load was performed on a high-temperature wear tester. The titanium alloy and H13 steel presented totally different wear behaviors with the variation in temperature and load. Their behaviors are suggested to be attributed to the protective ability of tribo-oxides and the thermal softening resistance of the matrix. Compared to H13 steel, the titanium alloy presented poor room-temperature wear resistance, excellent high-temperature wear resistance, and an extremely protective function of tribo-oxides.  相似文献   

11.
Hard CrNx coatings were sputter deposited on hot work tool steel (HWTS) and high speed steel (HSS) in an industrial PVD reactor. Coatings were deposited under various nitrogen flows. The thickness, density, hardness, elastic modulus, composition, and stress were determined for the coatings. The specimens were subjected to scratch testing. Two different failure mechanisms were investigated: chipping and complete coating removal. For all specimens, the coating-to-substrate adhesion was that good that adhesion did not limit the scratch resistance. Therefore, the minimum loads at which a given type of failure was initiated were not a measure for the coating-to-substrate adhesion. The scratch resistance was better for coatings on HSS than for coatings on HWTS. This is due to the higher hardness of the HSS. Substrate independent measures for the scratch resistance of the coating were obtained by considering critical track widths instead of critical loads. The hardening of the coating--substrate systems due to the coating was investigated. The uncoated substrates exhibited track width independent scratch hardness. For the coated specimens the scratch hardness increased with increasing track width until chipping of the coating occurred. Complete coating removal coincided with a decrease in hardness. Although the elastic properties, hardness, and thickness of all coatings were more or less equal, CrN1.0 coatings outperformed CrN0.6 coatings in scratch tests both on HSS and on HWTS.  相似文献   

12.
《Wear》2006,260(1-2):215-222
Microplasma oxidation (MPO) has recently been studied as a cost-effective plasma electrolytic process to provide thick and hard ceramic coatings with excellent surface load-bearing capacity on aluminum alloys. However, for sliding wear applications, such ceramic coatings often exhibit relatively high friction coefficients against many counterface materials. Although coatings deposited by physical vapour deposition (PVD) techniques such as TiN coatings are well known for providing surfaces with a high hardness, in practice they often exhibit poor performance under mechanical loading, since the coatings are usually too thin to protect the substrate from the contact conditions. In this paper, these challenges were overcome by a duplex process of microplasma oxidation and arc ion plating (AIP), in which an alumina layer Al2O3 was deposited on an Al alloy substrate (using MPO as a pre-treatment process) for load support, and a TiN hard coatings were deposited (using AIP) on top of the Al2O3 layer for low friction coefficient. Microhardness measurements, pin-on-disc sliding wear tests, and antiwear tests using a Timken tester were performed to evaluate the mechanical and tribological properties. Scanning electron microscopy (SEM) was used to observe coating morphology, and to examine wear scars from pin-on-disc test. The research demonstrates that a hard and uniform TiN coating, with good adhesion and a low coefficient of friction, can successfully be deposited on top of an alumina intermediate layer to provide excellent load support. The investigations indicate that a duplex combination of MPO coating and TiN PVD coating represents a promising technique for surface modification of Al alloys for heavy surface load bearing application.  相似文献   

13.
Abstract

The influence of a pre-existing crack field on coating adhesion failure in a steel surface coated with a 2 μm thick titanium nitride (TiN) coating was investigated by finite element method modelling and simulation. The stress and strain fields were determined in contact conditions with a spherical diamond tip sliding over the coated surface at a loading of 8 N. One crack in or at the coating increased the maximum tensile stresses with six times from 82 to 540 MPa when the crack was vertical through the coating or L shaped and with nine times when the crack was horizontal at the coating/substrate interface. A simulated multicrack pattern relaxed the tensile stresses compared to single cracks. The results indicate that a cracked coated surface needs to have about five to nine times higher adhesive and cohesive bonds to resist the same loading without crack growth compared to a crack free surface. For optimal coated surface design, the strength of the adhesive bonds between the coating and the substrate in the vertical direction needs to be 50% higher than the cohesive bonds within the coating and the substrate in the horizontal direction. The first crack is prone to start at the top of the coating and grows vertically down to coating/substrate interface, and there it stops due to the bigger cohesion within the steel material. After this, there are two effects influencing that the crack will grow in the lateral direction. One is that steel cohesion is normally bigger than the coating/interface adhesion, and the second is that there are higher tensile stresses in the horizontal than in the vertical cracks. Several vertical cracks can stop the horizontal crack growth due to stress relaxation.  相似文献   

14.
Coated high-speed steel tools are widely used in machining processes as they offer an excellent tool life to cost ratio, but they quickly need replacing once the coated layer is worn away. It would be therefore useful to be able to measure the tool life remaining non-destructively and cheaply. To achieve this, the work presented here aims to measure the thickness of the coated layer of high-speed cutting tools by using Barkhausen noise (BHN) techniques. Coated high-speed steel specimens coated with two different materials (chromium nitride (CrN), titanium nitride (TiN)) were tested using a cost-effective measuring system developed for this study. Sensory features were extracted from the signal received from a pick-up coil and the signal features, Root mean square, peak count, and signal energy, were successfully correlated with the thickness of the coating layer on high-speed steel (HSS) specimens. The results suggest that the Barkhausen noise measuring system developed in this study can successfully indicate the different thickness of the coating layer on CrN/TiN coated HSS specimens.  相似文献   

15.
A novel hard composite solid lubricant coating combining TiN and MoSx has been developed using pulsed DC closed-field unbalanced magnetron sputtering (CFUBMS). The tribological and mechanical properties together with their interdependencies with the coating microstructures have been assessed and reported elsewhere. This article evaluates the machining performance and correlates the underlying tribological aspects of different TiN-MoSx coating architectures (deposited at titanium (Ti) cathode currents of 1, 3.5, and 5 A) when dry turning AISI 1080 high-carbon steel. A comparative performance study clearly established the supremacy of the composite coating (deposited at 3.5 A Ti cathode current with ~12 wt% of MoSx) with a hard TiN underlayer over monolayer TiN, MoSx, and other related coating architectures in terms of cutting force, tool wear, and workpiece surface roughness. The superlubricity behavior of the said composite coated tool resulted in a reduction of cutting force (by up to ~45% compared to the uncoated tool) and exhibited a tool life of 8 min, which was eight times and more than two times longer than that of the uncoated and conventional hard TiN coated counterparts, respectively. The workpiece surface roughness, Ra, also decreased by 13 to 21% when machined with the TiN-MoSx coated tool in comparison to the uncoated cemented carbide.  相似文献   

16.
为提高40Gr钢表面的耐磨性与耐蚀性,以钴基合金为电极,采用微弧火花技术,在40Cr钢表面制备钴基合金涂层.以GCr15滚珠为上试样,钻基合金涂层为下试样,采用HT-500高温摩擦磨损实验机进行对磨实验研究,测定润滑条件下沉积涂层的摩擦系数.利用扫描电镜观察磨痕形貌,探索磨损机制.研究结果表明:在润滑条件下,在100g...  相似文献   

17.
Thin hard coatings on components and tools are used increasingly due to the rapid development in deposition techniques, tribological performance and application skills. The residual stresses in a coated surface are crucial for its tribological performance. Compressive residual stresses in PVD deposited TiN and DLC coatings were measured to be in the range of 0.03-4 GPa on steel substrate and 0.1-1.3 GPa on silicon. MoS2 coatings had tensional stresses in the range of 0.8-1.3 on steel and 0.16 GPa compressive stresses on silicon. The fracture pattern of coatings deposited on steel substrate were analysed both in bend testing and scratch testing. A micro-scale finite element method (FEM) modelling and stress simulation of a 2 μm TiN-coated steel surface was carried out and showed a reduction of the generated tensile buckling stresses in front of the sliding tip when compressive residual stresses of 1 GPa were included in the model. However, this reduction is not similarly observed in the scratch groove behind the tip, possibly due to sliding contact-induced stress relaxation. Scratch and bending tests allowed calculation of the fracture toughness of the three coated surfaces, based on both empirical crack pattern observations and FEM stress calculation, which resulted in highest values for TiN coating followed by MoS2 and DLC coatings, being KC = 4-11, about 2, and 1-2 MPa m1/2, respectively. Higher compressive residual stresses in the coating and higher elastic modulus of the coating correlated to increased fracture toughness of the coated surface.  相似文献   

18.
不同温度下多层结构TiCN/TiC/TiN镀层的摩擦学行为   总被引:2,自引:0,他引:2  
用化学气相沉积法在高速钢基体上制备了多层结构的TiCN/TiC/TiN镀层,分别用压入法和球坑法测定了镀层的结合强度和厚度;用显微硬度计测定了镀层的努氏硬度;在不同温度条件下,用球盘磨损试验机研究了镀层摩擦因数的变化规律,分析了温度对镀层摩擦磨损性能的影响。结果表明:该镀层的结合强度优异,厚度约为5μm,硬度约为2 352HK;在高温(550℃)下,镀层的摩擦因数一开始就很高,随后继续上升直到最大值,接着开始逐渐下降;室温下,镀层的摩擦因数一开始很低,随后较快地上升到一定值,之后上升速度减缓,最后达到稳定阶段;室温下,镀层磨痕中间局部有块状剥离,边缘有大量磨屑;高温下镀层出现塑性变形。  相似文献   

19.
The aim of this study was to investigate the damage of cutting tools coated by physical vapor deposition (PVD) during the continuous turning of a titanium alloy. The investigation utilized scanning electron microscopy (SEM), electron probe micro-analysis (EPMA), and transmission electron microscopy (TEM). It was found that a TiN coating on the tool wore faster than an uncoated cemented carbide tool. The damage mode of the coating on the rake face was fracture without plastic deformation. Additionally, there was a pattern to the crystal orientation relationship at some of the interfaces between the adhered workpiece material and the TiN coating. The crystal orientation relationship presumably produced a strong bond between the adhered material and the coating. The coating damage was thus caused by the force exerted by the adhered materials on the grain boundary on the damaged coating surface. A comparison of the tool damages during the machining of Ti-6Al-4V alloy and alloy 718 suggested that the damage of the coating depended on the interfacial strength between the adhered material and the coating, as well as the strength of the adhered material at a high temperature. Hence, to prevent the damage of the tool during the machining of a titanium alloy, it is preferable to use a ductile material (e.g., cemented carbide) rather than a brittle material (e.g., ceramic).  相似文献   

20.
B. Podgornik  S. Hogmark 《Wear》2006,261(1):15-21
The aim of the present work was to investigate and compare different hard coatings as to the tendency for work material adhesion and galling properties when applied on forming tool steel and sliding against different work materials. The surface coatings included were PVD deposited TiN, TiB2, VN, TaC and DLC coatings. They were all applied to cold work tool steel. Tribological evaluation was carried out in a load-scanning test rig, with the normal load being gradually increased during each test from 100 to 1300 N (1-3.5 GPa). The coated steel was tested against austenitic stainless steel and alloys of aluminium and titanium.This investigation clearly indicates that work material adhesion and galling performance of coated forming tool steel greatly depends on the type of work material. In the case of stainless steel, carbon-based coatings provide the best protection against the work material transfer, while forming of aluminium and titanium alloys, requires nitride type coatings, such as TiN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号