首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
During high-temperature oxidation of ZrB2–SiC composites, a multi-layer oxide scale forms with a silica-rich borosilicate liquid as the surface oxide layer. Here, a recently proposed novel mechanism for the high-temperature oxidation of ZrB2–SiC composites is further investigated and verified. This mechanism involves the formation of convection cells in the oxide surface layer during high-temperature oxidation of the composite. The formation of zirconia deposits found in the center of the convection cells is proposed here to be the consequence of liquid transport. The nature and deposition mechanism of the zirconia is reported in detail, using calculated phase equilibrium diagrams and microstructure observations of a ZrB2-15 vol% SiC composite tested at 1550° and 1700°C in ambient air for various times. The calculated phase equilibrium diagrams for the binary ZrO2–B2O3 system as well as the ternary B2O3–SiO2–ZrO2 system at 1500°C are reported here to interpret these results.  相似文献   

2.
During the high-temperature oxidation of ZrB2–SiC composites, liquid boron oxide (B2O3) is formed at the zirconium diboride–zirconium oxide interface and transported through the overlying layer of silica liquid by convection, forming distinct convection cells arranged like the petals of a flower. The convection cells are localized by a viscous fingering phenomenon, as the fluid B2O3 rich liquid solution rises through the viscous silica layer. The upwelling B2O3 rich liquid contains dissolved zirconium dioxide, which deposits in the center of the flower-like structure as the B2O3 evaporates. The driving force for the B2O3 liquid flow is the volume increase upon oxidation of ZrB2. Convective transport of B2O3 liquids suggests a novel mechanism for the high-temperature oxidation of these materials.  相似文献   

3.
The evolution of convection cells features that form in oxide films on ZrB2–SiC composites are quantified by the number population, size, and distribution in oxide films on ZrB2–15 vol% SiC oxidized at temperatures between 1500° and 1600°C for various oxidation times. The number of convection cells per unit area increases after short exposure times of the oxidation at 1550°C, but then decreases slowly with increasing time. The results indicate that these convection cells are transient, they form and transport boria–silica–zirconia liquid to the surface but with increasing exposure time the increasing amount of flowing viscous SiO2-rich liquid submerges them and they become extinct.  相似文献   

4.
Specimens of ZrB2 containing various concentrations of B4C, SiC, TaB2, and TaSi2 were pressureless-sintered and post-hot isostatic pressed to their theoretical densities. Oxidation resistances were studied by scanning thermogravimetry over the range 1150°–1550°C. SiC additions improved oxidation resistance over a broadening range of temperatures with increasing SiC content. Tantalum additions to ZrB2–B4C–SiC in the form of TaB2 and/or TaSi2 increased oxidation resistance over the entire evaluated spectrum of temperatures. TaSi2 proved to be a more effective additive than TaB2. Silicon-containing compositions formed a glassy surface layer, covering an interior oxide layer. This interior layer was less porous in tantalum-containing compositions.  相似文献   

5.
ZrB2–LaB6 powder was obtained by reactive synthesis using ZrO2, La2O3, B4C, and carbon powders. Then ZrB2–20 vol% SiC–10 vol% LaB6 (ZSL) ceramics were prepared from commercially available SiC and the synthesized ZrB2–LaB6 powder via hot pressing at 2000°C. The phase composition, microstructure, and mechanical properties were characterized. Results showed that both LaB6 and SiC were uniformly distributed in the ZrB2 matrix. The hardness and bending strength of ZSL were 17.06±0.52 GPa and 505.8±17.9 MPa, respectively. Fracture toughness was 5.7±0.39 MPa·m1/2, which is significantly higher than that reported for ZrB2–20 vol% SiC ceramics, due to enhanced crack deflection and crack bridging near SiC particles.  相似文献   

6.
Al2O3–ZrO2–SiC whisker composites were prepared by surface-induced coating of the precursor for the ZrO2 phase on the kinetically stable colloid particles of Al2O3 and SiC whisker. The fabricated composites were characterized by a uniform spatial distribution of ZrO2 and SiC whisker phases throughout the Al2O3 matrix. The fracture toughness values of the Al2O3–15 vol% ZrO2–20 vol% SiC whisker composites (∼12 MPa.m1/2) are substantially greater than those of comparable Al2O3–SiC whisker composites, indicating that both the toughening resulting from the process zone mechanism and that caused by the reinforced SiC whiskers work simultaneously in hot-pressed composites.  相似文献   

7.
A mixture of Zr, B4C, and Si powders was adopted to synthesize a ZrB2–SiC composite using the spark plasma sintering–reactive synthesis (SPS–RS) method. SPS treatments were carried out in the temperature range of 1350°–1500°C under a varying pressure of 20–65 MPa with a 3-min holding time. A dense (∼98.5%) ZrB2–SiC composite was successfully fabricated at 1450°C for 3 min under 30 MPa. The microstructure of the composite was investigated. The in situ formed ZrB2 and SiC phases dispersed homogeneously on the whole. The grain size of ZrB2 and SiC was <5 and 1 μm, respectively. A number of in situ formed ultrafine SiC particles were observed entrapped in the ZrB2 grains.  相似文献   

8.
This work reported the microstructural evolution and grain growth kinetics of ZrB2–SiC composites containing 10, 20, and 30 vol% SiC during heat treatment at 2000°C. The coarsening of ZrB2 occurred in the three systems, whereas the obvious coarsening for SiC appeared only in the composite with 30 vol% SiC. The kinetics analysis showed the ZrB2 grain growth rate in the ZrB2–30 vol% SiC was 25 times lower than that for ZrB2–10 vol% SiC during heat treatment. Furthermore, the grain growth controlling mechanisms of ZrB2 and SiC were discussed. In addition, it was found that the heat treatment had little effect on Vickers hardness and fracture toughness of ZrB2–SiC.  相似文献   

9.
Ultrafine ZrB2–SiC composite powders have been synthesized in situ using carbothermal reduction reactions via the sol–gel method at 1500°C for 1 h. The powders synthesized had a relatively smaller average crystallite size (<200 nm), a larger specific surface area (∼20 m2/g), and a lower oxygen content (∼1.0 wt %). Composites of ZrB2+20 wt% SiC were pressureless sintered to ∼96.6% theoretical density at 2250°C for 2 h under an argon atmosphere using B4C and Mo as sintering aids. Vickers hardness and flexural strength of the sintered ceramic composites were 13.9±0.3 GPa and 294±14 MPa, respectively. The microstructure of the composites revealed that elongated SiC grain dispersed uniformly in the ZrB2 matrix. Oxidation from 1100° to 1600°C for 30 min showed no decrease in strength below 1400°C but considerable decrease in strength with a rapid weight increment was observed above 1500°C. The formation of a protective borosilicate glassy coating appeared at 1400°C and was gradually destroyed in the form of bubble at higher temperatures.  相似文献   

10.
The thermal and electrical properties of MoSi2 and/or SiC-containing ZrB2-based composites and the effects of MoSi2 and SiC contents were examined in hot-pressed ZrB2–MoSi2–SiC composites. The thermal conductivity and electrical conductivity of the ZrB2–MoSi2–SiC composites were measured at room temperature by a nanoflash technique and a current–voltage method, respectively. The results indicate that the thermal and electrical conductivities of ZrB2–MoSi2–SiC composites are dependent on the amount of MoSi2 and SiC. The thermal conductivities observed for all of the compositions were more than 75 W·(m·K)−1. A maximum conductivity of 97.55 W·(m·K)−1 was measured for the 20 vol% MoSi2-30 vol% SiC-containing ZrB2 composite. On the other hand, the electrical conductivities observed for all of the compositions were in the range from 4.07 × 10–8.11 × 10 Ω−1·cm−1.  相似文献   

11.
Zirconium diboride (ZrB2) was densified (>98% relative density) at temperatures as low as 1850°C by pressureless sintering. Sintering was activated by removing oxide impurities (B2O3 and ZrO2) from particle surfaces. Boron oxide had a high vapor pressure and was removed during heating under a mild vacuum (∼150 mTorr). Zirconia was more persistent and had to be removed by chemical reaction. Both WC and B4C were evaluated as additives to facilitate the removal of ZrO2. Reactions were proposed based on thermodynamic analysis and then confirmed by X-ray diffraction analysis of reacted powder mixtures. After the preliminary powder studies, densification was studied using either as-received ZrB2 (surface area ∼1 m2/g) or attrition-milled ZrB2 (surface area ∼7.5 m2/g) with WC and/or B4C as a sintering aid. ZrB2 containing only WC could be sintered to ∼95% relative density in 4 h at 2050°C under vacuum. In contrast, the addition of B4C allowed for sintering to >98% relative density in 1 h at 1850°C under vacuum.  相似文献   

12.
A volatility diagram was calculated for temperatures of 1000, 1800, and 2500 K to understand the oxidation of ZrB2. Applying the diagram, it can be seen that exposure of ZrB2 to air produces ZrO2 (cr) and B2O3 (l) over the temperature range considered. The pressure of the predominant vapor species was predicted to increase from ∼10−6 Pa at 1000 K, to 344 Pa at 1800 K, and to ∼105 Pa at 2500 K. Predictions were consistent with experimental observations that ZrB2 exhibits passive oxidation below 1200 K, but undergoes active oxidation at higher temperatures due to B2O3 (l) evaporation.  相似文献   

13.
Pressureless sintering was used to densify ZrB2–SiC ultra-high temperature ceramics. The physical, mechanical, thermal, electrical, and high temperature properties were investigated. This comprehensive set of properties was measured for ZrB2 containing 20 vol% SiC in which B4C and C were used as the sintering aids. The three-point flexural strength was 361±44 MPa and the elastic modulus was 374±25 GPa. The Vickers hardness and fracture toughness were 14.7±0.2 GPa and 4.0±0.5 MPa·m1/2 respectively. Scanning electron microscopy studies of the microstructure of ZrB2–SiC showed that SiC particles were distributed homogenously in the ZrB2 matrix with little residual porosity.  相似文献   

14.
In a recent work, 1 we have reported the optimization of the spark plasma sintering (SPS) parameters to obtain dense nanostructured 3Y-TZP ceramics. Following this, the present work attempts to answer some specific issues: (a) whether ZrO2-based composites with ZrB2 reinforcements can be densified under the optimal SPS conditions for TZP matrix densification (b) whether improved hardness can be obtained in the composites, when 30 vol% ZrB2 is incorporated and (c) whether the toughness can be tailored by varying the ZrO2–matrix stabilization as well as retaining finer ZrO2 grains. In the present contribution, the SPS experiments are carried out at 1200°C for 5 min under vacuum at a heating rate of 600 K/min. The SPS processing route enables retaining of the finer t -ZrO2 grains (100–300 nm) and the ZrO2–ZrB2 composite developed exhibits optimum hardness up to 14 GPa. Careful analysis of the indentation data provides a range of toughness values in the composites (up to 11 MPa·m1/2), based on Y2O3 stabilization in the ZrO2 matrix. The influence of varying yttria content, t -ZrO2 transformability, and microstructure on the properties obtained is discussed. In addition to active contribution from the transformation-toughening mechanism, crack deflection by hard second phase brings about appreciable increment in the toughness of the nanocomposites.  相似文献   

15.
Two SiC-containing metal diborides materials, classified in the ultra-high-temperature ceramics (UHTCs) group, were fabricated by hot-pressing. SiC, sinterability apart, promoted resistance to oxidation of the diboride matrices. Both the compositions, oxidized in air at 1450°C for 1200 min, had mass gains lower than 5 mg/cm2. Slight deviations from parabolic oxidation kinetics were seen. The resistance to thermal shock (TSR) was studied through the method of the retained flexure strength after water quenching (20°C of bath temperature). Experimental data showed that the (ZrB2+HfB2)–SiC and the ZrB2–SiC materials retained more than 70% of their initial mean flexure strength for thermal quenchs not exceeding 475° and 385°C, respectively. Certain key TSR properties (i.e., fracture strength and toughness, elastic modulus, and thermal expansion coefficient) are very similar for the two compositions. The observed superior critical thermal shock of the (ZrB2+HfB2)–SiC composite was explained in terms of more favorable heat transfer parameters conditions that induce less severe thermal gradients across the specimens of small dimensions (i.e., bars 25 mm × 2.5 mm × 2 mm) during the quench down in water. The experimental TSRs are expected to approach the calculated R values (196° and 218°C for ZrB2+HfB2–SiC and ZrB2–SiC, respectively) as the specimen size increases.  相似文献   

16.
Zirconolite (CaZrTi2O7) is a mineral that has a high containment capacity for actinides and lanthanides and is considered to be a good candidate for the immobilization of radioactive wastes. The glass–ceramic technique seems to be a very suitable and convenient method to produce zirconolite crystals by precipitating them in a specific glass matrix. In this study, development of a new zirconolite-based glass–ceramic belonging to SiO2–PbO–CaO–ZrO2–TiO2–(B2O3–K2O) system was investigated. The presence of PbO, together with B2O3 and K2O, allowed the preparation of a X-ray diffraction (XRD) amorphous glass with a relatively high concentration of ZrO2 and TiO2, which was successfully converted to a glass–ceramic containing 34 wt% of zirconolite after heating at 770°C for 4 h. Differential thermal analysis, XRD, scanning electron microscope, and energy dispersive X-ray spectroscopy were used to determine the crystallization conditions, identify the crystallized phases, determine their compositions and quantities and observe and analyze the microstructures. The zirconolite crystals showed a platelet morphology with a monoclinic structure characterized by a =1.246 nm, b =0.7193 nm, c =1.128 nm, and β=100.508°.  相似文献   

17.
Ultra-fine zirconium diboride (ZrB2) powders have been synthesized using inorganic–organic hybrid precursors of zirconium oxychloride (ZrOCl2·8H2O), boric acid, and phenolic resin as sources of zirconia, boron oxide, and carbon, respectively. The reactions were substantially completed at a relatively low temperature (∼1500°C). The synthesized powders had a smaller average crystallite size (<200 nm), a larger specific surface area (∼32 m2/g), and a lower oxygen content (<1.0 wt%), which were superior to some commercially available ZrB2 powders. The thermodynamic change in the ZrO2–B2O3–C system was mainly studied by thermogravimetric and differential thermal analysis. The crystallite size and morphology of the synthesized powders were characterized by transmission electron microscopy and scanning electron microscopy.  相似文献   

18.
Dense samples of ZrB2–20 vol% SiC were successfully fabricated by spark plasma sintering without the use of sintering aids. Oxidation behavior of these samples was characterized by exposing them to 1400°, 1500°, and 1600°C in an ambient atmosphere for 150 min, and by measuring the weight gains of the sample and crucible, as well as the thickness of the oxide scale and the glassy outer layer. The effects of gravity on the viscous outer layer are shown to result in significant heterogeneity within a sample. The oxidation scales were characterized by scanning electron microscopy and transmission electron microscopy with energy dispersive spectroscopy analysis. The oxide scale was found to be composed of three layers: (1) a SiO2-rich glassy outer layer, (2) an intermediate layer of a ZrO2 matrix with interpenetrating SiO2, and (3) a layer containing a ZrO2 matrix enclosing partially oxidized ZrB2 with Si–C–B–O glass inclusions.  相似文献   

19.
The synergistic roles of boron carbide and carbon additions in the enhanced densification of zirconium diboride (ZrB2) by pressureless sintering have been studied. ZrB2 was sintered to >99% relative density at 1900°C. The combination of 2 wt% boron carbide and 1 wt% carbon promoted densification by removing surface oxide impurities (ZrO2 and B2O3) and inhibiting grain growth. Four-point bending strength (473±43 MPa), Vickers' microhardness (19.6±0.4 GPa), fracture toughness (3.5±0.6 MPa·m1/2), and Young's modulus (507 GPa) were measured. Thermal gravimetry showed that the combination of additives did not have an adverse effect on the oxidation behavior.  相似文献   

20.
Yttria-ceria-doped tetragonal zirconia (Y,Ce)-TZP)/alumina (Al2O3) composites were fabricated by hot isostatic pressing at 1400° to 1450°C and 196 MPa in an Ar–O2 atmosphere using the fine powders prepared by hydrolysis of ZrOCl2 solution. The composites consisting of 25 wt% Al2O3 and tetragonal zirconia with compositions 4 mol% YO1.5–4 mol% CeO2–ZrO2 and 2.5 mol% YO1.5–5.5 mol% CeO2–ZrO2 exhibited mean fracture strength as high as 2000 MPa and were resistant to phase transformation under saturated water vapor pressure at 180°C (1 MPa). Postsintering hot isostatic pressing of (4Y, 4Ce)-TZP/Al2O3 and (2.5Y, 5.5Ce)-TZP/Al2O3 composites was useful to enhance the phase stability under hydrothermal conditions and strength.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号