首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Thermodynamics of oxygen solutions in Fe-Ni-V melts   总被引:1,自引:1,他引:0  
The oxygen solutions in Fe-Ni melts with up to 5% V are analyzed thermodynamically. The results of the works in which the fields of the vanadium-deoxidized oxide phases in iron and nickel were determined are generalized. The thermodynamic model developed for the calculation of the deoxidation of iron-nickel alloys with vanadium is shown to be adequate. The deoxidizing capacity of vanadium decreases insignificantly as the nickel content in the melt increases to 20% and increases substantially as the nickel content increases further. The oxygen solubility curves pass through a minimum, whose position changes from 2.3192% V for pure iron to 0.7669% V for pure nickel. We determined the equilibrium point [V]* between the (Fe, Ni)V2O4 and V2O3 oxide phases for alloys of six compositions at 1873 K. In nickel, [V]* is almost 200 times lower than in iron. The deoxidation of the Fe-40% Ni melt with vanadium is studied experimentally, and the experimental results agree satisfactorily with the calculated data.  相似文献   

2.
Solutions of oxygen in Fe–Co melts containing titanium are subjected to thermodynamic analysis. The first step is to determine the equilibrium reaction constants of titanium and oxygen, the activity coefficients at infinite dilution, and the interaction parameters in melts of different composition at 1873 K. With increase in cobalt content, the equilibrium reaction constants of titanium and oxygen decline from iron (logK(FeO · TiO2) =–7.194; logK(TiO2) =–6.125; logK(Ti3O5) =–16.793; logK(Ti2O3) =–10.224) to cobalt (logK(CoO · TiO2) =–8.580; logK(TiO5) =–7.625; logK(Ti3O5) =–20.073; logK(Ti2O3) =–12.005). The titanium concentrations at the equilibrium points between the oxide phases (Fe, Co)O · TiO2, TiO2, Ti3O5, and Ti2O3 are determined. The titanium content at the equilibrium point (Fe, Co)O · TiO2 ? TiO2 decreases from 1.0 × 10–4% Ti in iron to 1.9 × 10–6% Ti in cobalt. The titanium content at the equilibrium point TiO2?Ti3O5 increases from 0.0011% Ti in iron to 0.0095% Ti in cobalt. The titanium content at the equilibrium point Ti3O5 ? Ti2O3 decreases from 0.181%Ti in iron to 1.570% Ti in cobalt. The solubility of oxygen in the given melts is calculated as a function of the cobalt and titanium content. The deoxidizing ability of titanium decline with increase in Co content to 20% and then rise at higher Co content. In iron and its alloys with 20% and 40% Co, the deoxidizing ability of titanium are practically the same. The solubility curves of oxygen in iron-cobalt melts containing titanium pass through a minimum, whose position shifts to lower Ti content with increase in the Co content. Further addition of titanium increases the oxygen content in the melt. With higher Co content in the melt, the oxygen content in the melt increases more sharply beyond the minimum, as further titanium is added.  相似文献   

3.
During ladle processing of interstitial-free (IF) steel melts, it is possible for transient titanium-containing oxides to be formed if the local titanium/aluminum (Ti/Al) ratio is locally and temporarily increased after aluminum killing. The phase stability diagrams suggest that if the Ti/Al ratio is increased, then Al2TiO5 and/or a liquid Al-Ti-O region can become stable, and eventually at even higher Ti/Al ratios, Ti3O5 becomes stable. In this study, the Ti/Al ratio was successively altered to investigate (1) how the inclusions evolved after titanium addition to aluminum-killed iron melts and (2) whether the inclusions present after sufficient time were those predicted by thermodynamics. When the Ti/Al ratio was maintained at 1/4, such that Al2O3 is the only thermodynamically stable oxide, the results show that transient titanium-containing oxides exist temporarily after titanium addition, but with time, the predominant inclusion was Al2O3, which would generate little shape change and produce transient stage inclusions with less titanium contents. When the Ti/Al ratio was increased to 1/1 (Al2O3 still being the only thermodynamically stable oxide), the results show a more distinct increase in the titanium content of the transient inclusions. The transient reaction was, in this case, accompanied by an irreversible shape change from spherical to irregular inclusions. When the Ti/Al ratio in the melt was increased to 15/1 within the Al2TiO5 stable phase region, the inclusion population evolved from spherical-dominant ones to irregular ones. It was found that the final inclusion chemistry has more titanium but less aluminum content compared with the expected from the Al2TiO5 chemistry. Besides, the transmission electron microscopy (TEM) results showed the existence of Ti2O. When the Ti/Al ratio in the melt was increased such that Ti3O5 is the thermodynamically stable inclusion (Ti/Al ratio of 75/1 or ∞), the inclusions evolved after titanium addition toward TiOx inclusions, which is accompanied by a shape change from spherical to irregular. The TEM results revealed and confirmed the existence of metastable Ti2O besides the thermodynamically stable Ti3O5, and it was consistent with the results based on oxidation studies of thin layers of titanium with Al2O3 substrate. It was discovered that Ti2O has the tendency of transforming into the thermodynamically stable phase Ti3O5 under certain conditions.  相似文献   

4.
The compositions of Fe‐Ti‐O melts in equilibrium with molten iron have been determined by melting mixtures of TiO2, metallic iron and various additions of either Fe2O3 or metallic titanium in a high‐frequency induction furnace. The furnace had a vertically segmented water‐cooled copper crucible which enabled the mixture to be melted with vigorous stirring inside a freeze‐lining of about 1 mm thickness. The slag compositions were found to form a curved line in the ternary diagram FeTiO3 – TiO2 – Ti2O3 with its highest TiO2 content slightly higher than the pseudobrookite (M3O5) composition FeTi2O5 ‐ Ti3O5. The slags were examined by X‐ray diffraction and microprobe analyses. For all slags the main phase was pseudobrookite (M3O5) solid solution with some rutile or Magnéli phase (TinO2n‐1). The most iron‐rich and the most titanium‐rich slags contained also some FeTiO3, respectively Ti2O3 phase. A melting point diagram is suggested with a eutectic groove running between the M3O5 phase and the TiO2 or Magnéli phase from about 1665°C for the iron‐free to the less than 1500°C for the titanium‐free slags.  相似文献   

5.
The oxygen solutions in Fe-Ni melts containing chromium, manganese, vanadium, carbon, silicon, titanium, or aluminum are studied thermodynamically. The equilibrium constants of the deoxidation of the melts by these elements are determined, and the activity coefficients for infinite dilution and the interaction parameters in alloys of various compositions are found. The oxygen solubilities in the alloys are calculated as a function of the nickel and deoxidizer contents. The deoxidizer contents at the minima in the oxygen solubility curves for the melts are determined, and the corresponding minimum oxygen concentrations are calculated. As the nickel content in the system increases, the deoxidizing capacities of chromium, manganese, and silicon are shown to increase substantially, and the deoxidizing capacity of carbon increases most strongly. As the nickel content in the melt increases, the deoxidizing capacities of vanadium and titanium first decrease insignificantly and then increase substantially. As the nickel content in the melt increases to 50%, the deoxidizing capacity of aluminum first decreases and then increases; in pure nickel, it is identical to that in pure iron.  相似文献   

6.
7.
The thermodynamic activities of Ti at dilution in a series of Ag-Cu alloys and eutectic Ag-Cu alloys containing In or Sn were measured using a galvanic cell technique employing a ThO2-8 pct Y2O3 electrolyte. The equilibrium oxide phase formed by the reaction of Ti (XTi > 0.004) in the Ag-Cu alloy melts with an A12O3 or ZrO2 crucible was Ti2O (s). The free energy of formation of Ti2O (s) was estimated from available thermodynamic data. Titanium activities were calculated from measured oxygen potentials and the free energy of formation of Ti2O (s). Titanium in the eutectic Ag-Cu melt showed a positive deviation from ideal solution behavior at 1000°C, and its activity coefficient at infinite dilution was about 6.5 relative to pure solid Ti. Indium and Sn did not increase the activity coefficient of Ti in eutectic Ag-Cu melts. Silver increased the Ti activity coefficient in the Ag-Cu-Ti melts significantly. The Ti activity coefficient value in liquid Ag was about 20 times higher than in eutectic Ag-Cu melt at 1000 °C.  相似文献   

8.
The activity of titanium in Fe-Cr melts was measured using a galvanic cell technique. By measuring the activity of oxygen in equilibrium with the molten metal and solid titanium oxide, in conjunction with the analysis of the samples for titanium, the activity coefficient of Ti was measured at 1873 K. Oxygen cells, comprised of a thoria-yttria electrolyte with a Cr-Cr2O3 reference electrode and an Al2O3 (ZrO2)-Mo cermet tipped molybdenum lead wire, were used to take the electromotive force (EMF) measurements. The measured values of γ°Ti and e Ti Cr were 0.018 and 0.1032, respectively.  相似文献   

9.
Fe–Ni alloys are widely used in engineering today. They are sometimes alloyed with boron. Oxygen is a harmful impurity in Fe–Ni alloys. It may be present in dissolved form or as nonmetallic inclusions. The presence of oxygen in Fe–Ni alloys impairs their performance. Research on the thermodynamics of oxygen solutions in Fe–Ni melts containing boron is of considerable interest in order to improve alloy production. The present work offers a thermodynamic analysis of solutions of oxygen in Fe–Ni melts containing boron. The equilibrium constant of the reaction between boron and oxygen dissolved in the melt in such systems is determined. The activity coefficients at infinite dilution and the interaction parameters in melts of different composition are also calculated. When boron reacts with oxygen in Fe–Ni melts, the oxide phase contains not only B2O3 but also FeO and NiO. The mole fractions of B2O3, FeO, and NiO in the oxide phase are calculated for different boron concentrations in Fe–Ni melts at 1873 K. For iron melts with low boron content, the mole fraction of boron oxide is ~0.1. With increase in the nickel and boron content in the melts, the boron-oxide content in the oxide phase increases. Its mole fraction is close to one for pure nickel. The solubility of oxygen in Fe–Ni melts is calculated as a function of the nickel and boron content. The deoxidizing ability of the boron improve significantly with increase in nickel content in the melt. The curves of oxygen solubility in Fe?Ni melts containing boron pass through a minimum, which is shifted to higher boron content with increase in nickel content in the melt. The boron content at the minima on the curves of oxygen solubility are determined, as well as the corresponding minimum oxygen concentrations.  相似文献   

10.
The equilibrium solubility of titanium and nitrogen in Fe-Ni melts was measured in the presence of pure solid TiN under various nitrogen pressures in the temperature range of 1843 to 1923 K. The activity coefficients of titanium and nitrogen relative to a 1 mass pct standard state in liquid iron were calculated from the experimental results for Fe-Ni alloys of nickel contents up to 30 mass pct. Nickel decreases the activity coefficient of titanium, but it increases the activity coefficient of nitrogen in an Fe-Ni-Ti-N melt. Therefore, the effect of nickel on the solubility product of TiN is not significant. The first- and second-order interaction parameters of nickel on titanium (e Ti Ni and r Ti Ni , respectively) were determined to be −0.0115 and 0 at 1873 K, respectively. Similarly, the interaction parameters of nickel on nitrogen (e N Ni and r N Ni , respectively) were determined to be 0.012 and 0, respectively, at 1873 K. The temperature dependence of these interaction parameters was also determined.  相似文献   

11.
The deoxidation equilibrium for Al in Ni-Fe alloys was studied in the equilibrium experiments between CaO-Al2O3 slags and Fe-30, 50 and 70 % Ni alloys at 1873 K. By using the values for the first and second order interaction parameters between oxygen and nickel in liquid iron and those between oxygen and iron in liquid nickel, the effect of Ni on the activity coefficient of Al in liquid iron and that of Fe on the activity coefficient of Al in liquid nickel were determined in the whole composition range of Ni-Fe alloys. The oxygen contents in Ni-Fe alloys calculated by the iterative method based on pure iron were in good agreement with those based on pure nickel in the range of [% Al] < 0.03. From this fact, it was found that the Wagner's approximation relating to the multi-component solution was applicable to the deoxidation equilibrium in the whole composition range of Ni-Fe alloys in the restricted concentration of a deoxidizer.  相似文献   

12.
The effect of chromium on the oxygen concentration of iron melts in equilibrium with various spinel reaction products has been determined. Alumina crucibles were used and experiments were performed at 1550, 1600, and 1650°C. Thermodynamic relationships between the equilibrium concentrations of chromium and oxygen in the iron melts have been established for chromium concentrations ranging up to 20 wt pct. Results from X-ray and electron microprobe analyses for the composition of the deoxidation products, together with solute activity relationships, indicate that the composition of the equilibrium spinel phase changes progressively from iron aluminate in the absence of chromium, through a series of aluminate-chromite solid solutions, FeO (Al x Cr1−x )2O3, (<0.5 pct chromium), to a complex chromite spinel, Fe2Cr7O12, (0.5 to 3 pct chromium), and finally chromium oxide, Cr3O4 (>3 pct chromium). Deoxidation diagrams have been constructed and the effects of small amounts of alloying elements on the deoxidation behavior of aluminum interpreted in terms of buffered reactions which maintain oxygen concentrations in the melt at levels in excess of those normally associated with aluminum killed steel in equilibrium with alumina alone.  相似文献   

13.
The rate of nitrogen dissolution in CaO-Al2O3-SiO2 and CaO-Al2O3-TiO x melts was measured by 14N–15N isotope exchange reaction. The rate constant for the CaO-Al2O3-SiO2 melts at the ratio of mass pct CaO/mass pct Al2O3 = 1 increases as SiO2 content increases, whereas the rate constant for the same melts at the ratio of mass pct CaO/mass pct SiO2 = 1 increases as Al2O3 content increases. The rate constant for the CaO-Al2O3-TiO x melts at the ratio of mass pct CaO/mass pct Al2O3 = 1 decreases as the TiO x content increases. The activation energies of nitrogen dissolution in CaO-Al2O3-SiO2 melts are about 1.5 to 3 times larger than that of molten pure iron. Moreover, the rate constant of nitrogen dissolution is independent of the ratio of Ti3+/Ti4+.  相似文献   

14.
Thermodynamic analysis of the oxygen solutions in zirconium-containing iron-nickel melts is carried out. The equilibrium deoxidation constants of the melts by zirconium, the activity coefficients at infinite dilution, and the interaction parameters in melts of various compositions are determined. The dependences of the oxygen solubility in the melts on the nickel or zirconium content are calculated. Zirconium is shown to possess a very high deoxidizing capacity in iron-nickel alloys. The zirconium contents at the minima in oxygen solubility curves and the corresponding minimum oxygen concentrations are determined. As the nickel content in a melt increases to ∼45%, the deoxidizing capacity of zirconium decreases and, then, increases. The deoxidizing capacity of zirconium in pure nickel is noticeably higher than that in pure iron.  相似文献   

15.
Plug-type, ZrO2-based oxygen sensors have been used for long-term measurements of oxygen activity in Fe–O–Cr and Ni–O–Cr melts. In these melts, equilibrated with chromium oxide, oxygen activities aO were determined as a function of Cr content. From the experimental results, data were derived for activity coefficients fO and of 1st and 2nd order interaction parameters eOCr and rOCr. Cr2O3 has been identified as the oxide phase in equilibrium with the metal melt at ≥ 5 wt.% Cr in the case of iron and at ≥ 0.2 wt.% Cr in the case of nickel. Oxygen activities and oxygen contents in Cr-containing iron melts are lowered with increasing additions of nickel. Further investigations were directed to aO determination in Fe–O–Cr–C and Fe–O–Cr–Al melts.  相似文献   

16.
The solubility and activity of oxygen in Fe?Al and Fe?Ti melts at 1600°C were measured. The activity was measured electrochemically using the following galvanic cells: Cr-Cr2O3(s) ? ThO2(Y2O3) ? Fe-Al-O(l), Al2O3(s) Cr-Cr2O3(s) ? ThO2(Y2O3) ? Fe-Ti-O(l, saturated with oxide) Cr-Cr2O3(s) ? ZrO2(CaO) ? Fe-Ti-O(l, saturated with oxide) Aluminum and titanium decrease the solubility of oxygen in liquid iron to a minimum of 6 ppm at 0.09 wt pct Al and 40 ppm at 0.9 wt pct Ti, respectively. The value of the interaction coefficients ε 0 (Al) and ε 0 (Ti) are ?433 and ?222, respectively. the activity coefficient of aluminum at infinite dilution in liquid iron is 0.021, while that of titanium is 0.038. The value of the aluminum equilibrium constant, the solubility product at infinite dilution, is 5.6×10?14 at 1600°C. The ThO2(Y2O3) electrolyte exhibited insignificant electronic conductivity at 1600°C down to oxygen partial pressures of 10?15 atm, which corresponds to about 0.3 ppm O in unalloyed iron.  相似文献   

17.
Fluoride solutions are commonly used for purification and separation of rare refractory metals. Traditional technologies of oxides production from such solutions are rather complicated and ecologically not ideal. Investigations on plasmachemical processing of fluoride solutions containing niobium, tantalum, titanium and zirconium showed the possible oxides (ultrafine powder NbO,TaO, and TiO) and hydrofluoric acid production from these solutions1.2)

Experiments were carried out using a MW plasmachemical plant. For plasma generation nitrogen, oxygen, and air were used. The hard product was separated on a metal net filter. Vapors condensed in a Teflon heat exchanger. In the case of titanium solution the sequence of transformations was

Drops drying and hard fluoride substance crystallization

Evaporation of fluoride titanium compounds

Hydrolysis of gaseous fluoride compounds with TiO production

TiO condensation

Gaseous processes account for production of TiO NbOj and TaO oxides' ultrafine powders. If the initial titanium solutions were pure enough, Ti02 had good pigment characteristics. The low volatility of fluoric zirconium compounds is responsible for hard particles hydrolysis and formation of considerably large (20-100 mm) spherical hollow particles of Zr02. The sizes of these particles correspond to the sizes of the initial solution drops.  相似文献   

18.
In order to obtain the activities of titanium in molten copper at dilute concentrations,i.e., between 5 x 10-6 and 3.4 x 10-3 titanium mole fractions, liquid copper was brought into equilibrium with molten {CaCl2 + Ti2O3} slag saturated with Ti2O3 (s) at 1373 K and the equilibrium oxygen partial pressures were measured by means of a solid-oxide galvanic cell of the type Mo/Mo + MoO2/ZrO2(MgO)/(Cu + Ti)alloy + Ti2O3 + CaCl2 + Ti2O3 slag/Mo The free energy change for the dissolution of solid titanium in molten copper at infinite dilution referred to 1 wt pet was determined as Ti (s) = Ti(1 wt pet in Cu) ΔG°/J = -86,100 ± 8900 at 1373 K  相似文献   

19.
Simultaneous reduction and carburization of ilmenite   总被引:3,自引:0,他引:3  
Western Australian ilmenite was reduced using “Collie” coal at temperatures in the range 1587 to 1790 K to form carbon-saturated iron and titanium oxycarbide. The oxycarbide phase formed from Ti3O5 at temperatures below 1686 K and from Ti2O3 at temperatures above 1686 K. At 1686 K, both mechanisms occurred. The reaction rate was controlled by oxidation of carbon by carbon dioxide generated by reduction of the oxide phase. The final product at temperatures up to 1686 K was a fine dispersion of titanium oxycarbide in iron. At 1790 K, the reducing oxide tended to remain intact and formed a coarser distribution. In general, manganese impurities from the ilmenite were confined to the iron phase in the product, although some of the coarser oxycarbide particles formed at 1790 K contained trapped manganese at the internal pores.  相似文献   

20.
The content of metal and oxide phases that form during aluminothermic melting of a mixture of ilmenite and rutile concentrates is studied by X-ray diffraction, electron probe, and metallographic analyses. The main components of the high-grade ferrotitanium melted from the crude ore are represented by the solid solutions of oxygen and iron in titanium and the Ti4Fe2O phase, which is not reduced to TiO2. It has been shown experimentally that rich ferrotitanium (60–70% Ti) containing <5 wt % oxygen cannot be produced by the aluminothermic melting of the crude ore.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号