共查询到18条相似文献,搜索用时 62 毫秒
1.
针对液浆类食品浓度检测系统中,浓度与折射率、温度之间的非线性关系问题,将人工神经网络技术应用于浓度测量的建模中,以实验数据为基础,建立了检测系统的数学模型。通过仿真研究,与传统的回归模型进行误差对比,得出了应采用BP神经网络技术建立智能化液浆浓度测量模型,提高测量精度,克服温度变化非线性影响的结论。 相似文献
2.
对于大豆四级油,采用BP 神经网络对其近红外光谱数据建模,对系统的结构及参数选取进行了分析,对样本训练集的设计和网络输入端的主因子方面进行了处理。对于其他的多变量建模方法,分析了其对近红外光谱有用信息的提取作用。结果显示:多元线性回归、主成分回归和偏最小二乘法对大豆四级油酸价预测的标准偏差分别为0.1472%、0.1801% 和0.1576%,BP 神经网络的预测标准偏差为0.1387%。 相似文献
3.
4.
通过线性回归方法对指数模型进行分析,并用Excel软件首先对参数进行逐步计算,再用R软件直接对参数进行估计,使学生更能理解一元线性回归模型中参数估计方法和应用。最后,再引入变量-社会消费品零售总额,分析其对股票价格的影响,结果显示2005年2月-2018年12月期间沪深300指数和社会消费品零售总额对平安银行收益率有显著影响。 相似文献
5.
介绍了神经网络的发展历史,对BP网络的算法进行了详细的讨论,分析了BP网络在纺织工业中应用的主要步骤。 相似文献
6.
当前,高速动车组的控制系统迅速向网络化与智能化方向发展,网络控制系统已被大规模地应用于高速动车组的控制系统之中,网络控制系统可实时地传输高速动车组中各个设备的数据并监控高速动车组的运行状态,以保证高速动车组安全地运行。但高速动车组的通信网络控制端口和变量数目非常多且各端口的长度与特征周期也各异。故高速动车组的网络控制系统在输出数据的时候,不可避免地出现网络时延现象,该现象严重地威胁着高速动车组网络控制系统的实时性和稳定性。由于高速动车组的网络控制系统是一种非线性系统,故文章针对带有时延问题的高速动车组非线性网络控制系统,提出一种有效的优化方法,即将BP神经网络递推预测与广义预测控制结合起来,先根据BP神经网络递推预测的方法对网络控制系统未来的输出进行预测,然后利用递推最小二乘法对网络控制系统未来时刻的系统参数进行辨识,将非线性网络控制系统在每一时刻进行线性化处理,最后由广义预测控制算法补偿非线性网络控制系统的时延且对所提出的方法进行实验仿真,实验结果表明:该方法可有效地消除高速动车组网络控制系统的时延,同时具有实时性高、计算速度快及鲁棒性强等优点,显著地优化了带有时延问题的高速动车组非线性网络控制系统。 相似文献
7.
8.
倪永宏 《郑州轻工业学院学报(自然科学版)》2010,25(6)
在分析三环伺服系统的基础上,针对传统PID控制的不足,将BP神经网络与常规PID控制相结合,提出了一种基于BP算法的PID控制新策略,通过编写有关程序,应用Matlab进行仿真运行.仿真实验表明系统跟随输出响应迅速,超调小,调速精度高,且能适时对参数进行在线调整,表现了很好的自适应性和鲁棒性,能很好地满足系统设计要求. 相似文献
9.
10.
11.
纸浆浓度的神经网络PID控制 总被引:2,自引:0,他引:2
针对造纸过程中纸浆浓度控制的特点,通过BP神经网络与PID相结合,组成神经网络控制器,用于纸浆浓度控制。利用神经网络自学习、自适应的功能,根据实际工况在线实时调整PID参数,使纸浆浓度的控制处于一种最优状态,达到较好的控制品质。 相似文献
12.
13.
霉变是造成粮食损失的重要原因,为了降低损失,将危害控制在萌芽状态,提前预测预警意义重大。本研究利用MATLAB的神经网络工具箱建立了预测粮食霉变的BP神经网络,给出了稻谷在给定含水率、温度、储藏时间的条件下是否会发生霉变的预测模型。同时,通过合理选择训练样本的数目,探究训练样本数量对网络精度的影响,并通过华北地区实仓数据验证由实验数据得到的BP神经网络在实际应用中所能达到的准确程度。经过验证,对于实验数据,训练样本数目大于400时,神经网络预测正确率可以达到94.3%;样本数越大,正确率越高。随机选择2 500个实验室样本数据进行训练得到的神经网路预测模型,对剩余样本预测准确率达到98%,对于实仓检测数据,正确率可以达到82.1%。 相似文献
14.
文章通过介绍BP神经网络在服装样板自动生成、号型选择和服装舒适性预测等服装人体工效学领域的研究进展,表明BP神经网络作为一个智能化工具,可简化服装人体工效学中一些复杂问题的能力,特别对解决由诸多非相关因素共同影响下的服装舒适性等问题具有重要的意义。 相似文献
15.
16.
BP神经网络在洗毛工艺中的应用 总被引:1,自引:1,他引:0
基于BP神经网络方法,建立了洗毛工艺参数与洗毛质量之间关系的模型,对洗毛新工艺进行判别。实验结果表明:网络迅速完成训练,输出误差低于10^-3,模型具有很高的精度和准确性可以用于对洗毛新工艺的判别,为客观准确地制订洗毛工艺提供新思路。 相似文献
17.
减振器是汽车悬架的重要组成部分,其性能直接影响整车的安全性和舒适性,减振器示功图是判断减振器是否合格的重要依据。目前,减振器示功图的类型识别都依赖人的经验。文章通过在MATLAB中训练BP神经网络,实现了减振器缺陷产品的自动识别,该研究具有巨大的市场价值。 相似文献