首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
This paper reports results from wideband MIMO measurements performed in short range fixed wireless environments at 5.2 GHz. The objective is to provide MIMO channel characterization results for the measured environments and contribute to the limited available similar studies. Two kinds of propagation scenarios are investigated, rooftop to rooftop and street to rooftop, at three different sites always under LOS propagation conditions. The analysis of measurement data is performed in the context of non physical modeling, providing insight into the statistics of the measured channels. In particular, the slow time varying nature of the channel is studied and the narrow Doppler spectrum shape is approximated. Furthermore, frequency correlation results are obtained and the typical delay dispersion measures are extracted. Then, the antenna correlation is studied and the error of the Kronecker product approximation is evaluated. Finally, capacity results are provided and the channel measurements are characterized in terms of spatial multiplexing quality and multipath richness through condition number analysis. Nikolaos D. Skentos received his Diploma in Electrical and Computer Engineering from the National Technical University of Athens (NTUA), Greece in October 2000. Since January 2001 he has been a research associate at the Mobile Radio Communications Laboratory at the NTUA, and he is currently working towards the Ph.D. degree. His research interests include channel measurements, MIMO channel characterization, MIMO algorithms and space time processing. He has been active in the IST STINGRAY project, the COST 273 Action and the ACE Network of Excellence. He is also a member of the National Technical Chamber of Greece since 2001. Athanasios G. Kanatas received the Diploma in Electrical Engineering from the National Technical University of Athens, Greece, in 1991, the M.Sc. degree in Satellite Communication Engineering from the University of Surrey, Surrey, UK in 1992, and the Ph.D. degree in Mobile Satellite Communications from the National Technical University of Athens, Greece in February 1997. From 1993 to 1994 he was with National Documentation Center of National Research Institute. In 1995 he joined SPACETEC Ltd. where he was Technical Project Manager for VISA/EMEA VSAT Project in Greece. In 1996 he joined the Mobile Radio Communications Laboratory as a research associate. From 1999 to 2002 he was with the Institute of Communication & Computer Systems. In 2000 he became a member of the Board of Directors of OTESAT S.A. He is an Assistant Professor in the Department of Technology Education and Digital Systems at University of Piraeus. His current research interests include channel characterization and estimation, simulation and modeling for mobile, mobile satellite, and future wireless communication systems. He has been a Senior Member of IEEE since 2002, and is also a member of the Technical Chamber of Greece. In 1999 he was elected Chairman of the Communications Society of the Greek IEEE Section. Panagiotis I. Dallas was born 1967 in Thessaloniki, Greece. He obtained his diploma and Ph.D. degree from the Electrical and Computer Engineering Department of Aristotle University of Thessaloniki, Greece, in 1990 and 1997, respectively. Since 1998 he joined with INTRACOM where he currently is Section Manager of Advanced Communications Technologies branch of Emerging Technologies & Markets department, leading the next generation of broadband wireless access systems for internal and EU projects. He runs the relevant standardization activities (IEEE 802.16 and ETSI/BRAN HIPERMAN) in INTRACOM and he represents the company in WiMAX forum. Finally, he has over 30 publications in international journals and conferences. Philip Constantinou received the Diploma in Physics from the National University of Athens in 1972, the Master of Applied Science in Electrical Engineering from the University of Ottawa, Ontario, Canada in 1976, and the Ph.D. degree in Electrical Engineering in 1983 from Carleton University, Ottawa, Ontario, Canada. From 1976 to 1979 he was with Telesat Canada as a Communications System Engineer. In 1980 he joined the Ministry of Communications in Ottawa, Canada where he was engaged in the area of Mobile Communication. From 1984 to 1989 he was with the National Research Center Demokritos in Athens, Greece where he was involved in several research projects in the area of Mobile Communications. In 1989 he joined the National Technical University of Athens where he is currently a Professor and Director of the Mobile Radio Communications Laboratory. His current research interests include Personal Communications, Mobile Satellite Communications, and Interference Problems on Digital Communications Systems.  相似文献   

2.
LMDS networks are fixed radio systems providing advanced telecommunication services to a variety of users. Millimeter wave frequencies above 20 GHz have been allocated to LMDS systems by ITU-R and CEPT. The design of LMDS systems must take into account how interference affects performance considering the dominant propagation impairments in these frequencies. In the present paper, cell-site diversity, an effective fade mitigation countermeasure for LMDS systems, is considered for the reduction of intersystem interference on downstream LMDS channels. The intersystem cochannel interference may originate from adjacent LMDS networks or from point-to-point links operating at the same frequencies. A physical propagation model for the calculation of carrier-to-interference ratio diversity gain for the downstream channel is presented. Numerical results focus on the impact of frequency of operation, the subscriber's service availability and the climatic conditions on the interference analysis of LMDS networks either using or not cell site diversity. Athanasios D. Panagopoulos was born in Athens, Greece on January 26, 1975. He received the Diploma Degree in Electrical and Computer Engineering (summa cum laude) and the Dr. Engineering Degree from National Technical University of Athens (NTUA) in July 1997 and inAprilxcan l 2002. From May 2002 to July 2003, he had served the Technical Corps of Hellenic Army. In September 2003, he joined School of Pedagogical and Technological Education, as Assistant Professor. He is also Research Assistant in the Wireless & Satellite Communications Group of NTUA. He has published more than eighty papers in international journals and conference proceedings. He is the recipient of URSI General AssemblyYoung ScientistAward in 2002 and 2005 respectively. His research interests include radio communication systems design, wireless and satellite communications networks and the propagation effects on multiple access systems and on communication protocols. He is member of IEEE and member of Technical Chamber of Greece. Konstantinos P. Liolis was born in Athens, Greece in 1981. He received the Diploma degree in electrical and computer engineering from the National Technical University of Athens (NTUA) and the M.Sc. degree in electrical engineering from the University of California, San Diego (UCSD) in July 2004 and December 2005, respectively. He is currently working towards his Ph.D. degree in electrical engineering at NTUA. From September 2004 to December 2005, he was research assistant in the California Institute for Telecommunications and Information Technology (Cal-IT2) within UCSD. Since June 2006, he has been with the European Space Agency Research and Technology Centre (ESA/ESTEC), Noordwijk, The Netherlands. His research interests are in the areas of multiple antenna (MIMO) and multicarrier (OFDM) transmission techniques and their application to broadband fixed wireless access and satellite communication networks. He is student member of the IEEE and member of the Technical Chamber of Greece (TEE). He received the 3rd Best Student Paper Award in the 2006 IEEE Radio and Wireless Symposium. Panayotis G. Cottis was born in Thessaloniki, Greece, in 1956. He received the Dipl. (mechanical and electrical engineering) and Dr.Eng. degrees from the National Technical University of Athens (NTUA), Greece, in 1979 and 1984, respectively, and the M.Sc. degree from the University of Manchester, (UMIST), Manchester, U.K., in 1980. In 1986, he joined the Department of Electrical and Computer Engineering, National Technical University of Athens (NTUA), Greece, where he is currently a Professor. He has published more than seventy papers in international journals and transactions. His research interests include microwave theory and applications, wave propagation in anisotropic media, electromagnetic scattering, wireless and satellite communications. Since September 2003, he is the Vice Rector of NTUA.  相似文献   

3.
4.
A new soft decision maximum-likelihood decoding algorithm, which generates the minimum set of candidate codewords by efficiently applying the algebraic decoder is proposed. As a result, the decoding complexity is reduced without degradation of performance. The new algorithm is tested and verified by simulation results.Panagiotis G. Babalis was born in Athens, Greece, on January 3, 1974. He received his Diploma of electrical and computer engineering and the Ph.D. degree, both from National Technical University of Athens (NTUA), Athens, Greece, in 1996 and 2001, respectively. His main research interests include mobile satellite communications, modulation, and wireless communications systems coding. Dr. Babalis is a member of the technical Chamber of Greece.Panagiotis T. Trakadas was born in Athens, Greece, on January 14, 1972. He received his Diploma of Electrical and Computer Engineering and the Ph.D. degree from National Technical University of Athens (NTUA), Athens, Greece, in 1996, and 2001, respectively. From 1998 to 2001, he participated in many European projects as a researcher. His main research interests include mobile communications systems and electromagnetic compatibility topics. Dr. Trakadas is a member of the Technical Chamber of Greece and IEEE Society.Theodore B. Zahariadis received his Ph.D. degree in electrical and computer engineering from the National Technical University of Athens, Greece, and his Dipl.-Ing. Degree in computer engineering and information science from the University of Patras, Greece. Currently, he is the technical director of Ellemedia Technologies, where he leads R&D of end-to-end interactive multimedia services, embedded systems, and 3G/4G core network services. Since 1994 he has participated in many European co-funded projects. His research interests are in the fields of broadband wireline/wireless/mobile communications, interactive service deployment, management of IP/WDM networks, and embedded systems. He has published more than 30 papers. He has been a reviewer and principal guest editor in many journals and magazines. He is a member of the ACM and the Technical Chamber of Greece.Christos N. Capsalis was born in Greece, in 1956. He received the diploma in electrical and mechanical engineering from the National Technical University of Athens (NTUA), Athens, Greece, in 1979, the B.Sc. degree in economics from the University of Athens, Athens, Greece, in 1983, and the Ph.D. degree in electrical engineering from NTUA in 1985. He is currently a Professor at NTUA and Director of the wireless communications laboratory. His current research activities include wireless and satellite communications systems and EMC topics.  相似文献   

5.
In this paper, the capacity and error probability of maximal ratio combining (MRC) reception are considered for different modulation schemes over correlated Nakagami fading channels. Based on an equivalent scalar additive white Gaussian noise (AWGN) channel, we derive the characteristic function (CF) and the probability density function (PDF) of the signal to noise ratio for MRC reception over Nakagami fading channels. Using these CF and PDF results, closed form error probability and capacity expressions are obtained for PSK, PAM and QAM modulation. Wei Li received his Ph.D. degree in Electrical and Computer Engineering from the University of Victoria in 2004. He is now a Post-doctoral Research Fellow in the Department of Electrical and Computer Engineering at the University of Victoria. He is a Member of the IEEE. His research interests include ultra-wideband system, spread spectrum communications, diversity for wireless communications, and cellular communication systems. Hao Zhang was born in Jiangsu, China, in 1975. He received his Bachelor Degree in Telecom Engineering and Industrial Management from Shanghai Jiaotong University, China in 1994, his MBA from New York Institute of Technology, USA in 2001, and his Ph.D. in Electrical and Computer Engineering from the University of Victoria, Canada in 2004. His research interests include ultra-wideband radio systems, MIMO wireless systems, and spectrum communications. From 1994 to 1997, he was the Assistant President of ICO(China) Global Communication Company. He was the Founder and CEO of Beijing Parco Co., Ltd. from 1998 to 2000. In 2000, he joined Microsoft Canada as a Software Engineer, and was Chief Engineer at Dream Access Information Technology, Canada from 2001 to 2002. He is currently an Adjunct Assistant Professor in the Department of Electrical and Computer Engineering at the University of Victoria. T. Aaron Gulliver received the Ph.D. degree in Electrical and Computer Engineering from the University of Victoria, Victoria, BC, Canada in 1989. From 1989 to 1991 he was employed as a Defence Scientist at Defence Research Establishment Ottawa, Ottawa, ON, Canada. He has held academic positions at Carleton University, Ottawa, and the University of Canterbury, Christchurch, New Zealand. He joined the University of Victoria in 1999 and is a Professor in the Department of Electrical and Computer Engineering. He is a Senior Member of the IEEE and a member of the Association of Professional Engineers of Ontario, Canada. In 2002, he became a Fellow of the Engineering Institute of Canada. His research interests include information theory and communication theory, algebraic coding theory, cryptography, construction of optimal codes, turbo codes, spread spectrum communications, space-time coding and ultra wideband communications.  相似文献   

6.
This paper presents a technique which is based on pattern recognition techniques, in order to estimate Mobile Terminal (MT) velocity. The proposed technique applies on received signal strength (RSS) measurements and more precisely on information extracted from Iub air interface, in wIDeband code-division multiple access (WCDMA) systems for transmission control purposes. Pattern recognition is performed by HIDden Markov Model (HMM), which is trained with downlink signal strength measurements for specific areas, employing Clustering LARge Applications (CLARA) like a clustering method. Accurate results from a single probe vehicle show the potential of the method, when applied to large scale of MTs. Theodore S. Stamoulakatos is a Senior Research Associate with the Department of Electrical and Computer Engineering at National Technical University of Athens (NTUA). He received his B.Sc. in Mathematics from University of the Aegean, Greece, in 1997, and the M.Sc. in Computer Applications from Dublin City University, Ireland, in 1999 with scholarship from the Irish Ministry of Education. On April ’05 he received his Ph.D. degree from the Department of Electrical Engineering and Computer Science of the National Technical University of Athens. He has been lecturing in DCU various courses including Algorithms & Data Structures, Computer Systems, and Advanced Network Management to both undergraduate and postgraduate students. During his research in NTUA, he has been actively involved in many European and National projects that match his research interests. Both his academic as well as his industrial experience (four years in OTEnet S.A.) allow him to publish several papers in journals and international conferences, which are in the fields of Mobile and Personal Communication Networks, Active Networks, Location Based Services as well as Network and Service Management. Dr. Stamoulakatos is a member of the IEEE. Antonis E. Markopoulos obtained his degree in Informatics and Telecommunications Engineering from University of Athens, Greece in 2000. During his studies he participated in various research projects dealing with the management of fixed and wireless networks. He has also industrial experience for 2 years in INTRASOFT International S.A participating in several projects, national and European. He received his PhD in the field of Cellular and Wireless Communication from the National Technical University of Athens in 2005, where he is working as a Senior Research Engineer in the Telecommunication Laboratory. He has published several papers in journals, international conferences and book chapters. His research interests are in the fields of cellular and wireless networks of present and future generation (4G, WLAN/WPAN, WiMAX) and more specific in the areas of radio resource management and security. He has been mainly involved in many European (IST-CELLO, IST-PACWOMAN, IST-MAGNET, a.o) and National (Greek IST, GGRT) projects. Dr Markopoulos is a member of the IEEE and of the Greek Association of Mechanical and Electrical Engineers. Miltiades E. Anagnostou was born in Athens, Greece, in 1958. He received the Electrical Engineer’s Diploma from the National Technical University of Athens (NTUA) in 1981. In 1987 he received his PhD in the area of computer networks. Since 1989 he has been teaching at the Electrical and Computer Engineering School of NTUA, where he is currently a Full Professor. He teaches courses on modern telecommunications, computer networks, formal specification, stochastic processes, and network algorithms. His research spans several fields, including broadband networks, mobile and personal communications, service engineering, mobile agents, pervasive computing, network algorithms and queuing systems. He is a member of the IEEE and the ACM. Michael E. Theologou received the degree in Electrical Engineering from Patras University and his Ph.D. degree from the Department of Electrical Engineering and Computer Science of the National Technical University of Athens. Currently he is a Professor at National Technical University of Athens, Department of Electrical and Computer Engineering conducting teaching and research in the wider area of Telecommunication Networks and Systems. His research interests are in the fields of Mobile and Personal Communication Networks, Computer Networks, Quality of Service. He has many publications in the above areas.  相似文献   

7.
There is no theoretical time or frequency restrictions on capacity in DS-CDMA systems. In these systems, the signal to interference ratio (SIR) has a major effect on capacity. Since an increase in the user SIR at the base station (BS) leads to higher capacity, transmission power control is employed. The nonuniform distribution of users in the network causes different quality of service (QOS) in distinct regions, therefore network resources may not be utilized properly. A dynamic distribution algorithm can be employed to balance the QOS delivered in different regions of the network. In this paper, a novel dynamic distribution algorithm is introduced. The proposed algorithm deactivates certain users when the network encounters an overload. By applying this policy, the required SIR can be maintained for the remaining users. F. Hendessi received a B.Sc. degree from Baluchestan University, Iran in 1986, and an M.Sc. degree from Isfahan University of Technology, Iran in 1988, both in Electrical Engineering. In 1993 he received a Ph.D. in Electrical Engineering from Carleton University, Ottawa, Ontario, Canada. He is currently an Assistant Professor in the Department of Electrical Engineering at Isfahan University of Technology. A. Ghayoori received B.Sc. and M.Sc. degrees in Electrical Engineering from Isfahan University of Technology, Isfahan, Iran, in 2001 and 2003, respectively. He is currently a Research Engineer with the ICT research center at IUT. T. A. Gulliver received a Ph.D. degree in Electrical and Computer Engineering from the University of Victoria, Victoria, BC, Canada in 1989. From 1989 to 1991 he was employed as a Defence Scientist at Defence Research Establishment Ottawa, Ottawa, ON, Canada. He has held academic positions at Carleton University, Ottawa, and the University of Canterbury, Christchurch, New Zealand. He joined the University of Victoria in 1999 and is a Professor in the Department of Electrical and Computer Engineering. He is a Senior Member of the IEEE and a member of the Association of Professional Engineers of Ontario, Canada. In 2002, he became a Fellow of the Engineering Institute of Canada. His research interests include information theory and communication theory, algebraic coding theory, cryptography, construction of optimal codes, turbo codes, spread spectrum communications, space-time coding and ultra wideband communications.  相似文献   

8.
An overlay smart spaces system, called MITOS, is proposed for managing the use of the resources in wireless local area networks (WLAN). MITOS monitors the traffic load distribution in the different WLAN segments, as well as the location of each user, and when necessary, suggests to specific users to change their location in order to improve their quality of service. Enhancements to the basic MITOS architecture are introduced to intelligently manage local congestion, and maintain an almost uniform load level across the network. The approach used for load balancing is based on game theoretic mechanisms, such as the solutions to the Santa Fe Bar Problem. Simulation results are provided showing the efficiency of the proposed system. The research of the author for his PhD studies is supported by the Alexander S. Onassis Foundation Scholarship Programme. George Alyfantis received his B.Sc. degree in Informatics and Telecommunications from the Department of Informatics and Telecommunications, University of Athens, Athens Greece, in 2002. He received his M.Sc. degree in Communication and Network Systems from the same Department, in 2003. Since 2001, he is a member of the Communication Networks Laboratory (CNL) of the University of Athens. Currently, he is working towards his Ph.D. thesis. His research interests include pervasive/mobile computing, middleware for wireless sensor networks, web caching performance and game theory. He is the author of 5 papers in the aforementioned areas. In the course of his studies he received numerous distinctions like the Alexandros Onassis Foundation Scholarship for his Ph.D. studies, the best student award of the Department of Informatics and Telecommunications for graduating first in his B.Sc./M.Sc. class and the best M.Sc. thesis Ericsson Award of Excellence in Telecommunications 2004. Stathes Hadjiefthymiades received his B.Sc. (honors) in Informatics from the Department of Informatics at the University of Athens, Greece, in 1993 and his M.Sc. (honors) in Informatics (Advanced information systems) from the same department in 1996. In 1999 he received his Ph.D. from the University of Athens (Department of Informatics and Telecommunications). In 2002 he received a joint engineering-economics M.Sc. degree from the National Technical University of Athens. In 1992 he joined the Greek consulting firm Advanced Services Group, Ltd., where he was involved in the analysis and specification of information systems and the design-implementation of telematic applications. In 1995 he became a member of the Communication Networks Laboratory (UoA-CNL) of the University of Athens. During the period September 2001–July 2002, he served as a visiting assistant professor at the University of Aegean, Department of Information and Communication Systems Engineering. On the summer of 2002 he joined the faculty of the Hellenic Open University (Department of Informatics), Patras, Greece, as an assistant professor. Since December 2003, he is in the faculty of the Department of Informatics and Telecommunications, University of Athens, where he is presently an assistant professor. He is coordinating the Pervasive Computing Research Group of the Dept. of Informatics and Telecommunications at the University of Athens. He has participated in numerous projects realized in the context of EU programs (ACTS, ORA, TAP, and IST), EURESCOM projects, as well as national initiatives. His research interests are in the areas of web engineering, wireless/mobile computing, and networked multimedia applications. He is the author of over 80 publications in the above areas. Lazaros Merakos received the Diploma in electrical and mechanical engineering from the National Technical University of Athens, Athens, Greece, in 1978, and the M.S. and Ph.D. degrees in electrical engineering from the State University of New York, Buffalo, in 1981 and 1984, respectively. From 1983 to 1986, he was in the faculty of the Electrical Engineering and Computer Science Department University of Connecticut, Storrs. From 1986 to 1994 he was in the faculty of the Electrical and Computer Engineering Department, Northeastern University, Boston, MA. During the period 1993–1994, he served as director of the Communications and Digital Processing Research Center, Northeastern University. During the summers of 1990 and 1991, he was a visiting scientist at the IBM T. J. Watson Research Center, Yorktown Heights, NY. In 1994, he joined the faculty of the University of Athens, Athens, Greece, where he is presently a professor in the Department of Informatics and Telecommunications, and director of the Communication Networks Laboratory (UoA-CNL) and the Networks Operations and Management Center. Since 1995, he is leading the research activities of UoA-CNL in the area of mobile communications, in the framework of the Advanced Communication Technologies and Services (ACTS) and Information Society Technologies (IST) programs funded by the European Union (projects RAINBOW, Magic WAND, WINE, MOBIVAS, POLOS, ANWIRE, E2R, LIAISON). His research interests are in the design and performance analysis of communication networks, and wireless/mobile communication systems and services. He has authored more than 190 papers in the above areas. Dr. Merakos is chairman of the board of the Greek Universities Network, the Greek Schools Network, and member of the board of the Greek Research Network. In 1994, he received the Guanella Award for the best paper presented at the International Zurich Seminar on Mobile Communications.  相似文献   

9.
This paper investigates the performance of a new Turbo Trellis Coded Modulation scheme over correlated flat fading channels with channel interleaving. The novelty of the scheme is based on the application of a new modified transition metric incorporated in the symbol-by-symbol MAP algorithm. We consider frequency non-selective, slow Rayleigh fading channels. Extensive simulation results together with EXIT chart analysis show that the proposed scheme achieves better performance compared to the conventional transition metric when channel state information is not available at the decoder. Kostas V. Koutsouvelis was born in Thessaloniki, Greece, on July 16,1970. He received the degree Diploma in Electrical Engineering from Aristotle University of Thessaloniki, Greece in 1996 and the Master degree in Satellite Communications Engineering from University of Surrey in 1997. From 1998 to 2003 he was involved in the development of V5.2 interface as a senior software designer in Intracom plc. In 2004 joined the research and development division of Hellenic Telecommunication Organization (OTE) and his also PhD candidate at Aristotle University of Thessaloniki working with Turbo codes and Turbo Coded Modulation. Christos E. Dimakiswasborn in Serres, Greece, on July 27, 1955.He received the degree Diploma in Electrical Engineering from the Aristotle University of Thessaloniki, Greece, in 1980. Working in the satellite communications and in the error correcting coding area he received his PhD degree in digital telecommunications from the Aristotle University of Thessaloniki, Greece, in 1994. In 1980 he joined the Department of Electrical Engineering, Telecommunications Division of the Aristotle University of Thessaloniki as a research fellow. Since 1997 he is a lecturer of digital communications at the same University. Presently, his research interests include digital modulations, coding theory, satellite and mobile communications and system simulation. Stamatis S. Kouris was born in Corfu, Greece. He received the degree of Doctor Engineer in Electrical Engineering from the University of Rome, Italy and the Diploma of Specialization in Telecommunications of the Instituto Superiore, University of Rome, in 1960 and 1963 respectively. In 1971 he was awarded the PhD Degree of the University of Edinburgh, UK. In the 1974 he was awarded a specialization Diploma in administration from the University of Pomona CA, USA. He is a member of the Technical Chamber of Greece, URSI, IRI and other organizations. Since 1964 he has been involved in research on radio-propagation, antennas and microwaves, working mainly at the Fondazione Bordoni, Italy, University of Edinburgh, UK and University of Thessaloniki, Greece. He has published several papers on radio-propagation, antennas, communication transmission and microwaves and millimeter-waves devices. In 1976 he joined with the Department of Electrical Engineering, School of Engineering Science, Aristotle University of Thessaloniki. He served as professor of telecommunications from 1978 to 2002. Since 2002 he is an emeritus professor.  相似文献   

10.
The development, delivery and management of mobile services are the subject of many research activities in both the academia and industry. The ultimate goal of these efforts is a dynamic environment that enables the delivery of situation-aware, personalised multimedia services over heterogeneous, ubiquitous infrastructures, commonly termed as systems beyond 3rd generation (3G). Reconfigurability and adaptability are key aspects of the mobile systems beyond 3G. Reconfigurable mobile systems and networks introduce additional requirements and complexity in service adaptation. Moreover, it is widely recognised that services will be increasingly developed by independent third parties, besides mobile operators and equipment vendors. The present contribution complements previous work by the authors, related to mediating service provision platforms and advanced adaptability and profile management frameworks. It introduces mechanisms and middleware that undertake the service adaptation overhead, imposed by the complexity of reconfigurable mobile networks, from application developers and third party service providers. In particular, it enables the introduction of third party policies for adaptation decision. Finally, it facilitates the adaptable application development and service deployment independently from the underlying dynamically reconfigurable communication environment. Nikos Houssos holds a B.Sc. and a Ph.D. degree from the Department of Informatics Telecommunications at the University of Athens, Greece, and an M.Sc. degree (with distinction) in Telematics from the department of Electronic and Electrical Engineering, University of Surrey, UK. Since 1999, he is working at the Communication Networks Laboratory of the University of Athens. He has participated in various research projects of the European Union IST framework (MOBIVAS, ANWIRE, POLOS, E2R). His research interests include middleware platforms and business models for mobile service provision in 3G/4G environments, service adaptability, network reconfigurability and context-aware pervasive systems. Nancy Alonistioti has a B.Sc. degree and a PhD degree in Informatics and Telecommunications (University of Athens). She has been working for several years at the Dept. of Informatics and Telecommunications in University of Athens as a senior researcher and project manager. She has been involved in many European and national projects (CTS, SS#7, ACTS RAINBOW, EURESCOM) in the areas of protocol and service design of mobile systems. She has been the Technical manager of the IST-MOBIVAS and IST-ANWIRE projects. She had been working as expert at the Greek Regulatory Agency. She is member of the core management team of the Greek Universities Network (GUNET). Her current research includes: mobile communications, re-configurable mobile systems and networks, adaptability, service provision, protocol design and mobile computing. Lazaros Merakos received a Diploma in electrical and mechanical engineering form the National Technical University of Athens, Greece, in 1978 and M.S. and Ph.D. degrees in electrical engineering from the State University of New York, Buffalo, in 1981 and 1984, respectively. From 1983 to 1986 he was on the faculty of Electrical Engineering and Computer Science at the University of Connectitut, Storrs. From 1986 to 1994 he was on the faculty of the Electrical and Computer Engineering Department at Northeastern University, Boston, Massachusetts. During the period 1993–1994 he served as a director of the Communications and Digital Processing Research Center at Northeastern University. During the summers of 1990 and 1991, he was a visiting scientist at the IBM T. J. Watson Research Center, Yorktown Heights, New York. In 1994 he joined the faculty of the University of Athens, Greece, where he is presently a professor in the Department of Informatics and Telecommunications, and director of the Communication Networks Laboratory (UoA-CNL) and the Networks Operations and Management Center. His research interests are in the design and performance analysis of broadband networks, and wireless/mobile communication systems and services. He has authored more than 150 papers in the above areas. Since 1995, he is leading the research activities of UoA-CNL in the area of mobile communications, in the framework of the Advanced Communication Technologies and Services (ACTS) and Information Society Technologies (IST) programs funded by the European Union (projects RAINBOW, Magic WAND, WINE, MOBIVAS, POLOS). He is chairman of board of the Greek Universities Network, the Greek Schools Network, and a member of the board of the Greek Research Network. In 1994 he received the Guanella Award for the Best Paper presented at the International Zurich Seminar on Mobile Communications.This revised version was published online in August 2005 with a corrected cover date.  相似文献   

11.
Energy use is a crucial design concern in wireless ad hoc networks since wireless terminals are typically battery-operated. The design objectives of energy-aware routing are two folds: Selecting energy-efficient paths and minimizing the protocol overhead incurred for acquiring such paths. To achieve these goals simultaneously, we present the design of several on-demand energy-aware routing protocols. The key idea behind our design is to adaptively select the subset of nodes that are required to involve in a route-searching process in order to acquire a high residual-energy path and/or the degree to which nodes are required to participate in the process of searching for a low-power path in networks wherein nodes have transmission power adjusting capability. Analytical and simulation results are given to demonstrate the high performance of the designed protocols in energy-efficient utilization as well as in reducing the protocol overhead incurred in acquiring energy-efficient routes. Baoxian Zhang received his B.S., M.S., and Ph.D. degrees in Electrical Engineering from Northern Jiaotong University, Beijing, China in 1994, 1997, and 2000, respectively. From January 2001 to August 2002, he was working with Department of Electrical and Computer Engineering at Queen’s University in Kingston as a postdoctoral fellow. He is currently a research scientist with the School of Information Technology and Engineering (SITE) of University of Ottawa in Ottawa, Ontario, Canada. He has published over 40 refereed technical papers in international journals and conference proceedings. His research interests include routing algorithm and protocol design, QoS management, wireless ad hoc and sensor networks, survivable optical networks, multicast communications, and performance evaluation. He is a member of the IEEE. Hussein Mouftah joined the School of Information Technology and Engineering (SITE) of the University of Ottawa in September 2002 as a Canada Research Chair (Tier 1) Professor in Optical Networks. He has been with the Department of Electrical and Computer Engineering at Queen’s University (1979-2002), where he was prior to his departure a Full Professor and the Department Associate Head. He has three years of industrial experience mainly at Bell Northern Research of Ottawa, now Nortel Networks (1977-79). He has spent three sabbatical years also at Nortel Networks (1986-87, 1993-94, and 2000-01), always conducting research in the area of broadband packet switching networks, mobile wireless networks and quality of service over the optical Internet. He served as Editor-in-Chief of the IEEE Communications Magazine (1995-97) and IEEE Communications Society Director of Magazines (1998-99) and Chair of the Awards Committee (2002-2003). He is a Distinguished Speaker of the IEEE Communications Society since 2000. Dr. Mouftah is the author or coauthor of five books, 22 book chapters and more than 700 technical papers and 8 patents in this area. He is the recipient of the 1989 Engineering Medal for Research and Development of the Association of Professional Engineers of Ontario (PEO), and the Ontario Distinguished Researcher Award of the Ontario Innovation Trust. He is the joint holder of the Best Paper Award for a paper presented at SPECTS’2002, and the Outstanding Paper Award for papers presented at the IEEE HPSR’2002 and the IEEE ISMVL’1985. Also he is the joint holder of a Honorable Mention for the Frederick W. Ellersick Price Paper Award for Best Paper in the IEEE Communications Magazine in 1993. He is the recipient of the IEEE Canada (Region 7) Outstanding Service Award (1995). Also he is the recipient of the 2004 IEEE Communications Society Edwin Howard Armstrong Achievement Award, and the 2004 George S. Glinski Award for Excellence in Research of the Faculty of Engineering, University of Ottawa. Dr. Mouftah is a Fellow of the IEEE (1990) and Fellow of the Canadian Academy of Engineering (2003).  相似文献   

12.
Three alternative schemes for secure Virtual Private Network (VPN) deployment over the Universal Mobile Telecommunication System (UMTS) are proposed and analyzed. The proposed schemes enable a mobile node to voluntarily establish an IPsec-based secure channel to a private network. The alternative schemes differ in the location where the IPsec functionality is placed within the UMTS network architecture (mobile node, access network, and UMTS network border), depending on the employed security model, and whether data in transit are ever in clear-text, or available to be tapped by outsiders. The provided levels of privacy in the deployed VPN schemes, as well as the employed authentication models are examined. An analysis in terms of cost, complexity, and performance overhead that each method imposes to the underlying network architecture, as well as to the mobile devices is presented. The level of system reliability and scalability in granting security services is presented. The VPN management, usability, and trusted relations, as well as their behavior when a mobile user moves are analyzed. The use of special applications that require access to encapsulated data traffic is explored. Finally, an overall comparison of the proposed schemes from the security and operation point of view summarizes their relative performance. Christos Xenakis received his B.Sc. degree in computer science in 1993 and his M.Sc. degree in telecommunication and computer networks in 1996, both from the Department of Informatics and Telecommunications, University of Athens, Greece. In 2004 he received his Ph.D. from the University of Athens (Department of Informatics and Telecommunications). From 1998–2000 was with the Greek telecoms system development firm Teletel S.A., where was involved in the design and development of advanced telecommunications subsystems for ISDN, ATM, GSM, and GPRS. Since 1996 he has been a member of the Communication Networks Laboratory of the University of Athens. He has participated in numerous projects realized in the context of EU Programs (ACTS, ESPRIT, IST). His research interests are in the field of mobile/wireless networks, security and distributed network management. He is the author of over 15 papers in the above areas. Lazaros Merakos received the Diploma in electrical and mechanical engineering from the National Technical University of Athens, Greece, in 1978, and the M.S. and Ph.D. degrees in electrical engineering from the State University of New York, Buffalo, in 1981 and 1984, respectively. From 1983 to 1986, he was on the faculty of Electrical Engineering and Computer Science at the University of Connecticut, Storrs. From 1986 to 1994 he was on the faculty of the Electrical and Computer Engineering Department at Northeastern University, Boston, MA. During the period 1993–1994 he served as Director of the Communications and Digital Processing Research Center at Northeastern University. During the summers of 1990 and 1991, he was a Visiting Scientist at the IBM T. J. Watson Research Center, Yorktown Heights, NY. In 1994, he joined the faculty of the University of Athens, Athens, Greece, where he is presently a Professor in the Department of Informatics and Telecommunications, and Director of the Communication Networks Laboratory (UoA-CNL) and the Networks Operations and Management Center. His research interests are in the design and performance analysis of broadband networks, and wireless/mobile communication systems and services. He has authored more than 150 papers in the above areas. Since 1995, he is leading the research activities of UoA-CNL in the area of mobile communications, in the framework of the Advanced Communication Technologies & Services (ACTS) and Information Society Technologies (IST) programmes funded by the European Union (projects RAINBOW, Magic WAND, WINE, MOBIVAS, POLOS, ANWIRE). He is chairman of the board of the Greek Universities Network, the Greek Schools Network, and member of the board of the Greek Research Network. In 1994, he received the Guanella Award for the Best Paper presented at the International Zurich Seminar on Mobile Communications.  相似文献   

13.
The wireless beyond 3G systems or the so called Composite Radio Environments (CRE) (or even 4G systems), consist of multiple type radio access technologies, collaborating with each other, providing both diverse access alternatives and QoS improvement, especially as far as concerns protection against traffic congestion and loss of radio coverage situations. The merits deriving from beyond 3G systems interest not only network and service providers but also the mobile users. Additionally, the need of broadband wireless access is directly associated with the intense demand for IP multimedia services (e.g. video streaming or high speed web browsing), mainly inside hot-spot areas. Taking into consideration the above described tendency in the area of wireless network systems, the IP-enabled DVB-T (the terrestrial specification of the Digital Video Broadcasting family) systems appear as an attractive alternative network access in the CRE context. Along this direction, this paper presents the most important aspects of a CRE network management system (NMS), focusing on the component responsible for the DVB-T resource management (RM). Finally, we implement and investigate through simulation a greedy algorithm suitable for DVB-T networks that performs fast resource management and configuration. We also provide some indicative results which prove that the algorithm demonstrates a close to optimal performance at the RM functionality. This work is partially funded by the Commission of the European Communities, under the Fifth Framework Program, within the IST project CREDO (Composite Radio for Enhanced Service Delivery during the Olympics). Dimitris Kouis is currently a research associate at the Electrical Engineers School of the National Technical University of Athens, in Greece. He received his diploma from the Computer Engineering and Informatics department of the Polytechnic School of the University of Patras and a Ph.D. degree in Telecommunications and Computing from the National Technical University of Athens, Greece, in 1999 and 2005 respectively. He has worked in research projects in the context of the IST framework. His research interests include mobile and wireless networking, wireless network resources optimization techniques and large-scale software platforms. He is a member of the Technical Chamber of Greece since 1999. Panagiotis Demestichas received the Diploma and the Ph.D. degrees in Electrical and Computer Engineering from the National Technical University of Athens (NTUA). From September 2002 he is an Assistant Professor at the University of Piraeus, in the department of Technology Education and Digital Systems. From 1993 until August 2002 he has been a senior research engineer with the Telecommunications Laboratory in NTUA. From February 2001 until August 2002 he was a lecturer at NTUA, in the department of Applied Mathematics and Physics, teaching courses on programming languages, data structures, data bases, telecommunications. From September 2000 until August 2002 he taught telecommunication courses, in the department of Electronics of the Technological Education Institute of Piraeus. Most of his current activities focus on the FP6/IST project E2R (End-to-End Reconfigurability). He is also the chairman of Working Group 6 (WG6), titled Reconfigurability, of the Wireless Word Research Forum (WWRF). At the international level he has actively participated in the projects IST MONASIDRE Management of Networks and Services in a Diversified Radio Environment), where he was the project manager, as well as other EU projects under the IST, ACTS, RACE II, EURET, BRITE/EURAM frameworks. His research interests include the design, management and performance evaluation of mobile and broadband networks, service and software engineering, algorithms and complexity theory, and queueing theory. He has authored over 100 publications in these areas in international journals and refereed conferences. He is a member of the IEEE, ACM and the Technical Chamber of Greece. George Koundourakis was born in Alex/polis, Greece, in 1979. He received the degree of Electrical and Computer Engineer from the National Technical University of Athens (NTUA), Greece, in July 2001. He is a Research Associate and PhD candidate at the Telecommunications Laboratory of the Division of Communication, Electronic and Information Engineering at NTUA. He has worked in research projects in the context of the IST framework. He is the author of several scientific papers in the areas of mobile communications. He is a member of the Technical Chamber of Greece. Michael E. Theologou received the degree in Electrical Engineering from Patras University and his Ph.D. degree from the School of Electrical Engineering and Computer Science of the National Technical University of Athens (NTUA). Currently he is a Professor in the School of Electrical Engineering and Computer Science of NTUA. His research interests are in the field of Mobile and Personal communications. He has many publications in the above areas. Dr Theologou is a member of IEEE and the Technical Chamber of Greece.  相似文献   

14.
In this paper, we describe intelligent beamforming antenna systems that can be used in the millimeter-wave band for High-altitude platform systems. We have developed two antenna systems for the millimeter-wave band and have designed experiments to test the efficiency of the developed systems. One is a multi-beam-horn antenna that enables high-speed transmission, and the other is an array antenna that digitally controls antenna beams. These antenna systems are also designed to work in the stratosphere. We also describe our solutions to the problems of low temperature and low pressure and show that the two antenna systems can function well in the stratosphere through tests conducted on the ground.On April 1, 2004, the Communications Research Laboratory (CRL) and the Telecommunications Advancement Organization of Japan (TAO) merged to create NICT.Hiroyuki Tsuji received the B.S., M.S., and Ph.D. degrees from Keio University in 1987, 1989, and 1992, respectively. Since 1992, he has been working in the Communications Research Laboratory, Independent Administrative Institution, Japan. In 1999, he was a visiting researcher at University of Minnesota. He is now a senior researcher of Wireless Innovation Systems Group in the Yokosuka Radio Communications Research Center of NICT (National Institute on Information and Communications Technology, reorganized from CRL in April 2004). His research interests are in array signal processing, particularly as applied to communications. He received the IEICE 1996 Young Engineer Award. He is a member of IEICE and IEEE.Masayuki Oodo was born in Osaka, Japan, on February 1, 1969. He received B.E., M.E. and D.E. degrees in Electrical and Electronic Engineering from Tokyo Institute of Technology, Tokyo, Japan in 1992, 1994 and 1997, respectively. In 1997, he joined the Communications Research Laboratory (CRL, now part of the National Institute of Information and Communications Technology, or NICT), where he has been researching array antennas for wireless communication and frequency-sharing issues between HAPS and other systems. Dr. Oodo received the Paper Presentation Award from IEICE Japan in 1995, the Young Scientist Award from URSI in 1996, the Young Engineer Award from IEICE Japan in 1997, and the Young Engineer Award from IEEE AP-S, Tokyo Chapter in 1998. He is a member of IEEE.Ryu Miura received the B.E., M.E., and PhD degrees in Electrical Engineering from Yokohama National University, Yokohama, Japan, in 1982, 1984, and 2000, respectively. He joined Communications Research Lab (CRL), Ministry of Posts and Telecommunications, Tokyo, Japan in 1984, where he worked for research on mobile satellite communication systems using the Engineering Test Satellite, ETS-V. During 1991–1992, he was a visiting researcher in AUSSAT, Pty. Ltd. (now Optus, Pty. Ltd.), Sydney, Australia. During 1993–1996, he was a senior researcher in ATR Optical and Radio Communications Research Labs, Kyoto, Japan, where he worked for research on digital beamforming antennas for mobile communications. He is now a group leader of Wireless Innovation Systems Group in the Yokosuka Radio Communications Research Center of NICT (National Institute on Information and Communications Technology, reorganized from CRL in April 2004), where he works for R&D on wireless communication systems using stratospheric platforms. Dr. Miura is a member of IEEE and IEICE.Mikio Suzuki received a B.S. degree in electronic engineering from Keio University in 1970. He joined Mitsubishi Electric Corporation in 1970, where he researched and developed microwave integrated circuits and waveguide array antennas for defense radars and missiles. He is now at the NICT Yokosuka Stratospheric Platform Research Center, and his current research interests lie in the system design of applications for wireless communication systems using a stratospheric platform and the development of related communication equipment. He is a member of the IEICE of Japan.  相似文献   

15.
Connected coverage, which reflects how well a target field is monitored under the base station, is the most important performance metric used to measure the quality of surveillance that wireless sensor networks (WSNs) can provide. To facilitate the measurement of this metric, we propose two novel algorithms for individual sensor nodes to identify whether they are on the coverage boundary, i.e., the boundary of a coverage hole or network partition. Our algorithms are based on two novel computational geometric techniques called localized Voronoi and neighbor embracing polygons. Compared to previous work, our algorithms can be applied to WSNs of arbitrary topologies. The algorithms are fully distributed in the sense that only the minimal position information of one-hop neighbors and a limited number of simple local computations are needed, and thus are of high scalability and energy efficiency. We show the correctness and efficiency of our algorithms by theoretical proofs and extensive simulations. Chi Zhang received the B.E. and M.E. degrees in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in July 1999 and January 2002, respectively. Since September 2004, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Yanchao Zhang received the B.E. degree in computer communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, the M.E. degree in computer applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002, and the Ph.D. degree in electrical and computer engineering from the University of Florida, Gainesville, in August 2006. Since September 2006, he has been an Assistant Professor in the Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark. His research interest include wireless and Internet security, wireless networking, and mobile computing. He is a member of the IEEE and ACM. Yuguang Fang received the BS and MS degrees in Mathematics from Qufu Normal University, Qufu, Shandong, China, in 1984 and 1987, respectively, a Ph.D. degree in Systems and Control Engineering from Department of Systems, Control and Industrial Engineering at Case Western Reserve University, Cleveland, Ohio, in January 1994, and a Ph.D. degree in Electrical Engineering from Department of Electrical and Computer Engineering at Boston University, Massachusetts, in May 1997. From 1987 to 1988, he held research and teaching position in both Department of Mathematics and the Institute of Automation at Qufu Normal University. From September 1989 to December 1993, he was a teaching/research assistant in Department of Systems, Control and Industrial Engineering at Case Western Reserve University, where he held a research associate position from January 1994 to May 1994. He held a post-doctoral position in Department of Electrical and Computer Engineering at Boston University from June 1994 to August 1995. From September 1995 to May 1997, he was a research assistant in Department of Electrical and Computer Engineering at Boston University. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology, Newark, New Jersey. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida, Gainesville, Florida, where he got early promotion to Associate Professor with tenure in August 2003, and to Full Professor in August 2005. His research interests span many areas including wireless networks, mobile computing, mobile communications, wireless security, automatic control, and neural networks. He has published over one hundred and fifty (150) papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He also received the 2001 CAST Academic Award. He is listed in Marquis Who’s Who in Science and Engineering, Who’s Who in America and Who’s Who in World. Dr. Fang has actively engaged in many professional activities. He is a senior member of the IEEE and a member of the ACM. He is an Editor for IEEE Transactions on Communications, an Editor for IEEE Transactions on Wireless Communications, an Editor for IEEE Transactions on Mobile Computing, an Editor for ACM Wireless Networks, and an Editor for IEEE Wireless Communications. He was an Editor for IEEE Journal on Selected Areas in Communications:Wireless Communications Series, an Area Editor for ACM Mobile Computing and Communications Review, an Editor for Wiley International Journal on Wireless Communications and Mobile Computing, and Feature Editor for Scanning the Literature in IEEE Personal Communications. He has also actively involved with many professional conferences such as ACM MobiCom’02 (Committee Co-Chair for Student Travel Award), MobiCom’01, IEEE INFOCOM’06, INFOCOM’05 (Vice-Chair for Technical Program Committee), INFOCOM’04, INFOCOM’03, INFOCOM’00, INFOCOM’98, IEEE WCNC’04, WCNC’02, WCNC’00 Technical Program Vice-Chair), WCNC’99, IEEE Globecom’04 (Symposium Co-Chair), Globecom’02, and International Conference on Computer Communications and Networking (IC3N) (Technical Program Vice-Chair).  相似文献   

16.
Future wired-wireless multimedia networks require diverse quality-of-service (QoS) support. To this end, it is essential to rely on QoS metrics pertinent to wireless links. In this paper, we develop a cross-layer model for adaptive wireless links, which enables derivation of the desired QoS metrics analytically from the typical wireless parameters across the hardware-radio layer, the physical layer and the data link layer. We illustrate the advantages of our model: generality, simplicity, scalability and backward compatibility. Finally, we outline its applications to power control, TCP, UDP and bandwidth scheduling in wireless networks. The work by Q. Liu and G. B. Giannakis are prepared through collaborative participation in the Communications and Networks Consortium sponsored by the U.S. Army Research Laboratory under the Collaborative Technology Alliance Program, Cooperative Agreement DAAD19-01-2-0011. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation thereon. The work by S. Zhou is supported by UConn Research Foundation internal grant 445157. Qingwen Liu (S’04) received the B.S. degree in electrical engineering and information science in 2001, from the University of Science and Technology of China (USTC). He received the M.S. degree in electrical engineering in 2003, from the University of Minnesota (UMN). He currently pursues his Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Minnesota (UMN). His research interests lie in the areas of communications, signal processing, and networking, with emphasis on cross-layer analysis and design, quality of service support for multimedia applications over wired-wireless networks, and resource allocation. Shengli Zhou (M’03) received the B.S. degree in 1995 and the M.Sc. degree in 1998, from the University of Science and Technology of China (USTC), both in electrical engineering and information science. He received his Ph.D. degree in electrical engineering from the University of Minnesota, 2002, and joined the Department of Electrical and Computer Engineering at the University of Connecticut, 2003. His research interests lie in the areas of communications and signal processing, including channel estimation and equalization, multi-user and multi-carrier communications, space time coding, adaptive modulation, and cross-layer designs. He serves as an associate editor for IEEE Transactions on Wireless Communications since Feb. 2005. G. B. Giannakis (Fellow’97) received his Diploma in Electrical Engineering from the National Technical University of Athens, Greece, 1981. From September 1982 to July 1986 he was with the University of Southern California (USC), where he received his MSc. in Electrical Engineering, 1983, MSc. in Mathematics, 1986, and Ph.D. in Electrical Engineering, 1986. After lecturing for one year at USC, he joined the University of Virginia in 1987, where he became a professor of Electrical Engineering in 1997. Since 1999 he has been a professor with the Department of Electrical and Computer Engineering at the University of Minnesota, where he now holds an ADC Chair in Wireless Telecommunications. His general interests span the areas of communications and signal processing, estimation and detection theory, time-series analysis, and system identification -- subjects on which he has published more than 200 journal papers, 350 conference papers and two edited books. Current research focuses on transmitter and receiver diversity techniques for single- and multi-user fading communication channels, complex-field and space-time coding, multicarrier, ultra-wide band wireless communication systems, cross-layer designs and sensor networks. G. B. Giannakis is the (co-) recipient of six paper awards from the IEEE Signal Processing (SP) and Communications Societies (1992, 1998, 2000, 2001, 2003, 2004). He also received the SP Society’s Technical Achievement Award in 2000. He served as Editor in Chief for the IEEE SP Letters, as Associate Editor for the IEEE Trans. on Signal Proc. and the IEEE SP Letters, as secretary of the SP Conference Board, as member of the SP Publications Board, as member and vice-chair of the Statistical Signal and Array Processing Technical Committee, as chair of the SP for Communications Technical Committee and as a member of the IEEE Fellows Election Committee. He has also served as a member of the IEEE-SP Society’s Board of Governors, the Editorial Board for the Proceedings of the IEEE and the steering committee of the IEEE Trans. on Wireless Communications.  相似文献   

17.
This paper presents a new channel assignment technique based on a three-layer cellular architecture which optimizes the QoS of Ultra High-Speed (UHSMT) and High-Speed Moving Terminals (HSMT) in a congested urban area. The lower layer of the proposed architecture is based on a microcellular solution, for absorbing the traffic loads of Low Speed Moving Terminals (LSMT). The second layer is based on a macro-cell umbrella solution, for absorbing the traffic load of the HSMT. The higher layer is based on satellite cell and absorbs the traffic load of UHSMT. The results show that assigning the optimum number of channels in every layer, the QoS of UHSMT and HSMT are optimized, having a small bad effect on the QoS of LSMT. Konstantinos Ioannou was born in Patras, Greece, in 1975. He received the Diploma and the PhD in Electrical and Computer Engineering in 1998 and 2004, respectively, from the Polytechnic School of the University of Patras. His dissertation, elaborated at the Wireless Telecommunications Laboratory of the Department of Electrical and Computer Engineers, dealt with Channel Assignment Techniques, Handover Procedures, Traffic Modeling and Call Admission Policies in 2G, 3G Mobile Systems and Security Mobile Systems. During his Postgraduate Studies, he participated in many European and National Research Projects. Since the October of 1999, he is working as an Assistant Professor (under contract) at the Technological Educational Institute of Messolongi – Departments of Applied Informatics in Management & Economy Electronics and Informatics. During the last 2 years, he belongs also to the Technical Consultants Team of the Ministry of Public Order, regarding the C4I Olympic Security System, involved, among others, with TETRA and AVL subsystems. His scientific interests include Mobile and Satellite Communications, Wired and Wireless Networks, Handover and Channel Assignment Techniques and Communication Services. A lot of publications in scientific journals and conference proceedings – 27 and 40, respectively – document his research activity. Konstantinos Ioannou is a member of the Technical Chamber of Greece (TEE). Ioannis Panoutsopoulos was born in Patras, Greece, in 1974. He received the Diploma and the PhD in Electrical and Computer Engineering in 1997 and 2003, respectively, from the Polytechnic School of the University of Patras. His dissertation, elaborated at the Wireless Telecommunications Laboratory of the Department of Electrical and Computer Engineers, dealt with Handover Procedures, Traffic modeling and Call Admission Policies in 2G and 3G Mobile Systems. During his Postgraduate Studies, he participated in many European and National Research Projects. Since the October of 2003, he is working as an Assistant Professor (under contract) at the Technological Educational Institute of Athens - Departments of Electronics and Informatics – teaching Antenna Theory, Electromagnetic Waves Propagation – Transmission Lines and Mobile Telecommunications Systems. During the last 2 years, he belongs also to the Technical Consultants Team of the Ministry of Public Order, regarding the C4I Olympic Security System, involved, among others, with TETRA and AVL subsystems. His scientific interests include Mobile and Satellite Communications, Wired and Wireless Networks, Handover and Channel Assignment Techniques and Communication Services. A lot of publications in scientific journals and conference proceedings – 12 and 18, respectively – document his research activity. Ioannis Panoutsopoulos is a member of the Technical Chamber of Greece (TEE). S. Kotsopoulos was born in Argos-Argolidos (Greece) in the year 1952. He received his B.Sc. in Physics in the year 1975 from the University of Thessaloniki, and in the year 1984 got his Diploma in Electrical and Computer Engineering from the University of Patras. He is an M.Phil and Ph.D. holder since 1978 and 1985 correspondingly. He did his postgraduate studies in the University of Bradford in United Kingdom. Currently he is member of the academic staff of the Department of Electrical and Computer Engineering of the University of Patras and holds the position of Professor. He develops his professional life teaching and doing research at the Laboratory of Wireless Telecommunications (Univ. Of Patras), with interest in mobile communications, interference, satellite communications, telematics, communication services and antennae design. Moreover he is the (co)author of the book titled “mobile telephony”. The research activity is documented by more than 160 publications in scientific journals and proceedings of conferences. Ast. Professor Kotsopoulos has been the leader of several international and many national research projects. Finally, he is member of the Greek Physicists Society and member of the Technical Chamber of Greece.  相似文献   

18.
In this paper, we develop an analytical model to evaluate the delay performance of the burst-frame-based CSMA/CA protocol under unsaturated conditions, which has not been fully addressed in the literature. Our delay analysis is unique in that we consider the end-to-end packet delay, which is the duration from the epoch that a packet enters the queue at the MAC layer of the transmitter side to the epoch that the packet is successfully received at the receiver side. The analytical results give excellent agreement with the simulation results, which represents the accuracy of our analytical model. The results also provide important guideline on how to set the parameters of the burst assembly policy. Based on these results, we further develop an efficient adaptive burst assembly policy so as to optimize the throughput and delay performance of the burst-frame-based CSMA/CA protocol. Kejie Lu received the B.E. and M.E. degrees in Telecommunications Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1994 and 1997, respectively. He received the Ph.D. degree in Electrical Engineering from the University of Texas at Dallas in 2003. In 2004 and 2005, he was a postdoctoral research associate in the Department of Electrical and Computer Engineering, University of Florida. Currently, he is an assistant professor in the Department of Electrical and Computer Engineering, University of Puerto Rico at Mayagüez. His research interests include architecture and protocols design for computer and communication networks, performance analysis, network security, and wireless communications. Jianfeng Wang received the B.E. and M.E. degrees in electrical engineering from Huazhong University of Science and Technology, China, in 1999 and 2002, respectively, and the Ph.D. degree in electrical engineering from University of Florida in 2006. From January 2006 to July 2006, he was a research intern in wireless standards and technology group, Intel Corporation. In October 2006, he joined Philips Research North America as a senior member research staff in wireless communications and networking department. He is engaged in research and standardization on wireless networks with emphasis on medium access control (MAC). Dapeng Wu received B.E. in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in 1990, M.E. in Electrical Engineering from Beijing University of Posts and Telecommunications, Beijing, China, in 1997, and Ph.D. in Electrical and Computer Engineering from Carnegie Mellon University, Pittsburgh, PA, in 2003. Since August 2003, he has been with Electrical and Computer Engineering Department at University of Florida, Gainesville, FL, as an Assistant Professor. His research interests are in the areas of networking, communications, multimedia, signal processing, and information and network security. He received the IEEE Circuits and Systems for Video Technology (CSVT) Transactions Best Paper Award for Year 2001, and the Best Paper Award in International Conference on Quality of Service in Heterogeneous Wired/Wireless Networks (QShine) 2006. Currently, he serves as the Editor-in-Chief of Journal of Advances in Multimedia, and an Associate Editor for IEEE Transactions on Wireless Communications, IEEE Transactions on Circuits and Systems for Video Technology, IEEE Transactions on Vehicular Technology, and International Journal of Ad Hoc and Ubiquitous Computing. He is also a guest-editor for IEEE Journal on Selected Areas in Communications (JSAC), Special Issue on Cross-layer Optimized Wireless Multimedia Communications. He served as Program Chair for IEEE/ACM First International Workshop on Broadband Wireless Services and Applications (BroadWISE 2004); and as a technical program committee member of over 30 conferences. He is Vice Chair of Mobile and wireless multimedia Interest Group (MobIG), Technical Committee on Multimedia Communications, IEEE Communications Society. He is a member of the Best Paper Award Committee, Technical Committee on Multimedia Communications, IEEE Communications Society. Yuguang Fang received a Ph.D. degree in Systems Engineering from Case Western Reserve University in January 1994 and a Ph.D. degree in Electrical Engineering from Boston University in May 1997. He was an assistant professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology from July 1998 to May 2000. He then joined the Department of Electrical and Computer Engineering at University of Florida in May 2000 as an assistant professor and got an early promotion to an associate professor with tenure in August 2003 and to a full professor in August 2005. He has published over 200 papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He has served on several editorial boards of technical journals including IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, IEEE Transactions on Mobile Computing and ACM Wireless Networks. He have also been actively participating in professional conference organizations such as serving as The Steering Committee Co-Chair for QShine, the Technical Program Vice-Chair for IEEE INFOCOM’2005, Technical Program Symposium Co-Chair for IEEE Globecom’2004, and a member of Technical Program Committee for IEEE INFOCOM (1998, 2000, 2003–2007). He is a senior member of the IEEE.  相似文献   

19.
There are two essential ingredients in order for any telecommunications system to be able to provide Quality-of-Service (QoS) guarantees: connection admission control (CAC) and service differentiation. In wireless local area networks (WLANs), it is essential to carry out these functions at the MAC level. The original version of IEEE 802.11 medium access control (MAC) protocol for WLANs does not include either function. The IEEE 802.11e draft standard includes new features to facilitate and promote the provision of QoS guarantees, but no specific mechanisms are defined in the protocol to avoid over saturating the medium (via CAC) or to decide how to assign the available resources (via service differentiation through scheduling). This paper introduces specific mechanisms for both admission control and service differentiation into the IEEE 802.11 MAC protocol. The main contributions of this work are a novel CAC algorithm for leaky-bucket constrained traffic streams, an original frame scheduling mechanism referred to as DM-SCFQ, and a simulation study of the performance of a WLAN including these features. This work has been partly funded by the Mexican Science and Technology Council (CONACYT) through grant 38833-A. José R. Gallardo received the B.Sc. degree in Physics and Mathematics from the National Polytechnic Institute in Mexico City, the M.Sc. degree in Electrical Engineering from CICESE Research and Graduate Education Center in Ensenada, Mexico, and the D.Sc. degree in Electrical Engineering from the George Washington University, Washington, DC. From 1997 to 2000 he worked as a Research Associate at the Advanced Communications Engineering Centre of the University of Western Ontario, London, Ontario, Canada. From May to December 2000, he worked as a Postdoctoral Fellow at the Broadband Wireless and Internetworking Research Laboratory of the University of Ottawa. Since December 2000, Dr. Gallardo has been with the Electronics and Telecommunications Department of CICESE Research Center, where he is a full professor. His main areas of interest are traffic modeling, traffic control, as well as simulation and performance evaluation of broadband communications networks, with recent emphasis on wireless local area networks (WLANs) and wireless sensor networks (WSNs). Paúl Medina received the B.Eng. degree from the Sonora Institute of Technology, Obregon, Mexico, and the M.Sc. degree from CICESE Research and Graduate Education Center, Ensenada, Mexico, both in Electrical Engineering. From July to September 2005, he worked as a Research Associate at the Broadband Wireless and Internetworking Research Laboratory of the University of Ottawa, Canada. Mr. Medina is currently with CENI2T, Ensenada, Mexico, working as a lead engineer in projects related to routing and access control in wireless sensor networks, as well as IP telephony over wireless LANs. Weihua Zhuang received the B.Eng. and M.Eng. degrees from Dalian Maritime University, Liaoning, China, and the Ph.D. degree from the University of New Brunswick, Canada, all in electrical engineering. Since October 1993, she has been with the Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada, where she is a full professor. She is a co-author of the textbook Wireless Communications and Networking (Prentice Hall, 2003). Dr. Zhuang received the Outstanding Performance Award in 2005 from the University of Waterloo, and the Premier’s Research Excellence Award in 2001 from the Ontario Government. She is an Editor/Associate Editor of IEEE Transactions on Wireless Communications, IEEE Transactions on Vehicular Technology, EURASIP Journal on Wireless Communications and Networking, and International Journal of Sensor Networks. Her current research interests include multimedia wireless communications, wireless networks, and radio positioning.  相似文献   

20.
The wireless network introduced here, called CelluLAN, can be used as both wireless local area network (LAN) and as a microcellular network. This is achieved by providing the capability of efficient spectral reuse. This capability became possible by spread-spectrum methods that allow the rejection of interference from adjacent CelluLANs. Spread-spectrum also enhances the multiple access throughput by utilizing its delay capture properties. In particular, we have presented the spread-spectrum random access (SSRA) and the spread-spectrum digital sense multiple access (SS-DSMA), which are based on the media access control (MAC) layer protocols of slotted Aloha and DSMA, respectively. These protocols are then enhanced with the capability of joint delay and power capture which is provided at the physical layer. Performance analysis of the system has been carried out to provide the throughput and the uncoded bit error rate of the SSRA and SS-DSMA protocols. The performance analysis is based on a detailed evaluation of the interference power between adjacent CelluLANs or frequency bands in a fully loaded network and with different types of pulse shaping filter. Performance results indicate that the CelluLAN network has satisfactory throughput performance with SS-DSMA protocol and when frequency reuse is one. As shown, the throughput performance is improved significantly when we use the joint delay-power capture technique. We also show that when the spreading factor increases above the point at which the frequency bands overlap, the access throughput begins to decrease.Diakoumis Gerakoulis received his Ph.D. degree from the City University of New York in 1984, his M.S. degree from Polytechnic Institute of New York in 1978, and his B.S. degree from New York Institute of Technology in 1976; all in electrical engineering. From 1984 to 1987 he was assistant professor in the Electrical Engineering Department at Pratt Institute, Brooklyn, New York, and from 1987 to 1989 an associate professor at the Center of Excellence in Information Systems at Tennessee State University. In 1989 he joined AT & T Bell Laboratories as a member of technical staff, where he worked on common channel signaling and radio access technologies for personal communications. In 1996 he joined AT & T laboratories where he was involved in the system design, analysis and performance of common air interfaces for PCS. In 1998 he joined AT & T Labs-Research as a principal member of technical staff where he was involved in wideband access technologies for wireless and digital subscriber lines. In 2004 he joined General Dynamics – Advanced Information Systems where he is currently a senior lead engineer in systems where he is involved in ad hoc and sensor networks.Dr. Gerakoulis holds eight USA patents and he is co-author of the book CDMA: Access and Switching John Wiley, Feb 2001. Dr. Gerakoulis has also published many papers in journals and conference proceedings in the areas of satellite switching and multiple access, spread-spectrum access and synchronization and multi-carrier CDMA for wireless communications.Evaggelos Geraniotis (SM 88) received the Diploma (with highest honors) in Electrical Engineering from the National Technical University of Athens, Athens, Greece, and the M.S. and Ph.D. degrees in EE from the University of Illinois at Urbana-Champaign.From September 1985 to December 2001 he was with the University of Maryland, College Park, where from 1992 to 2001 he was Professor of Electrical Engineering and a member of the Institute for Systems Research and the Center for Satellite and Hybrid Communication Networks. Since January 2002, Dr. Geraniotis has been president of EG Wireless Systems Inc., a consulting company dedicated to research and development in commercial and military wireless communications.Dr. Geraniotiss research has been in communication theory, information theory and their applications with emphasis on wireless communications. His recent work focuses on data modulation, error control coding, multi-user detection and interference cancellation, array processing for receive and transmit diversity, retransmission techniques and multi-access protocols for wireless spread-spectrum and anti-jam communications. The algorithms are applied to cellular, mobile, PCS, fixed wireless, satellite but also to optical, copper-loop and cable networks. He has also worked on multi-media and mixed-media integration and switching for radio and optical neworks as well as on interception, feature-detection, and classification of signals, radar detection and multi-sensor data fusion.He is co-author of the book CDMA: Access and Switching for Terrestrial and Satellite Networks, Joh Wiley, New York, Feb 2001 and and over 300 technical papers in journals and conference proceedings. He serves regularly as a consultant in the above areas for governmental and industrial clients. Dr. Geraniotis has served as Editor for Spread-Spectrum of the IEEE Transactions on Communications from 1989 to 1992.Hany ElGamal was born in Egypt. He obtained his BS in Electrical Engineering from the University of Kairo, Egypt. From September 1999 to December 2002 he was a graduate assistant at the Dept of Electrical Engineering and the Institute of Systems Research of the University of Maryland, College Park, MD. His research interests are in information theory and communication theosry with applications to spread-spectrum systems, interference cancellation, coding and trasmit diversity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号