首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Luminescence studies of CaS:Bi nanocrystalline phosphors synthesized by wet chemical co-precipitation method and irradiated with swift heavy ions (i.e. O7+-ion with 100 MeV and Ag15+-ion with 200 MeV) have been carried out. The samples have been irradiated at different ion fluences in the range 1 × 1012-1 × 1013 ions/cm2. The average grain size of the samples before irradiation was estimated as 35 nm using line broadening of XRD (X-ray diffraction) peaks and TEM (transmission electron microscope) studies. Our results suggest a good structural stability of CaS:Bi against swift heavy ion irradiation. The blue emission band of CaS:Bi3+ nanophosphor at 401 nm is from the transition 3P→ 1S0 of the Bi3+. We have observed a decrease in lattice constant (a) and increase of optical energy band gap after ion irradiation. We presume this change due to grain fragmentation by dense electronic excitation induced by swift heavy ion. We have studied the optical and luminescent behavior of the samples by changing the ion energy and also by changing dopant concentration from 0.01 mol% to 0.10 mol%. It has been examined that ion irradiation enhanced the luminescence of the samples.  相似文献   

2.
Swift heavy ion irradiation has been successfully used to modify the structural, optical, and gas sensing properties of SnO2 thin films. The SnO2 thin films prepared by sol-gel process were irradiated with 75 MeV Ni+ beam at fluences ranging from 1 × 1011 ion/cm2 to 3 × 1013 ion/cm2. Structural characterization with glancing angle X-ray diffraction shows an enhancement of crystallinity and systematic change of stress in the SnO2 lattice up to a threshold value of 1 × 1013 ions/cm2, but decrease in crystallinity at highest fluence of 3 × 1013 ions/cm2. Microstructure investigation of the irradiated films by transmission electron microscopy supports the XRD observations. Optical properties studied by absorption and PL spectroscopies reveal a red shift of the band gap from 3.75 eV to 3.1 eV, and a broad yellow luminescence, respectively, with increase in ion fluence. Gas response of the irradiated SnO2 films shows increase of resistance on exposure to ammonia (NH3), indicating p-type conductivity resulting from ion irradiation.  相似文献   

3.
Al2O3 thin films find wide applications in optoelectronics, sensors, tribology etc. In the present work, Al2O3 films prepared by electron beam evaporation technique are irradiated with 100 MeV swift Si7+ ions for the fluence in the range 1 × 1012 to 1 × 1013 ions cm−2 and the structural properties are studied by glancing angle X-ray diffraction. It shows a single diffraction peak at 38.2° which indicates the γ-phase of Al2O3. Further, it is observed that as the fluence increases up to 1 × 1013 ions cm−2 the diffraction peak intensity decreases indicating amorphization. Surface morphology studies by atomic force microscopy show mean surface roughness of 34.73 nm and it decreases with increase in ion fluence. A strong photoluminescence (PL) emission with peak at 442 nm along with shoulder at 420 nm is observed when the samples are excited with 326 nm light. The PL emission is found to increase with increase in ion fluence and the results are discussed in detail.  相似文献   

4.
The effect of swift heavy ion irradiation on hydroxyapatite (HAp) ceramic - a bone mineral was investigated. The irradiation experiment was conducted using oxygen ions at energy of 100 MeV with three different fluences of 1012, 1013, 1014 ions/cm2. The irradiated samples were characterized by glancing angle X-ray diffraction (GXRD), atomic force microscopy (AFM), dynamic light scattering (DLS), photoluminescence spectroscopy (PL), scanning electron microscopy (SEM) and energy dispersive X-ray analysis (EDAX). GXRD confirmed incomplete amorphisation of HAp with increase in fluence. There was considerable reduction in particle size on irradiation leading to nanosized HAp (upto 53 nm). PL studies showed emission in the visible wavelength region. The irradiated samples exhibited better bioactivity than the pristine HAp.  相似文献   

5.
Modifications of the C70 molecule (fullerene) under swift heavy ion irradiation are investigated. C70 thin films were irradiated with 120 MeV Au ions at fluences from 1 × 1012 to 3 × 1013 ions/cm2. The energetic ion impacts lead to the destruction of the C70 molecule. To investigate the stability of C70 fullerene, the damage cross-section and radius of the damaged cylindrical zones are evaluated by fitting the evanescence of C70 vibration modes recorded by Raman spectroscopy. Conductivity measurements together with Raman and optical absorption studies revealed that an irradiation fluence of 3 × 1013 ions/cm2 results in complete amorphization of the carbon structure of the fullerene molecules.  相似文献   

6.
CdTe polycrystalline thin films possessing hexagonal phase regions are obtained by spray deposition in presence of a high electric field. Thin film samples are irradiated with 100 MeV Ag ions using Pelletron accelerator to study the swift heavy ion induced effects. The ion irradiation results in the transformation of the metastable hexagonal regions in the films to stable cubic phase due to the dense electronic excitations induced by beam irradiation. The phase transformation is seen from the X-ray diffraction patterns. The band gap of the CdTe film changes marginally due to ion irradiation induced phase transformation. The value changes from 1.47 eV for the as deposited sample to 1.44 eV for the sample irradiated at the fluence 1×1013 ions/cm2. The AFM images show a gradual change in the shape of the particles from rod shape to nearly spherical ones after irradiation.  相似文献   

7.
A systematic study of Ni based ohmic and Schottky contacts (SCs) onto the n-4H-SiC and n-6H-SiC under relatively low-dose (1 × 1012 e cm−2) and high-energy (6, 12, 15 MeV) electron irradiation (HEEI) has been introduced. Lower specific contact resistivity has been reached for Ni based ohmic contact structures on both 4H and 6H-SiC after each electron irradiation. This finding has been explained by the displacement damage produced by the collision of electrons with atoms of Ni contact material. It has been observed that the HEEI caused to increase in the ideality factors of both SCs indicating deviation from thermionic emission theory in current transport mechanism. While the Schottky barrier height (SBH) for Ni/4H-SiC SC remains nearly constant, an increase has been observed for the Ni/6H-SiC SC. Donor concentrations for both diodes have decreased with increasing electron energy probably due to the trapping effect of the irradiation induced defect(s).  相似文献   

8.
The influence of swift heavy ion (SHI) irradiation on structural and photoluminescence (PL) properties of ZnO nanocrystallites deposited into porous silicon (PS) templates by the sol-gel process was studied. The ZnO/PS nanocomposites were irradiated using 120 MeV Au ions at different fluences varying from 1 × 1012 to 1 × 1013 ions/cm2. The intensity of the X-ray diffraction peaks is suppressed at the high fluence, without evolution of any new peak. The PL emission from PS around 700 nm is found to decrease with increase in ion fluence, while the PL emission from deep level defects of ZnO nanocrystallites is increased with ion fluence. At the highest fluence, the observation of drastic increase in PL emission due to donor/acceptor defects in the region 400-600 nm and suppressions of XRD peaks could be attributed to the defects induced structural modifications of ZnO nanocrystallites.  相似文献   

9.
We have investigated the scattering of K+ and Cs+ ions from a single crystal Ag(0 0 1) surface and from a Ag-Si(1 0 0) Schottky diode structure. For the K+ ions, incident energies of 25 eV to 1 keV were used to obtain energy-resolved spectra of scattered ions at θi = θf = 45°. These results are compared to the classical trajectory simulation safari and show features indicative of light atom-surface scattering where sequential binary collisions can describe the observed energy loss spectra. Energy-resolved spectra obtained for Cs+ ions at incident energies of 75 eV and 200 eV also show features consistent with binary collisions. However, for this heavy atom-surface scattering system, the dominant trajectory type involves at least two surface atoms, as large angular deflections are not classically allowed for any single scattering event. In addition, a significant deviation from the classical double-collision prediction is observed for incident energies around 100 eV, and molecular dynamics studies are proposed to investigate the role of collective lattice effects. Data are also presented for the scattering of K+ ions from a Schottky diode structure, which is a prototype device for the development of active targets to probe energy loss at a surface.  相似文献   

10.
Makrofol-N polycarbonate thin films were irradiated with copper (50 MeV) and nickel (86 MeV) ions. The modified films were analyzed by UV-VIS, FTIR and XRD techniques. The experimental data was used to evaluate the formation of chromophore groups (conjugated system of bonds), degradation cross-section of the special functional groups, the alkyne formation and the amorphization cross-section. The investigation of UV-VIS spectra shows that the formation of chromophore groups is reduced at larger wavelength, however its value increases with the increase of ion fluence. Degradation cross-section for the different chemical groups present in the polycarbonate chains was evaluated from the FTIR data. It was found that there was an increase of degradation cross-section of chemical groups with the increase of electronic energy loss in polycarbonate. The alkyne and alkene groups were found to be induced due to swift heavy ion irradiation in polycarbonate. The radii of the alkyne production of about 2.74 and 2.90 nm were deduced for nickel (86 MeV) and copper (50 MeV) ions respectively. XRD analysis shows the decrease of the main XRD peak intensity. Progressive amorphization process of Makrofol-N with increasing fluence was traced by XRD measurements.  相似文献   

11.
A detailed investigation of the surface morphology of the pristine and swift heavy ion (SHI) irradiated La0.7Sr0.3MnO3 (LSMO) thin film using atomic force microscope (AFM) is presented. Highly c-axis oriented LSMO thin films were grown on LaAlO3 (1 0 0) (LAO) substrates by the pulsed laser deposition (PLD) technique. The films were annealed at 800 °C for 12 h in air (pristine films) and subsequently, irradiated with SHI of oxygen and silver. The incident fluence was varied from 1 × 1012 to 1 × 1014 ions/cm2 and 1 × 1011 to 1 × 1012 ions/cm2 for oxygen and silver ions, respectively. X-ray diffraction (XRD) studies reveal that the irradiated films are strained. From the AFM images, various details pertaining to the surface morphology such as rms roughness (σ), the surface rms roughness averaged over an infinite large image (σ), fractal dimension (DF) and the lateral coherence length (ξ) were estimated using the length dependent variance measurements. In case of irradiated films, the surface morphology shows drastic modifications, which is dependent on the nature of ions and the incident fluence. However, the surface is found to remain self-affine in each case. In case of oxygen ion irradiated films both, σ and DF are observed to increase with fluence up to a dose value of 1 × 1013 ions/cm2. With further increase in dose value both σ and DF decreases. In case of silver ion irradiated films, σ and DF decrease with increase in fluence value in the range studied.  相似文献   

12.
Thin films of Fe3O4 have been deposited on single crystal MgO(1 0 0) and Si(1 0 0) substrates using pulsed laser deposition. Films grown on MgO substrate are epitaxial with c-axis orientation whereas, films on Si substrate are highly 〈1 1 1〉 oriented. Film thicknesses are 150 nm. These films have been irradiated with 200 MeV Ag ions. We study the effect of the irradiation on structural and electrical transport properties of these films. The fluence value of irradiation has been varied in the range of 5 × 1010 ions/cm2 to 1 × 1012 ions/cm2. We compare the irradiation induced modifications on various physical properties between the c-axis oriented epitaxial film and non epitaxial but 〈1 1 1〉 oriented film. The pristine film on Si substrate shows Verwey transition (TV) close to 125 K, which is higher than generally observed in single crystals (121 K). After the irradiation with the 5 × 1010 ions/cm2 fluence value, TV shifts to 122 K, closer to the single crystal value. However, with the higher fluence (1 × 1012 ions/cm2) irradiation, TV again shifts to 125 K.  相似文献   

13.
Silica glass samples were implanted with 1.157 GeV 56Fe and 1.755 GeV 136Xe ions to fluences range from 1 × 1011 to 3.8 × 1012 ions/cm2. Virgin and irradiated samples were investigated by ultraviolet (UV) absorption from 3 to 6.4 eV and photoluminescence (PL) spectroscopy. The UV absorption investigation reveals the presence of various color centers (E′ center, non-bridging oxygen hole center (NBOHC) and ODC(II)) appearing in the irradiated samples. It is found that the concentration of all color centers increase with the increase of fluence and tend to saturation at high fluence. Furthermore the concentration of E′ center and that of NBOHC is approximately equal and both scale better with the energy deposition through processes of electronic stopping, indicating that E′ center and NBOHC are mainly produced simultaneously from the scission of strained Si-O-Si bond by electronic excitation effects in heavy ion irradiated silica glass. The PL measurement shows three emissions peaked at about 4.28 eV (α band), 3.2 eV (β band) and 2.67 eV (γ band) when excited at 5 eV. The intensities of α and γ bands increase with the increase of fluence and tend to saturation at high fluence. The intensity of β band is at its maximum in virgin silica glass and it is reduced on increasing the ions fluence. It is further confirmed that nuclear energy loss processes determine the production of α and γ bands and electronic energy loss processes determine the bleaching of β band in heavy ion irradiated silica glass.  相似文献   

14.
We have studied the influence of the ion species, ion energy, fluence, irradiation temperature and post-implantation annealing on the formation of shallow dislocation loops in silicon, for fabrication of silicon light emitting diodes. The substrates used were (1 0 0) Si, implanted with 20-80 keV boron at room temperature and 75-175 keV silicon at 100 and 200 °C. The implanted fluences were from 5 × 1014 to 1 × 1015 ions/cm2. After irradiation the samples were processed for 15 s to 20 min at 950 °C by rapid thermal annealing. Structural analysis of the samples was done by transmission electron microscopy and Rutherford backscattering spectrometry. In all irradiations the silicon substrates were not amorphized, and that resulted in the formation of extrinsic perfect and faulted dislocation loops with Burgers vectors a/2〈1 1 0〉 and a/3〈1 1 1〉, respectively, sitting in {1 1 1} habit planes. It was demonstrated that by varying the ion implantation parameters and post-irradiation annealing, it is possible to form various shapes, concentration and distribution of dislocation loops in silicon.  相似文献   

15.
The synthesis of buried silicon nitride insulating layers was carried out by SIMNI (separation by implanted nitrogen) process using implantation of 140 keV nitrogen (14N+) ions at fluence of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 into 〈1 1 1〉 single crystal silicon substrates held at elevated temperature (410 °C). The structures of ion-beam synthesized buried silicon nitride layers were studied by X-ray diffraction (XRD) technique. The XRD studies reveal the formation of hexagonal silicon nitride (Si3N4) structure at all fluences. The concentration of the silicon nitride phase was found to be dependent on the ion fluence. The intensity and full width at half maximum (FWHM) of XRD peak were found to increase with increase in ion fluence. The Raman spectra for samples implanted with different ion fluences show crystalline silicon (c-Si) substrate peak at wavenumber 520 cm−1. The intensity of the silicon peak was found to decrease with increase in ion fluence.  相似文献   

16.
Heavy ion irradiation has been proposed for discriminating UMo/Al specimens which are good candidates for research reactor fuels. Two UMo/Al dispersed fuels (U-7 wt%Mo/Al and U-10 wt%Mo/Al) have been irradiated with a 80 MeV 127I beam up to an ion fluence of 2 × 1017 cm−2. Microscopy and mainly X-ray diffraction using large and micrometer sized beams have enabled to characterize the grown interaction layer: UAl3 appears to be the only produced crystallized phase. The presence of an amorphous additional phase can however not be excluded. These results are in good agreement with characterizations performed on in-pile irradiated fuels and encourage new studies with heavy ion irradiation.  相似文献   

17.
We have studied electronic and atomic structure modifications of Cu3N films under 100 keV Ne and 100 MeV Xe ion impact. Cu3N films were prepared on R(11-2 surface)-cut-Al2O3 substrates at 250 °C by using a RF-magnetron sputter deposition method. X-ray diffraction (XRD) shows that unirradiated films are polycrystalline with (1 0 0) orientation of cubic structure. We find that the electrical resistivity (∼10 Ω cm before ion impact) decreases by more than two orders of magnitude after the Ne impact at a fluence of ∼1013 cm−2, where no Cu phase separation is observed. For further ion impact (larger than ∼1015 cm−2), XRD shows Cu diffraction peak (Cu phase separation), and the resistivity decreases further (three orders of magnitude). Decomposition and phase separation are discussed based on these results, as well as temperature dependence of the resistivity and optical absorption. The results of 100 MeV Xe ion impact are compared with those of Ne ion impact.  相似文献   

18.
Single crystal silicon samples were implanted at 140 keV by oxygen (16O+) ion beam to fluence levels of 1.0 × 1017, 2.5 × 1017 and 5.0 × 1017 cm−2 to synthesize buried silicon oxide insulating layers by SIMOX (separation by implanted oxygen) process at room temperature and at high temperature (325 °C). The structure and composition of the ion-beam synthesized buried silicon oxide layers were investigated by Fourier transform infrared (FTIR) and Rutherford backscattering spectroscopy (RBS) techniques. The FTIR spectra of implanted samples reveal absorption in the wavenumber range 1250-750 cm−1 corresponding to the stretching vibration of Si-O bonds indicating the formation of silicon oxide. The integrated absorption band intensity is found to increase with increase in the ion fluence. The absorption peak was rather board for 325 °C implanted sample. The FTIR studies show that the structures of ion-beam synthesized buried oxide layers are strongly dependent on total ion fluence. The RBS measurements show that the thickness of the buried oxide layer increases with increase in the oxygen fluence. However, the thickness of the top silicon layer was found to decrease with increase in the ion fluence. The total oxygen fluence estimated from the RBS data is found to be in good agreement with the implanted oxygen fluence. The high temperature implantation leads to increase in the concentration of the oxide formation compared to room temperature implantation.  相似文献   

19.
The modifications of the mechanical properties of cubic (yttria-stabilized) zirconia induced by swift heavy ion irradiation are investigated. Polycrystalline pellets were irradiated at room temperature with 940 MeV Pb ions at the GANIL accelerator in Caen at fluences ranging from 5 × 1011 to 4 × 1013 cm−2. The microhardness and the fracture toughness of irradiated YSZ were studied by Vickers micro-indentation. Although YSZ is damaged by irradiation, an increase of the microhardness and fracture toughness with increasing ion fluence is observed. A strengthening of YSZ, associated with residual compressive stresses induced in the surface layer by irradiation, explain these results.  相似文献   

20.
Fe/Cr/Fe trilayers and (Fe/Cr)20 multilayers prepared under ultrahigh vacuum conditions by thermal evaporation were irradiated with 200 MeV I13+ ions in the fluence range between 1 × 1011 and 8 × 1012 I/cm2. The structural properties of the Fe/Cr/Fe trilayers and (Fe/Cr)20 multilayers were measured by X-ray reflectivity (XRR) and conversion electron Mössbauer spectroscopy (CEMS). Magnetic exchange coupling between the Fe layers through the Cr spacer layer was observed by SQUID magnetization measurements. Magnetoresistance effect was measured using four probe method at room temperature. The XRR spectra showed an increase of the interface roughness versus increasing irradiation fluence in the multilayers, while in the trilayers smoothening of the interfaces in the sample irradiated with fluence equal to 4 × 1011 I/cm2 and very slight change for other fluences were observed. Improving of the interface structure in the trilayers at this fluence was observed also by CEMS. Moreover the Mössbauer spectra also confirm roughening of the interfaces as a function of fluence for multilayers. Before irradiation an antiferromagnetic coupling fraction dominated in all samples. After irradiation the changes of magnetic coupling were different in both types of samples. The trilayers were less sensitive to the irradiation fluence than multilayers and an increase of the antiferromagnetic fraction at small fluences was observed. In the multilayers a continuous decrease of the antiferromagnetic fraction as a function of fluence was evidenced. Vanishing of the antiferromagnetic coupling, observed for the largest fluence, resulted in the decrease of magnetoresistance effect in the Fe/Cr multilayers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号