首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ta2O5 films with a buffer layer of silicon nitride of various thicknesses were deposited on Si substrate by reactive sputtering and submitted to annealing at 700 °C in nitrogen atmosphere. The microstructure and the electrical properties of thin films were studied. It was found that with a buffer layer of silicon nitride the electrical properties of SixNy/Ta2O5 film can be improved than Ta2O5 film. When the thickness of the buffer layer was 3 nm, the SixNy/Ta2O5 film has the highest dielectric constant of 27.4 and the lowest leakage current density of 4.61 × 10−5 A/cm2 (at −1 V). For the SixNy (3 nm)/Ta2O5 film, the conduction mechanism of leakage current was also analyzed and showed four types of conduction mechanisms at different applied voltages.  相似文献   

2.
The influence of the rapid thermal annealing (RTA) in vacuum at 1000 °C on the leakage current characteristics and conduction mechanisms in thermal Ta2O5 (7-40 nm) on Si has been studied. It was established that the effect of RTA depends on both the initial parameters of the films (defined by the oxidation temperature and film thickness) and annealing time (15-60 s). The RTA tends to change the distribution and the density of the traps in stack, and this reflects on the dielectric and leakage properties. The thinner the film and the poorer the oxidation, the more susceptible the layer to heating. The short (15 s) annealing is effective in improving the leakage characteristics of poorly oxidized samples. The RTA effect, however, is rather deleterious than beneficial, for the thinner layers with good oxygen stoichiometry. RTA modifies the conduction mechanism of Ta2O5 films only in the high-field region. The annealing time has strong impact on the appearance of a certain type of reactions upon annealing resulting to variation of the ratio between donors and traps into Ta2O5, causing different degree of compensation, and consequently to domination of one of the two mechanisms at high fields (Schottky emission or Poole-Frenkel effect). Trends associated with simultaneous action of annealing and generation of traps during RTA processing, and respectively the domination of one of them, are discussed.  相似文献   

3.
The effect of the oxidation temperature (673-873 K) on the microstructural and electrical properties of thermal Ta2O5 thin films on Si has been studied. Auger electron spectroscopy and X-ray photoelectron spectroscopy results revealed that the films are non-stoichiometric in the depth; an interfacial transition layer between tantalum oxide and Si substrate, containing presumably SiO2 was detected. It has been found by X-ray diffraction that the amorphous state of Ta2O5 depends on both the oxidation temperature and the thickness of the films—the combination of high oxidation temperature (>823 K) and thickness smaller than 50 nm is critical for the appearance of a crystal phase. The Ta2O5 layers crystallize to the monoclinic phase and the temperature of the phase transition is between 773 and 823 K for the thinner layers (<50 nm) and very close to 873 K for the thicker ones. The electrical characterization (current/voltage; capacitance/voltage) reveals that the optimal oxidation temperature for achieving the highest dielectric constant (∼32) and the lowest leakage current (10−8 A/cm2 at 1 MV/cm applied field) is 873 K. The results imply that the poor oxidation related defects are rather the dominant factor in the leakage current than the crystallization effects.  相似文献   

4.
Tantalum pentoxide (Ta2O5) deposited by pulsed DC magnetron sputtering technique as the gate dielectric for 4H-SiC based metal-insulator-semiconductor (MIS) structure has been investigated. A rectifying current-voltage characteristic was observed, with the injection of current occurred when a positive DC bias was applied to the gate electrode with respect to the n type 4H-SiC substrate. This undesirable behavior is attributed to the relatively small band gap of Ta2O5 of around 4.3 eV, resulting in a small band offset between the 4H-SiC and Ta2O5. To overcome this problem, a thin thermal silicon oxide layer was introduced between Ta2O5 and 4H-SiC. This has substantially reduced the leakage current through the MIS structure. Further improvement was obtained by annealing the Ta2O5 at 900 °C in oxygen. The annealing has also reduced the effective charge in the dielectric film, as deduced from high frequency C-V measurements of the Ta2O5/SiO2/4H-SiC capacitors.  相似文献   

5.
Yttrium was deposited on the chemical oxide of Si and annealed under vacuum to control the interface for the formation of Y2O3 as an insulating barrier to construct a metal-ferroelectric-insulator-semiconductor structure. Two different pre-annealing temperatures of 600 and 700 °C were chosen to investigate the effect of the interface state formed after the pre-annealing step on the successive formation of Y2O3 insulator and Nd2Ti2O7 (NTO) ferroelectric layer through annealing under an oxygen atmosphere at 800 °C. Pre-anneal treatments of Y-metal/chemical-SiO2/Si at 600 and 700 °C induced a formation of Y2O3 and Y-silicate, respectively. The difference in the pre-anneal temperature induced almost no change in the electrical properties of the Y2O3/interface/Si system, but degraded properties were observed in the NTO/Y2O3/interface/Si system pre-annealed at 600 °C when compared with the sample pre-annealed at 700 °C. C-V characteristics of the NTO/Y2O3/Si structured system showed a clockwise direction of hysteresis, and this gap could be used as a memory window for a ferroelectric-gate. A smaller hysteric gap and electrical breakdown values were observed in the NTO/Y2O3/Si system pre-annealed at 600 °C, and this was due to an unintentional distribution of the applied field from the presence of an interfacial layer containing Y-silicate and SiO2 phases.  相似文献   

6.
Atomic Layer Deposition (ALD) was used for the deposition of tantalum oxide thin films in order to be integrated in microelectronic devices as barrier to copper diffusion. The influence of deposition temperature, number of cycles and precursor pulse time on the film growth was discussed. The conformity of thinnest deposited films was shown. Copper diffusion through ALD Ta2O5 thin films, 20 nm in thickness, was investigated, for three temperatures from 600 to 800 °C, using X-ray Photoelectron Spectroscopy. The failure of such films was detected after a thermal treatment at 700 °C.  相似文献   

7.
Fatigue-free Bi3.2Nd0.8Ti3O12 ferroelectric thin films were successfully prepared on p-Si(1 1 1) substrate using metalorganic solution deposition process. The orientation and formation of thin film under different annealing schedules were studied using XRD and AFM. XRD analysis indicated that (2 0 0)-oriented films with degree of orientation of I(200)/I(117) = 2.097 and 0.466 were obtained by preannealing the film at 400 °C for 10 min followed by rapid thermal annealing at 700 °C for 3 min, 10 min and 20 min, respectively, (0 0 8)-oriented film with degree of orientation of I(008)/I(117) = 1.706 were obtained by rapid thermal annealing the film at 700 °C for 3 min without preannealing, and (0 0 8)-oriented film with degree of orientation of I(008)/I(117) = 0.719 were obtained by preheating the film from room temperature to 700 °C at 20 °C/min followed by annealing for 10 min. The a-axis and c-axis orientation decreased as increase in annealing time due to effects of (1 1 1)-oriented substrate. AFM analysis further indicated that preannealing at 400 °C for 10 min followed by rapid thermal annealing at 700 °C for 3 min resulted in formation of platelike crystallite parallel to substrate surface, however rapid thermal annealing at 700 °C for 3 min without preannealing resulted in columnar crystallite perpendicular to substrate surface.  相似文献   

8.
Lightly Al-doped Ta2O5 films (10;15 nm) obtained by rf sputtering have been studied with respect to their dielectric and electrical properties. The formed metal-high-k dielectric-semiconductor capacitors have been characterized by capacitance-voltage and temperature-dependent current-voltage characteristics. It was established that the introduction of small amount (5 at.%) Al into the matrix of Ta2O5 improves dielectric constant, introduces negative oxide charge, suppresses deep oxygen-vacancy centers in Ta2O5 but creates shallow traps and changes the dominant conduction mechanism in the stacks. The doping produces more leaky films at room temperature and lower current at high temperature as compared to the case of pure Ta2O5. It is concluded that the strong contribution of tunneling processes through shallow traps in the conductivity of doped films could explain the observed current degradation at room temperature and its improved temperature stability at high temperatures. The energy levels of the traps responsible for the current transport are estimated.  相似文献   

9.
Rare earth oxides (REOs) have lately received extensive attention in relation to the continuous scaling down of non-volatile memories (NVMs). In particular, La2O3 films are promising for integration into future NVMs because they are expected to crystallize above 400 °C in the hexagonal phase (h-La2O3) which has a higher κ value than the cubic phase (c-La2O3) in which most of REOs crystallize. In this work, La2O3 films are grown on Si by atomic layer deposition using La(C5H5)3 and H2O. Within the framework of the h-La2O3 formation, we systematically study the crystallographic evolution of La2O3 films versus annealing temperature (200-600 °C) by Fourier transform infrared spectroscopy (FTIR) and grazing incidence X-ray diffraction (GIXRD). As-grown films are chemically unstable in air since a rapid transformation into monoclinic LaO(OH) and hexagonal La(OH)3 occurs. Vacuum annealing of sufficiently thick (>100 nm) La(OH)3 layers induces clear changes in FTIR and GIXRD spectra: c-La2O3 gradually forms in the 300-500 °C range while annealing at 600 °C generates h-La2O3 which exhibits, as inferred from our electrical data, a desirable κ ∼ 27. A quick transformation from h-La2O3 into La(OH)3 occurs due to H2O absorption, indicating that the annealed films are chemically unstable. This study extends our recent work on the h-La2O3 formation.  相似文献   

10.
Interfacial chemical analyses and electrical characterization of in situ atomic layer deposited (ALD) Al2O3 on freshly molecular beam epitaxy (MBE) grown n- and p- GaAs (001) with a (4 × 6) surface reconstruction are performed. The capacitance-voltage (C-V) characteristics of as-deposited and 550 °C N2 annealed samples are correlated with their corresponding X-ray photoelectron spectroscopy (XPS) interfacial analyses. The chemical bonding for the as-deposited ALD-Al2O3/n- and p-GaAs interface is similar, consisting of Ga2O (Ga1+) and As-As bonding (As0) without any detectable arsenic oxides or Ga2O3; the interfacial chemical environments remained unchanged after 550 °C N2 annealing for 1hr. Both as-deposited and annealed p-GaAs metal-oxide-semiconductor capacitors (MOSCAPs) exhibit C-V characteristics with small frequency dispersion (<5%). In comparison, n-GaAs MOSCAPs shows much pronounced frequency dispersion than their p-counterparts.  相似文献   

11.
The Time-Dependent-Dielectric Breakdown (TDDB) characteristics of MOS capacitors with Hf-doped Ta2O5 films (8 nm) have been analyzed. The devices were investigated by applying a constant voltage stress at gate injection, at room and elevated temperatures. Stress voltage and temperature dependences of hard breakdown of undoped and Hf-doped Ta2O5 were compared. The doped Ta2O5 exhibits improved TDDB characteristics in regard to the pure one. The maximum voltage projected for a 10 years lifetime at room temperature is −2.4 V. The presence of Hf into the matrix of Ta2O5 modifies the dielectric breakdown mechanism making it more adequate to the percolation model. The peculiarities of Weibull distribution of dielectric breakdown are discussed in terms of effect of three factors: nature of pre-existing traps and trapping phenomena; stress-induced new traps generation; interface layer degradation.  相似文献   

12.
A dielectric constant of 27 was demonstrated in the as deposited state of a 5 nm thick, seven layer nanolaminate stack comprising Al2O3, HfO2 and HfTiO. It reduces to an effective dielectric constant (keff) of ∼14 due to a ∼0.8 nm interfacial layer. This results in a quantum mechanical effective oxide thickness (EOT) of ∼1.15 nm. After annealing at 950 °C in an oxygen atmosphere keff reduces to ∼10 and EOT increases to 1.91 nm. A small leakage current density of about 8 × 10−7 and 1 × 10−4 A/cm2, respectively at electric field 2 and 5 MV/cm and a breakdown electric field of about 11.5 MV/cm was achieved after annealing at 950 °C.  相似文献   

13.
The formation of a SiO2 layer at the Ta2O5/Si interface is observed by annealing in dry O2 or N2 and the thickness of this layer increases with an increase in annealing temperature. Leakage current of thin (less than 40 nm thick) Ta2O5 films decreases as the annealing temperature increases when annealed in dry O2 or N2. The dielectric constant vs annealing temperature curve shows a maximum peak at 750 or 800° C resulting from the crystallization of Ta2O5. The effect is larger in thicker Ta2O5 films. But the dielectric constant decreases when annealed at higher temperature due to the formation and growth of a SiO2 layer at the interface. The flat band voltage and gate voltage instability as a function of annealing temperature can be explained in terms of the growth of interfacial SiO2. The electrical properties of Ta2O5 as a function of annealing conditions do not depend on the fabrication method of Ta2O5 but strongly depend on the thickness of Ta2O5 layer.  相似文献   

14.
The effect of various electrodes (Al, W, TiN) deposited by evaporation (Al) and sputtering (W, TiN) on the electrical characteristics of thermal thin film (15-35 nm) Ta2O5 capacitors has been investigated. The absolute level of leakage currents, breakdown fields, mechanism of conductivity, dielectric constant values are discussed in the terms of possible reactions between Ta2O5 and electrode material as well as electrode deposition process-induced defects acting as electrically active centers. The dielectric constant values are in the range 12-26 in dependence on both Ta2O5 thickness and gate material. The results show that during deposition of TiN and Al a reaction that worsens the properties of Ta2O5 occurs while there is not an indication for detectable reduction of Ta2O5 when top electrode is W, and the leakage current is 5-7 orders of magnitude lower as compared to Al and TiN-electroded capacitors. The high level of leakage current for TiN and Al gate capacitors are related to the radiation defects generated in Ta2O5 during sputtering of TiN, and damaged interface at the electrode due to a reaction between Al and Ta2O5, respectively. It is demonstrated that the quality of the top electrode affects the electrical characteristics of the capacitors and the sputtered W is found to be the best. The sputtered W gate provides Ta2O5 capacitors with a good quality: the current density <7 × 10−10 A/cm2 at 1 V (0.7 MV/cm, 15 nm thick Ta2O5). W deposition is not accompanied by an introduction of a detectable damage leading to a change of the properties of the initial as-grown Ta2O5 as in the case of TiN electrode. Damage introduced during TiN sputtering is responsible for current deterioration (high leakage current) and poor breakdown characteristics. It is concluded that the sputtered W top electrode is a good candidate as a top electrode of storage capacitors in dynamic random access memories giving a stable contact with Ta2O5, but sputtering technique is less suitable (favorable) for deposition of TiN as a metal electrode due to the introduction of radiation defects causing both deterioration of leakage current and poor breakdown characteristics.  相似文献   

15.
UV-assisted annealing processes for thin oxide films is an alternative to conventional thermal annealing and has shown many advantages such as low annealing temperature, reducing annealing time and easy to control. We report in this work the deposition of ultra-thin HfO2 films on silicon substrate by two CVD techniques, namely thermal CVD and photo-induced CVD using 222 nm excimer lamps at 400 °C. As-deposited films of around 10 nm in thickness with refractive indices from 1.72 to 1.80 were grown. The deposition rate measured by ellipsometry was found to be about 2 nm/min by UV-CVD, while the deposition rate by thermal CVD is 20% less than that by UV-CVD. XRD showed that the as-deposited HfO2 films were amorphous. This work focuses on the effect of post deposition UV annealing in oxygen on the structural, optical and electrical properties of the HfO2 films at low temperature (400 °C). Investigation of the interfacial layer by FTIR revealed that thickness of the interfacial SiO2 layer slightly increases with the UV-annealing time and UV annealing can convert sub-oxides at the interface into stoichiometric SiO2, leading to improved interfacial qualities. The permittivity ranges in 8–16, are lower than theoretical values. However, the post deposition UV O2 annealing results in an improvement in effective breakdown field and calculated permittivity, and a reduction in leakage current density for the HfO2 films.  相似文献   

16.
Al/Y2O3/n-Si/Al capacitors were irradiated by using a 60Co gamma ray source and a maximum dose up to 8.4 kGy. The effect of an annealing treatment performed at 600 or 900 °C on the yttrium oxide (Y2O3) films was investigated by XRD and Raman spectroscopy. High-frequency capacitance-voltage (C-V) and conductance-voltage (G-V) measurements as well as quasi-static measurements of the MOS structures were analysed. The annealing improves the crystalline state of the Y2O3 thin film material and decreases the values of the flat-band voltage and of the interface trap level density indicating an improvement of the electrical properties of the interface thin film-substrate. But at this interface, the formation of an yttrium-silicate layer was also evidenced. After gamma irradiation, the values of the flat-band voltage and of the interface trap level density related to the Al/Y2O3/n-Si/Al structure increase and especially for the structure made with the materials annealed at 900 °C for 1 h. In that case, the structure is very sensitive to a gamma irradiation dose up to 8.4 kGy.  相似文献   

17.
The paper presents results of the effect of microwave irradiation at room temperature on the properties of thin layers of tantalum pentoxide deposited on Si by rf sputtering. Electrical characterization is performed in conjunction with Auger electron spectroscopy and atomic force microscopy. Among exposure times used (1; 5; 10 s), treatment of about 5 s shows the best promise as an annealing step––an improvement of number of parameters of the system Ta2O5–Si is established (dielectric constant and surface morphology; stoichiometry and microstructure of both the bulk oxide and the interfacial transition region; electrical characteristics in terms of oxide charge density, leakage current and breakdown fields). At the same time the microwave irradiation is not accompanied by crystalization effects in Ta2O5 and/or additional oxidation of Si substrate. It is concluded that the short-time microwave irradiation can be used as an annealing process for Ta2O5–Si microstructures and it has a potential to replace the high-temperature annealing processes for high-k insulators.  相似文献   

18.
In this study, high-pressure oxygen (O2 and O2 + UV light) technologies were employed to effectively improve the properties of low-temperature-deposited metal oxide dielectric films and interfacial layer. In this work, 13 nm HfO2 thin films were deposited by sputtering method at room temperature. Then, the oxygen treatments with a high-pressure of 1500 psi at 150 °C were performed to replace the conventional high temperature annealing. According to the XPS analyses, integration area of the absorption peaks of O-Hf and O-Hf-Si bonding energies apparently raise and the quantity of oxygen in deposited thin films also increases from XPS measurement. In addition, the leakage current density of standard HfO2 film after O2 and O2 + UV light treatments can be improved from 3.12 × 10−6 A/cm2 to 6.27 × 10−7 and 1.3 × 10−8 A/cm2 at |Vg| = 3 V. The proposed low-temperature and high pressure O2 or O2 + UV light treatment for improving high-k dielectric films is applicable for the future flexible electronics.  相似文献   

19.
In this study, the structural and electrical properties of amorphous and crystalline Ta2O5 thin films deposited on p-type Si by low pressure metalorganic chemical vapour deposition from a Ta(OC2H5)5 source have been investigated. The as-deposited layers are amorphous, whereas crystalline Ta2O5 (hexagonal phase) was obtained after post-deposition O2-annealing at 800°C. Physico-chemical analysis of our layers shows that the O2-treatment leads to the growth of a thin (1 nm) interfacial SiO2 layer between Ta2O5 and Si but, contrary to other studies, was not sufficient to reduce the level of carbon and hydrogen contaminants. Crystalline Ta2O5 shows better leakage current properties than amorphous Ta2O5. The conduction mechanism in amorphous Ta2O5 is clearly attributed to the Poole–Frenkel effect with a barrier height separating the traps from the conduction band of 0.8 eV. For crystalline Ta2O5, the situation remains unclear since no simple law can be invoked due to the presence of the SiO2 interlayer: a double conduction process based on a tunnelling effect in SiO2 followed by a trap-modulated mechanism in Ta2O5 may be invoked. From capacitance–voltage measurements, the permittivity was found to be 25 for amorphous samples, but values ranging from 56 to 59 were found for crystalline layers, suggesting a high anisotropic character.  相似文献   

20.
Two kinds of Zr-rich Zr-aluminate films for high-κ gate dielectric applications with the nominal composition of (ZrO2)0.8(Al2O3)0.2 and (ZrO2)0.9(Al2O3)0.1, were deposited on n-type silicon wafer by pulsed laser deposition (PLD) technique at different deposition conditions. X-ray diffraction (XRD) reveals that the (ZrO2)0.8(Al2O3)0.2 film could remain amorphous after being rapid thermal annealed (RTA) at the temperature above 800 °C, while the other one displays some crystalline peaks at 700 °C. The energy gap calculated from optical transmittance spectrum of (ZrO2)0.8(Al2O3)0.2 film on quartz is about 6.0 eV. Sputtering depth profile of X-ray photoelectron spectroscopy and Auger electron spectroscopy indicate that a Zr-Si-O interfacial layer was formed at the near surface of the silicon substrate. The dielectric constant of the (ZrO2)0.8(Al2 O3)0.2 film has been determined to be 22.1 by measuring a Pt/(ZrO2)0.8(Al2 O3)0.2/Pt MIM structure. An EOT of 1.76 nm with a leakage current density of 51.5 mA/cm2 at 1 V gate voltage for the film deposited in N2 were obtained. Two different pre-treatments of Si substrates prior to depositions were also carried out and compared. The results indicate that a surface-nitrided Si substrate can lead to a lower leakage current density. The amorphous Zr-rich Zr-aluminate films fabricated by PLD have promising structure and dielectric properties required for a candidate material for high-κ gate dielectric applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号