首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 672 毫秒
1.
采用射频等离子体增强化学气相沉积(RF-PECVD),以Fe作为催化剂,在Si基片上生长了碳纳米管(CNT),采用扫描电子显微镜(SEM),高分辨透射电子显微镜(HR TEM)以及显微Raman光谱等对制备的CNT的形貌及结构进行了表征.结果表明:700℃和800℃温度下生长的CNT均取向无序、弯曲缠结,由整齐排列的圆...  相似文献   

2.
采用射频等离子体增强化学气相沉积法(RF-PECVD),以Ni/MgO为催化剂,在Si基片上生长了碳纳米管,采用X射线衍射(XRD)、扫描电镜(SEM)、Raman光谱以及高分辨透射电镜(HRTEM)等对不同的MgO含量下制备的碳纳米管形貌及结构进行了表征。结果表明,随着MgO含量的增加,从碳纳米洋葱转化为碳纳米管,其直径逐渐变小、均匀,碳纳米管纯度提高,结晶性能越好;碳纳米管顶端形成开口或闭口的碳洋葱纳米结构,而管的主干区域则存在催化剂,并且随着MgO含量的增加,呈现纳米颗粒转化为纳米线的趋势;MgO含量为50%时,部分碳纳米管的外壁剥离,形成了单原子石墨层,长度达到7nm,并在碳纳米管内部填充了Ni纳米线,其长度有60nm。  相似文献   

3.
钯膜上CVD法制备碳纳米管薄膜的研究   总被引:1,自引:0,他引:1  
采用化学气相沉积法,以乙炔为碳源,在各种钯膜上制备了碳纳米管薄膜。通过电子显微镜观察了碳管薄膜和钯膜的表面形貌。结果表明,在真空气氛下磁控溅射的钯膜上无法生长碳纳米管。对溅射的钯膜进行大气气氛下的退火处理,则可生长出稀疏的碳纳米管团聚颗粒。采用在氧气气氛下磁控溅射的钯膜作为催化剂,则可显著提高碳管的生长密度和纯度,从而获得致密均匀的碳纳米管薄膜。  相似文献   

4.
For carbon nanotubes (CNTs) to be exploited in electronic applications, the growth of high quality material on conductive substrates at low temperatures (<450 °C) is required. CNT quality is known to be strongly degraded when growth is conducted on metallic surfaces, particularly at low temperatures using conventional chemical vapor deposition (CVD). Here, the production of high quality vertically‐aligned CNTs at low substrate temperatures (350–440 °C) on conductive TiN thin film using photo‐thermal CVD is demonstrated by confining the energy required for growth to just the catalyst using an array of optical lamps and by optimizing the thickness of the TiN under‐layer. The thickness of the TiN plays a crucial role in determining various properties including diameter, material quality, number of shells, and metallicity. The highest structural quality with a visible Raman D‐ to G‐band intensity ratio as low as 0.13 is achieved for 100 nm TiN thickness grown at 420 °C; a record low value for low temperature CVD grown CNTs. Electrical measurements of high density CNT arrays show the resistivity to be 1.25 × 10‐2 Ω cm representing some of the lowest values reported. Finally, broader aspects of using this approach as a scalable technology for carbon nanomaterial production are also discussed.  相似文献   

5.
碳纳米管的生长通常使用Fe,Co,Ni作为催化剂,除此以外的一些过渡元素也能催化裂解生长碳管。其中用铜制备的碳管阈值电场低、发射电流密度大、发射均匀性好等等良好的场发射特性。铜与硅、或金属之间具有很强的的扩散特性,而碳管应用于场发射显示器必然使用玻璃、硅片作为衬底,所以需要一层缓冲层阻挡催化剂铜扩散入衬底。本文使用磁控溅射制备铜薄膜作为催化剂,化学气相沉积方法裂解乙炔生长碳管薄膜形成场发射阴极。并试验W,Ni,Cr和Ti作为铜薄膜的缓冲层,结果表明不同的金属阻挡特性不同,生长后碳管的形貌和特性都有差异。结果表明Ti和W能很好地阻挡铜的扩散,从而使铜催化裂解出附着性好、分布均匀、密度适中、场发射特性良好的碳管薄膜。对于Ni和Cr金属,由于生长的碳管与衬底结合差或者场发射能力差而不适合作铜的缓冲层。  相似文献   

6.
A single‐step, room‐temperature, and scalable electrophoretic deposition process is reported to form nanocomposites on any electrically conductive surface with metal nanoparticle decorated carbon nanotubes (CNTs). The contact angles (CAs) can be easily tuned from ≈60° to 168° by varying the deposition voltage, while hydrophobicity and superhydrophobicity surprisingly arise from the hydrophilic CNTs being deposited. The relatively high voltage tends to vertically align CNTs during deposition, leading to architectural micro/nanoscale roughness on the surface. The combination of the multiscale roughness along with the low surface energy of hydrocarbon functional groups on the CNT surface has enabled facile wettability control, including the Petal and Lotus effects. Further, the relatively vertical orientation of the CNTs, without any coating, allows for current and heat transfer along their axis with superior conductivity. Similar behavior in terms of CA control is seen for all three divalent metal ions in the deposition solution (i.e., Cu2+, Ni2+, and Zn2+) that are used to charge the CNTs while eventually getting co‐deposited. This implies that this method could possibly be extended to other metals by selecting appropriate charging salt. A patterning technique is also demonstrated for facile fabrication of superhydrophobic CNT‐metal islands surrounded by hydrophilic CNT coating.  相似文献   

7.
We report on the selective-area metalorganic chemical vapor deposition of GaN stripes in the size range of 50 to 125 urn and the characterization of the morphology, topography, and optical properties of these stripes. GaN films (∼1–3 μm) grown on (0001) sapphire are used as the substrates. Excellent surface morphology is achieved under optimized growth conditions which include a higher V/III ratio than broad area growth. It is found that, under certain growth conditions, (0001) terraces of ~5 μm in width develop at the edges of all stripes, independent of stripe size and orientation. The selectively grown GaN yields stronger band-edge emission than the “substrate” GaN which indicates an improvement in optical quality. However, the donor-acceptor pair recombination (or conduction band to acceptor transition) and yellow emission are also enhanced in certain areas of the stripes. The spatial correlation of these emission bands is established by cathodoluminescence wavelength imaging, and the origin of these emissions is speculated.  相似文献   

8.
We have grown epitaxial Si films by the photo-chemical vapor deposition (photo-CVD) technique with SiH4 and H2 at a very low-temperature of 160°C. Epitaxial films were grown on silicon substrates, while amorphous-like films were deposited on glass substrates. Furthermore, it was found from the atomic hydrogen etching which was produced by photo-dissociation of hydrogen that the etching rate of amorphous silicon was much higher than that of crystal silicon. By using these selectively, we have demonstrated selective epitaxial growth of silicon by the photo-CVD technique followed by the atomic hydrogen photo-etching. Furthermore, heavily phosphorus-doped silicon films (>1 × 1021 cm1−3) were also selectively grown by this novel technique.  相似文献   

9.
We report on AlAs/GaxJn1−xAs (x = 0.47) quantum well heterostructures grown by metalorganic chemical vapor deposition (MOCVD) on InP substrates. Heterostructure quality was evaluated by high resolution x-ray diffraction for various growth conditions. Double barrier quantum well heterostructures were grown and processed into resonant tunneling diodes (RTDs). Room temperature electrical measurements of the RTDs yielded maximum peak to valley current ratios of 7.7 with peak current density of 96 kA/cm2 and 11.3 with peak current density of 12 kA/cm2, for devices grown by atmospheric and low pressure MOCVD, respectively.  相似文献   

10.
石墨衬底先分别浸泡于0.1~1mol/L不同浓度的硝酸铁溶液后,采用低压化学气相沉积法于700℃在石墨衬底上生长碳纳米管薄膜。根据扫描电子显微镜照片及拉曼光谱分析碳纳米管的形貌和构成。碳纳米管的场发射性能的研究采用标准电流-电压测试。浸泡于0.6mol/L硝酸铁溶液的石墨片上所生长的碳纳米管的场发射性能最佳。  相似文献   

11.
A procedure for producing arrays of self-aligned carbon nanotubes (CNTs) using standard chemical vapor deposition (CVD) is reported. Using UV photolithography, silicon substrates are patterned with a thin layer of thermally evaporated iron as a CNT catalyst. The CVD synthesis was carried out over a small temperature range (700°C–800°C) using acetylene and methane gasses, producing aligned CNT towers. Scanning electron microscopy (SEM) analysis shows a relationship between CNT tower height and synthesis time. Additionally, results show that impurity particles dramatically effect CNT tower growth. These results indicate that aligned CNTs can be produced in a desired pattern with height control.  相似文献   

12.
采用流化床反应器的ACCVD法制备单壁碳纳米管   总被引:1,自引:1,他引:0  
采用流化床反应器,利用MgO作为催化剂载体,通过乙醇为碳源的化学气相沉积(ACCVD)法合成了单壁碳纳米管(SWCNTs)。该方法是让Ar气流直接携带乙醇蒸汽进入反应器,用流化床反应器代替石英舟,使乙醇蒸汽与催化剂混合更加均匀,有利于SWCNTs的生成。采用MgO催化剂载体,易于用浓HCl对产物进行提纯。拉曼光谱和透射电镜(TEM)分析结果表明,通过该方法合成的SWCNTs具有无定型碳含量少、管径均匀等特点。  相似文献   

13.
Carbon nanotubes/nanofibers (CNTs) used as emitters, diode-type field emission display (FED) prototypes of dot matrix and character images were fabricated by low-cost techniques and equipments, respectively. The technical development in the design and fabrication of the cathode, the anode, and the panel, is described. CNTs were produced by a simple, low-cost and easily-controllable thermal chemical vapor deposition. The cathode was prepared by the screen-printing method. The field emission characteristics were enhanced by a heat post-treatment in H2 gas atmosphere. The panel structure was packaged by a vacuum fluorescent display-like process and vacuum-sealed through an exhaust glass tube. The fully-sealed CNTs FED (c-FED) showed good emission properties. The brightness of 600 cd/m2 was achieved from the yellow phosphor at a relatively low applied electric field. The developed technology has a potential practical application in c-FED.  相似文献   

14.
Continuous biaxially textured CdTe films were grown on biaxial CaF2 buffer layers. The CaF2 nanorods were grown by oblique angle vapor deposition and possessed a {111} 〈121〉 biaxial texture. The CdTe film was deposited by metal organic chemical vapor deposition (MOCVD). Film morphology and the CdTe/CaF2 interface were studied by scanning electron microscopy and transmission electron microscopy. Characterization showed that small CdTe grains formed initially from the CaF2 surfaces. These small grains then merged into large columnar grains during growth. Analysis revealed that the crystalline orientation of the CdTe film followed the biaxial texture of the CaF2 nanorods.  相似文献   

15.
本文报道了金辅助生长纯闪锌矿结构GaAs纳米线,它采用金属有机化学气相沉淀技术运用气-液-固生长机制在GaAs(111)B衬底上生长而形成。实验结果显示GaAs纳米线具有圆柱状的均匀形貌,并且生长速率与直径无关。透射电子显微镜研究显示,GaAs纳米线是无缺陷的纯闪锌矿结构的晶体。实验结果表明Au-Ga合金在纳米线生长过程中是作为热解催化剂而不是扩散原子的收集器,较大的催化剂直径以及催化剂液滴中高的过饱和度是得到等高生长的纯闪锌矿结构GaAs纳米线的原因。  相似文献   

16.
Pure zinc blende GaAs nanowires were grown by metal organic chemical vapor deposition on GaAs (111) B substrates via Au catalyzed vapor-liquid-solid mechanism. We found that the grown nanowires are rod-like in shape and have a pure zinc blende structure; moreover, the growth rate is independent on its diameters. It can be concluded that, direct impingement of vapor species onto the Au-Ga droplets contributes to the growth of the nanowire; in contrast, the adatom diffusion makes little contribution. The results indicate that the droplet acts as a catalyst rather than an adatom collector, larger diameter and high supersatuation in the droplet leads to the pure zinc blende structure of the nanowire.  相似文献   

17.
Vertically aligned carbon nanotubes (CNTs) with controllable length and diameter fabricated by microwave plasma enhanced chemical vapor deposition (MPECVD) are of continuing interest for various applications. This paper describes the role of process gas composition as well as the pre‐coating catalytic layer characteristics. It is observed that nucleation of CNTs was significantly enhanced by adding nitrogen in the MPECVD process, which also promoted formation of bamboo‐like structures. The very first key step toward growth of aligned CNTs was the formation of high‐density fine carbon onion encapsulated metal (COEM) particles under a hydrogen plasma. Direct microscopic investigation of their structural evolution during the very early stages revealed that elongation, necking, and splitting of the COEM particles occurred accompanying the growth of CNTs, such that one of the split portions rode on the top of the growing tube while the remaining one resided on the root. Our results suggest that CNTs grow via the “tip‐growth” as well as “root‐growth” mechanisms.  相似文献   

18.
分别采用射频磁控溅射、热壁化学气相沉积(CVD)、电泳沉积法制备GaN薄膜。利用扫描电镜(SEM)、荧光光谱仪对样品进行结构、形貌和发光特性的分析比较。射频磁控溅射方法中,把SiC中间层沉淀到Si衬底上,目的是为了缓冲由GaN外延层和Si衬底的晶格失配造成的应力。结果证实了SiC中间层提高了GaN薄膜的质量。热壁化学气相沉积法制备GaN晶体膜时,选择H2作反应气体兼载体,有利于GaN膜的形成。电泳沉积法显示所得样品为六方纤锌矿结构的GaN多晶薄膜。结果表明:溅射法制备的GaN薄膜结晶效果好;CVD法制备时GaN薄膜应用范围广;电泳沉积法操作方便、简单易行。  相似文献   

19.
We demonstrate epitaxially grown high-quality pure germanium (Ge) on bulk silicon (Si) substrates by ultra-high-vacuum chemical vapor deposition (UHVCVD) without involving growth of thick relaxed SiGe buffer layers. The Ge layer is grown on thin compressively strained SiGe layers with rapidly varying Ge mole fraction on Si substrates resulting in several SiGe interfaces between the Si substrate and the pure Ge layer at the surface. The presence of such interfaces between the Si substrate and the Ge layer results in blocking threading dislocation defects, leading to a defect-free pure Ge epitaxial layer on the top. Results from various material characterization techniques on these grown films are shown. In addition, capacitance-voltage (CV) measurements of metal-oxide-semiconductor (MOS) capacitors fabricated on this structure are also presented, showing that the grown structure is ideal for high-mobility metal-oxide-semiconductor field-effect transistor applications.  相似文献   

20.
We investigated the electrical and structural qualities of Mg-doped p-type GaN layers grown under different growth conditions by metalorganic chemical vapor deposition (MOCVD). Lower 300 K free-hole concentrations and rough surfaces were observed by reducing the growth temperature from 1,040°C to 930°C. The hole concentration, mobility, and electrical resistivity were improved slightly for Mg-doped GaN layers grown at 930°C with a lower growth rate, and also an improved surface morphology was observed. In0.25Ga0.75N/GaN multiple-quantum-well light emitting diodes (LEDs) with p-GaN layers grown under different conditions were also studied. It was found from photoluminescence studies that the optical and structural properties of the multiple quantum wells in the LED structure were improved by reducing the growth temperature of the p-layer due to a reduced detrimental thermal annealing effect of the active region during the GaN:Mg p-layer growth. No significant difference in the photoluminescence intensity depending on the growth time of the p-GaN layer was observed. However, it was also found that the electroluminescence (EL) intensity was higher for LEDs having p-GaN layers with a lower growth rate. Further improvement of the p-GaN layer crystalline and structural quality may be required for the optimization of the EL properties of long-wavelength (∼540 nm) green LEDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号