首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
王照钢  陈诚  任俊彦  许俊 《微电子学》2004,34(3):306-309
介绍了一个低电压高精度的高速采样/保持电路。该电路的电源电压为1.8V,在125MHz频率时钟采样时,可达到10位以上的精度;采用栅源电压恒定的栅压自举开关,极大地减小了采样的非线性失真,同时,有效地抑制了输入信号的直流偏移;高性能增益自举的折叠式级联运算放大器减小了有限增益和不完全建立带来的误差。整个电路以0.18μm CMOS工艺库验证,功耗仅为11.2mW。  相似文献   

2.
一种100 MHz采样频率CMOS采样/保持电路   总被引:5,自引:2,他引:3  
谭珺  唐长文  闵昊 《微电子学》2006,36(1):90-93
设计了一种高速采样保持电路。该电路采用套筒级联增益自举运算放大器,可在达到高增益高带宽的同时最大程度地减小功耗;优化了采样开关,获得了良好的线性度,减少了输出误差;电路的采样频率达到100 MHz。采用Charter半导体公司的0.35μm标准CMOS工艺库,对整体电路和分块电路进行了性能分析和仿真。  相似文献   

3.
给出了一种基于开关电容(SC)电路的10位80 MHz采样频率低功耗采样保持电路。它是为一个10位80 MS/s流水线结构A/D转换器的前端采样模块设计的。在TSMC 0.25μmCMOS工艺,2.5 V电源电压下,该电路的采样频率为80 MHz;在奈奎斯特频率采样时,无杂散动态范围(SFDR)为75.4 dB,SNDR为71.8 dB,ENOB为11.6,输入信号范围可达160 MHz(两倍采样频率),此时SFDR仍大于70 dB。该电路功耗为16.8 mW。  相似文献   

4.
给出了一种基于BiCMOS OTA的高速采样/保持电路。设计采用0.35μm BiCMOS工艺,利用Cadence Spectre进行仿真。当输入信号为242.1875 MHz正弦波,采样速率为500 MSPS时,该采样/保持电路的SFDR达到59 dB,各项指标均能达到8位精度。在3.3 V电源电压下的功耗为26 mW。该采样/保持电路已应用到高速8位A/D转换器的研制中,取得了很好的效果。  相似文献   

5.
尹文婧  叶凡  许俊  李联 《微电子学》2006,36(6):789-793
设计了一种可用于欠采样情况的高精度、低功耗采样/保持电路。在40 MHz时钟频率下,采样90 MHz输入信号时可达11位以上精度。采用电容翻转结构的采样/保持电路,以消除电容失配的影响;使用栅压自举开关,以提高线性度,实现欠采样输入;并设计了一种高增益、大带宽、低功耗的增益自举套筒式共源共栅(telescopic cascode)运算放大器。电路采用SMIC 0.35μmCMOS工艺实现,电源电压为3.3 V,功耗仅为7.6 mW。  相似文献   

6.
介绍了一种采用0.35μm BiCMOS工艺的双路双差分采样保持电路。该电路分辨率为8位,采样率达到250 MSPS。该电路新颖的特点为利用交替工作方式,降低了电路对速度的要求。经过电路模拟仿真,在250 MSPS,输入信号为Vp-p=1 V,电源电压3.3 V时,信噪比(SNR)为55.8 dB,积分线性误差(INL)和微分线性误差(DNL)均小于8位A/D转换器的±0.2 LSB,电源电流为28 mA。样品测试结果:SNR为47.6 dB,INL、DNL小于8位A/D转换器的±0.8 LSB。  相似文献   

7.
设计了一种高性能采样/保持(S/H)电路,采用全差分电容翻转型的主体结构,有效减小了噪声和功耗.在电路设计中,采用栅压自举开关,极大地减小了非线性失真,同时,有效地抑制了输入信号的直流偏移.采样/保持放大器电路采用折叠共源共栅结构,由于深亚微米工艺中器件本征增益减小,S/H电路为达到更高增益,采用增益提升技术.设计的采样/保持电路采用0.18μm1P5M工艺实现,在1.8V电源电压、125 MHz采样速率下,输出差动摆幅达到2 V(VP-P),输入信号到奈奎斯特频率时仍能达到98 dB以上的无杂散动态范围(SFDR),其性能满足14位精度、125MHz转换速率的流水线ADC要求.  相似文献   

8.
设计了一种用于流水线型A/D转换器的10位160 MS/s CMOS采样保持器.电路采用电容翻转式结构,以及运用增益提高技术(gain-boosting)的折叠式共源共栅放大器,以满足高速、高精度的要求;优化采样电容和运算放大器指标,以保证噪声容限和线性指标;优化辅助运放,从而保证运放的稳定性.HSPICE仿真结果表明,在78.83 MHz输入信号、160.34 MHz工作频率下,输出信号的无杂散动态范围为77.3 dB.  相似文献   

9.
一种高性能CMOS采样/保持电路   总被引:1,自引:0,他引:1  
罗阳  杨华中 《微电子学》2005,35(6):658-661
介绍了一种高性能CMOS采样/保持电路.该电路在3 V电源电压下,60 MHz采样频率时,输入直到奈奎斯特频率仍能够达到90 dB的最大信号谐波比(SFDR)和80 dB的信噪比(SNR).电路采用全差分结构、底板采样、开关栅电压自举(bootstrap)和高性能的增益自举运算放大器.采用0.18 μm CMOS工艺库,对电路进行了Hspice仿真验证.结果表明,整个电路消耗静态电流5.8 mA.  相似文献   

10.
一种用于流水线ADC采样保持电路的设计   总被引:1,自引:0,他引:1       下载免费PDF全文
李锋  黄世震  林伟 《电子器件》2010,33(2):170-173
介绍一种用于流水线ADC的采样保持电路。该电路选取电容翻转式电路结构,不仅提高整体的转换速度,而且减少因电容匹配引起的失真误差;同时使用栅压自举采样开关,有效地减少了时钟馈通和电荷注入效应;采用全差分运算放大器能有效的抑制噪声并提高整体的线性度。该采样保持电路的设计是在0.5μm CMOS工艺下实现,电源电压为5 V,采样频率为10 MHz,输入信号频率为1 MHz时,输出信号无杂散动态范围(SFDR)为73.4 dB,功耗约为20 mW。  相似文献   

11.
杨斌  殷秀梅  杨华中 《半导体学报》2007,28(10):1642-1646
介绍了一种用于12bit,100MS/s流水线模数转换器前端的采样/保持电路的设计.该电路在3V电源电压100MHz采样频率时,输入直到奈奎斯特频率仍能够达到108dB的无杂散动态范围(SFDR)和77dB的信躁比(SNR).论文建立了考虑开关之后的采样保持电路的分析模型,并详细研究了电路中开关组合对电路性能的影响,同时发现了传统的栅源自举开关(bootstrapped switch)中存在的漏电现象并对其进行了改进,极大地减小了漏电并提高了电路的线性性能.  相似文献   

12.
一种高速高精度采样/保持电路   总被引:1,自引:0,他引:1  
杨斌  殷秀梅  杨华中 《半导体学报》2007,28(10):1642-1646
介绍了一种用于12bit,100MS/s流水线模数转换器前端的采样/保持电路的设计.该电路在3V电源电压100MHz采样频率时,输入直到奈奎斯特频率仍能够达到108dB的无杂散动态范围(SFDR)和77dB的信躁比(SNR).论文建立了考虑开关之后的采样保持电路的分析模型,并详细研究了电路中开关组合对电路性能的影响,同时发现了传统的栅源自举开关(bootstrapped switch)中存在的漏电现象并对其进行了改进,极大地减小了漏电并提高了电路的线性性能.  相似文献   

13.
设计了一个用于SAR结构的模数转换器的采样保持电路,采用5V供电具有14bit的采样精度和4MHz的采样频率。利用两个buffer的缓冲作用,降低了由于运放的输入电容产生的误差;并通过放大器反馈减弱了与输入信号相关的电荷注入的影响。  相似文献   

14.
吴剑龙  于映 《现代电子技术》2007,30(19):165-167,171
介绍了一种高性能的采样保持电路。他采用双采样结构,使得在同样性能的运算放大器条件下,采样速率成倍提高,降低对运放的要求;使用补偿技术的两级运算放大器有较高增益和输出摆幅;采用栅压自举电路,消除开关导通电阻的非线性,减小电荷注入效应和时钟溃通。在SMIC 0.25μm标准工艺库下仿真,该采样保持电路可试用于高速高精度流水线ADC。  相似文献   

15.
低电压低功耗CMOS采样保持电路   总被引:2,自引:0,他引:2       下载免费PDF全文
郑晓燕  王江  仇玉林   《电子器件》2006,29(2):318-321
设计了一个用于流水线型模数转换器的低压采样保持电路。为降低采保电路中运放的功耗,本文采用了增益补偿的采样保持电路结构,从而用简单的低增益运放达到高精度的效果。并从运放输出建立时间的角度对其输入电流进行优化。为了提高精度,降低采样开关的电阻并减小非线性误差,设计了信号相关自举电压控制的开关。仿真结果表明在1.8V的电源电压下,达到10bit的精度和50Mbit的采样率,整个采保电路的功耗仅为2.3mW。  相似文献   

16.
采用每级1.5 bit和每级2.5 bit相结合的方法设计了一种10位50 MHz流水线模数转换器。通过采用自举开关和增益自举技术的折叠式共源共栅运算放大器,保证了采样保持电路和级电路的性能。该电路采用华润上华(CSMC)0.5μm 5 V CMOS工艺进行版图设计和流片验证,芯片面积为5.5 mm2。测试结果表明:该模数转换器在采样频率为50 MHz,输入信号频率为30 kHz时,信号加谐波失真比(SNDR)为56.5 dB,无杂散动态范围(SFDR)为73.9 dB。输入频率为20 MHz时,信号加谐波失真比为52.1 dB,无杂散动态范围为65.7 dB。  相似文献   

17.
This paper presents design of a low-power 100 MHz analog FIR filter for PRML equalization used in the read channel of hard disk drives. The chip consists of 16 channels to provide 15-tap FIR filter operation. By using rotating clocks for sample/hold operation with one dummy channel, timing constraints can be relieved, which results in low-power consumption. The chip incorporates the parallel array of sample-and-hold amplifiers for analog delay line. The sample-and-hold amplifier includes the open-loop unity-gain amplifier with gain-control circuit using replica-biasing scheme, which also improves uniformity among amplifiers. It was fabricated in a 0.8-m CMOS technology and consumes power of 200 mW for V power supply voltage.  相似文献   

18.
闫杰  王百鸣 《微电子学》2006,36(3):334-336
通过理论分析和实验仿真,提出了一种流水型高速采样保持器电路(S/H)。采用4个采样率为10 MSPS的S/H,构成一个流水型电路结构的S/H,采样率达到40 MSPS。文章提出的电路结构,在一定程度上解决了采样速率与精度的矛盾关系,可以在组合S/H精度等同于单个S/H精度的前提下,将组合S/H采样速率提高到单个S/H的数倍。  相似文献   

19.
Wide frequency bandwidth has been internationally allocated for unlicensed operation around the oxygen absorption frequency at 60 GHz. A power amplifier and a low noise amplifier are presented as building blocks for a T/R-unit at this frequency. The fabrication technology was a commercially available 0.15 m gallium arsenide (GaAs) process featuring pseudomorphic high electron mobility transistors (PHEMT). Using on-wafer tests, we measured a gain of 13.4 dB and a +17 dBm output compression point for the power amplifier at 60 GHz centre frequency when the MMIC was biased to 3 volts Vdd. At the same frequency, the low noise amplifier exhibited 24 dB of gain with a 3.5 dB noise figure. The AM/AM and AM/PM characteristics of the power amplifier chip were obtained from the large-signal S-parameter measurement data. Furthermore, the power amplifier was assembled in a split block package, which had a WR-15 waveguide interface in input and output. The measured results show a 12.5 dB small-signal gain and better than 8 dB return losses in input and output for the packaged power amplifier.Mikko Kärkkäinen received the M.Sc. degree in electrical engineering from the Helsinki University of Technology, Espoo, Finland, in 2000, and is currently working toward the Ph.D. degree at the Electronic Circuit Design Laboratory, Helsinki University of Technology. He is interested in millimetre wave circuit design.Mikko Varonen received the M.Sc. degree in electrical engineering from the Helsinki University of Technology, Espoo, Finland, in 2002. He is currently working toward the Ph.D. degree in electrical engineering at the Electronic Circuit Design Laboratory, Helsinki University of Technology. His research interests involve millimetre-wave integrated circuits.Pekka Kangaslahti received the M.Sc. and Ph.D. degrees in electrical engineering from the Helsinki University of Technology, Finland, in 1992 and 1999, respectively. Since 1999 he has been a visiting scientist at the NASA Jet Propulsion Laboratory, Pasadena, USA. His research interests include nonlinear microwave and millimetre wave monolithic circuits, especially for signal generation in telecommunication and radar applications.Kari A. I. Halonen was born in Helsinki, Finland, on May 23, 1958. He received the M.Sc. degree in electrical engineering from Helsinki University of Technology, Finland, in 1982, and the Ph.D. degree in electrical engineering from the Katholieke Universiteit Leuven, in Heverlee, Belgium, in 1987.From 1982 to 1984 he was employed as assistant at Helsinki University of Technology and as research assistant at the Technical Research Center of Finland. From 1984 to 1987 he was a research assistant at the E.S.A.T. Laboratory of the Katholieke Universiteit Leuven, enjoying also a temporary grant of the Academy of Finland. Since 1988 he has been with the Electronic Circuit Design Laboratory, Helsinki University of Technology, as senior assistant (1988–1990), and the director of the Integrated Circuit Design Unit of the Microelectronics Center (1990–1993). He was on leave of absence the academic year 1992–93, acting as R&D manager in Fincitec Inc., Finland. From 1993 to 1996 he has been an associate professor, and since 1997 a full professor at the Faculty of Electrical Engineering and Telecommunications, Helsinki University of Technology. He became the Head of Electronic Circuit Design Laboratory year 1998. From 1997 to 1999 he was an associate editor of IEEE Transactions on Circuits and Systems I. He has been a guest editor for IEEE Journal of Solid-State Circuits and the Technical Program Committee Chairman for European Solid-State Circuits Conference year 2000. He has been awarded the Beatrice Winner Award in ISSCC02 Conference year 2002.  相似文献   

20.
二重结构30 MSPS采样/保持电路的研究与探讨   总被引:2,自引:2,他引:0  
闫杰  王百鸣 《微电子学》2005,35(6):565-567
通过理论分析和实验仿真,对同相型采样/保持器(S/H)进行扩展改进,提出了三种高速的二重结构S/H电路,采样速率高达30 MSPS。实验表明,在维持采样高速率的前提下,这三种电路在一定程度上解决了截止开关电流泄漏的问题,从而降低了保持电容上的电压跌落率。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号