首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
GVHD is prevented and stable chimerism is induced in the rat BMT model by 700 J/m2 but not 100-500 J/m2 UV-B irradiation of allogeneic BM cells. Paradoxically, CsA which prevents GVHD in clinical BMT causes an aggressive autoimmune disease termed syngeneic GVHD in irradiated syngeneic BMT recipients after its withdrawal. Recently, we have shown that while 500-700 J/m2 UV-B irradiation of syngeneic BM cells combined with a 30-day course of CsA recipient immunosuppression impairs hemopoiesis due to lack of hemopoietic factors, a low dose of 100-300 J/m2 UV-B is effective in preventing CsA-induced autoimmune disease without endangering BM engraftment. This study extends these findings to the P-to-F1 hybrid and fully allogeneic rat BMT models and examines the effectiveness of low-dose UV-B irradiation of BM cells combined with a short course of CsA treatment in the prevention of GVHD and induction of transplant tolerance. Lethally gamma-irradiated (10.5 Gy) LBNF1 recipients of naive or UV-B irradiated (100-700 J/m2) BMT were treated with CsA (12.5 mg/kg/day) for 30 consecutive days after BMT. All lethally irradiated LBNF1 that did not receive BMT died in < 16 days, while animals transplanted with UV-B (700 J/m2) BMT survived > 1 year without GVHD. In contrast, all recipients of naive BMT died of lethal GVHD in < 50 days. Similarly, all recipients of naive BMT that received a 30-day course of CsA therapy developed severe GVHD with 60% mortality after cessation of CsA therapy. CsA-treated recipients of BMT irradiated with 700 J/m2 died between 12 and 25 days from failure of hemopoiesis. In contrast, CsA-treated recipients of 100-200 J/m2 UV-B irradiated BMT showed full BM engraftment without GVHD after cessation of CsA and survived > 1 year. These results were reproducible in the fully allogeneic UV-B BMT model. To test for donor-specific tolerance, the animals challenged 100 days after BMT with cardiac allografts accepted permanently (> 100 days) Lewis but not BN (non-BMT parental donor) cardiac allografts. Our results confirm that 700 J/m2 UV-B irradiation of BM cells combined with CsA recipient immunosuppression impairs the recovery capacity of stem cells while the use of lower UV-B (100-200 J/m2) is effective in preventing CsA-induced autoimmune disease without endangering BM engraftment and leads to induction of transplant tolerance.  相似文献   

2.
Development of partial conditioning strategies to achieve reliable engraftment of allogeneic bone marrow with minimum recipient morbidity could extend the therapeutic application of bone marrow transplantation (BMT) to enzyme deficiency states, hemoglobinopathies, autoimmune diseases, and the induction of tolerance for solid organ and cellular allografts. In this study we describe a nonmyeloablative rat BMT model and examine the effect of clinically available immunosuppressants on the minimum amount of total body irradiation (TBI) required for allogeneic engraftment. Donor ACI marrow was depleted of T cells using immunomagnetic beads and transplanted to major histocompatibility complex- and minor antigen-mismatched Wistar Furth (WF) rats (ACI --> WF) conditioned with varying doses of TBI. Recipients conditioned with TBI alone required myeloablation with 1000 cGy for reliable allogeneic marrow engraftment. Administration to WF recipients of a single dose of anti-lymphocyte serum (ALS) 5 days prior to BMT together with a limited course of tacrolimus (1 mg/kg/day) resulted in engraftment of ACI bone marrow at only 500 cGy TBI. ACI --> WF recipients were stable mixed chimeras (mean donor chimerism 49% at 330 days post-BMT). Chimerism was multilineage. All recipient animals were free of graft-versus-host disease. These results suggest that a nonmyeloablative conditioning strategy based on low-dose TBI and a limited course of tacrolimus plus ALS can produce long-term mixed multilineage chimerism.  相似文献   

3.
BACKGROUND: Mixed bone marrow chimerism reliably produces donor-specific transplantation tolerance for a variety of solid organ and cellular grafts. We used a rat heterotopic tracheal transplant model for chronic rejection to investigate whether mixed chimerism could successfully prevent obstructive airway disease. METHODS: Mixed allogeneic chimeras were prepared by reconstituting lethally irradiated Wistar-Furth (WF) recipients with a mixture of 5 x 10(6) T-cell-depleted syngeneic (WF) and 100 x 10(6) T-cell-depleted allogeneic (ACI) bone marrow cells (ACI + WF --> WF). Mixed chimerism was present in all animals 28 days after bone marrow transplantation. Donor-specific, syngeneic, or major histocompatibility complex (MHC)-disparate allogeneic tracheas were implanted in recipient's omentum and removed for histologic analysis 30 to 150 days after transplantation. RESULTS: At 30 days after implantation, median luminal obstruction grades (0=none, 4=complete) of syngeneic and allogeneic tracheas were 0 and 4, respectively. Donor-specific (ACI) tracheas implanted in chimeric (ACI + WF --> WF) recipients were remarkably free of obstruction (median luminal obstruction grade=0 at 150 days) and had excellent preservation of respiratory epithelium. Third-party F344 tracheas implanted in chimeric recipients developed progressive luminal obstruction (grade 2 at 30 days, grade 3 at 90 days). CONCLUSIONS: Mixed allogeneic chimerism induces donor-specific tolerance and prevents development of the characteristic fibroproliferative obstructive lesion of bronchiolitis obliterans in a rat heterotopic tracheal transplant model. Excellent preservation of tracheal structure and morphology was achieved across major and minor histocompatibility barriers.  相似文献   

4.
BACKGROUND: Mixed hematopoietic chimerism induced with a nonmyeloablative conditioning regimen leads to donor-specific transplantation tolerance. Analyses of specific Vbeta-bearing T-cell families that recognize endogenous superantigens demonstrated that donor-specific tolerance is due mainly to an intrathymic deletional mechanism in these mixed chimeras. However, superantigens are not known to behave as classical transplantation antigens. We therefore used T-cell receptor (TCR) transgenic (Tg) recipients expressing a clonotypic TCR specific for an allogeneic major histocompatibility complex antigen to further assess deletional tolerance. METHODS: 2C TCR Tg mice (H2b), whose Tg TCR recognizes major histocompatibility complex class I Ld, were used as recipients of Ld+ bone marrow cells after conditioning with depleting anti-CD4 and CD8 monoclonal antibodies, 3 Gy whole-body irradiation, and 7 Gy thymic irradiation. Chimerism and deletion of CD8+ 2C recipient T cells was evaluated by flow cytometry and by immunohistochemical staining. Tolerance was tested with in vitro cell-mediated lympholysis assays and in vivo by grafting with donor skin. RESULTS: Intrathymic and peripheral deletion of 2C+ CD8-single-positive T cells was evident in mixed chimeras, and deletion correlated with the presence of donor-type cells with dendritic morphology in the thymus, and with chimerism in lymphohematopoietic tissues. Chimeras showed tolerance to the donor in cell-mediated lympholysis assays and specifically accepted donor skin grafts. CONCLUSIONS: Tolerance to transplantation antigens is achieved through intrathymic deletion of donor-reactive T cells in mixed chimeras prepared with a nonmyeloablative conditioning regimen and allogeneic bone marrow transplantation.  相似文献   

5.
Noninfectious lung injury is common after allogeneic bone marrow transplantation (BMT), but its association with acute graft-versus-host disease (GVHD) is unclear. Using a murine BMT system where donor and host differ by multiple minor histocompatibility (H) antigens, we investigated the nature of lung injury and its relationship both to systemic GVHD and host-reactive donor T cells. Lethally irradiated CBA hosts received syngeneic BMT or allogeneic (B10.BR) T-cell-depleted (TCD) bone marrow (BM) with and without the addition of T cells. Six weeks after BMT, significant pulmonary histopathology was observed in animals receiving allogeneic BMT compared with syngeneic controls. Lung damage was greater in mice that received allogeneic T cells and developed GVHD, but it was also detectable after TCD BMT when signs of clinical and histologic acute GVHD were absent. In each setting, lung injury was associated with significant alterations in pulmonary function. Mature, donor (Vbeta6(+) and Vbeta3(+)) T cells were significantly increased in the broncho-alveolar lavage (BAL) fluid of all allogeneic BMT recipients compared with syngeneic controls, and these cells proliferated and produced interferon-gamma (IFN-gamma) to host antigens in vitro. These in vitro responses correlated with increased IFN-gamma and tumor necrosis factor-alpha (TNF-alpha) in the BAL fluid. We conclude that alloreactive donor lymphocytes are associated with lung injury in this allogeneic BMT model. The expansion of these cells in the BAL fluid and their ability to respond to host antigens even when systemic tolerance has been established (ie, the absence of clinical GVHD) suggest that the lung may serve as a sanctuary site for these host reactive donor T cells. These findings may have important implications with regard to the evaluation and treatment of pulmonary dysfunction after allogeneic BMT even when clinical GVHD is absent.  相似文献   

6.
Selective neutropenia lasting over five months occurred in a 17-year-old adolescent male who received an allogeneic bone marrow transplantation (BMT) from an HLA-identical sibling for severe aplastic anemia. Bone marrow specimens showed maturation arrest of myeloid precursor cells despite sustained engraftment. Cytogenetic analyses revealed complete donor-type chimerism in hematopoietic cells and mixed lymphoid chimerism. The patient received a second BMT from the same donor following more intensive conditioning, including total body irradiation. Neutrophil recovery was rapid and complete donor-type hematopoietic and lymphoid chimerism was observed within three weeks of the second transplant. The present case suggests that prolonged selective neutropenia following BMT is due to residual host-derived immunity which is resistant to the standard immunosuppressive conditioning used prior to BMT for aplastic anemia.  相似文献   

7.
The use of T cell-specific mAb in vivo for prevention and treatment of graft-vs-host disease (GVHD) and its impact on graft-vs-leukemia (GVL) reactivity was examined in a murine model of MHC-matched bone marrow transplantation (BMT). F(ab')2 fragments of a CD3 epsilon-specific mAb were administered to irradiated AKR (H-2k) hosts after transplantation of BM plus spleen cells from B10.BR donors (BMS chimeras). The effects on GVH and GVL reactivity were Ab dose- and schedule-dependent. A short course of mAb (qe2d, days 0 to 8) prevented clinical evidence of GVHD and mortality. Anti-CD3 F(ab')2 mAb reversed clinical symptoms of acute GVHD when delayed up to 18 days post-transplant. Anti-host (Mls-1a)-specific V beta 6+ cells were absent from the spleens of GVH-negative control mice, but persisted in Ab-treated BMS chimeras despite the absence of GVHD. Leukemic mice given 16.7 micrograms of Ab on days 0, 2, and 4 survived leukemia-free without developing severe GVHD. A longer course of Ab completely prevented GVHD, but led to leukemia relapse in tumor-bearing hosts, despite engraftment of donor T cells. The GVL effect was quantitatively stronger when Ab was used for GVH therapy as compared with GVH prevention. Some Ab-treated, GVH-free chimeras relapsed with lymphomas in unusual sites, suggesting that occult tumor cells may persist in nonlymphoid tissues. These experiments demonstrate that T cell-specific mAb can be used successfully in vivo to avoid severe GVHD, but that excessive or ill-timed administration of Ab may eliminate GVL reactivity.  相似文献   

8.
BACKGROUND AND OBJECTIVE: Allogeneic bone marrow transplantation (BMT) is the most common treatment for young patients with severe aplastic anemia (SAA). Late graft failure represents one of the possible unfavorable outcomes in this setting. Mixed chimerism might represent a risk factor for late graft failure. We examined this relationship by studying chimerism in long-term survivor SAA patients after allogeneic BMT. METHODS: We analyzed long-term hematopoietic chimerism in 15 patients who received BMTs for SAA: 9 with an irradiation-based conditioning regimen and 6 with ATG. We used a PCR method targeting VNTR loci. Sensitivity of the technique ranged between 0.5 and 1.5%. RESULTS: All patients conditioned with radiation-based schemes showed complete donor chimerism. Conversely, out of six patients who received cyclophosphamide and ATG as a conditioning regimen, only one of them had late graft failure (day +168). In this patient, durable mixed chimera status was first detected two months after BMT. INTERPRETATION AND CONCLUSIONS: Our results suggest that in long-term survivors of SAA after BMT there is almost always complete donor chimerism in both irradiated and ATG-conditioned recipients. Mixed chimerism might predict graft failure in these patients.  相似文献   

9.
Induction of tolerance to fully major histocompatibility complex (MHC)-mismatched rat islet allografts implanted at two different islet transplant sites (liver and kidney capsule [KC]) was examined. Streptozotocin-induced diabetic Lewis (RT1(1)) rats remained hyperglycemic (> 200 mg/dl) after intrahepatic preimmunization by injection of 200 low-temperature cultured (24 degrees C for 7 days) Wistar-Furth (WF, RT1u) rat islets into the portal vein with one injection (1 ml) of rat antilymphocyte serum intraperitoneally. Three weeks later, 1,200 WF islets that had been cultured to remove passenger lymphoid cells were transplanted into the liver via the portal vein or under the KC. The intrahepatic transplants survived 60.2 +/- 11.9 days, and all six of the KC transplants maintained normoglycemia for > 100 days after the preimmunization regimen. In contrast, survival of fresh islet transplants was not significantly improved by this preimmunization protocol at either transplantation site. This study demonstrates that indefinite islet allograft survival can be achieved across a full MHC mismatch by intrahepatic preimmunization with a small number of cultured donor islets and a brief period of immunosuppression followed by transplantation of low-temperature cultured donor islets.  相似文献   

10.
BACKGROUND: We have recently reported that interleukin (IL)-12 prevents acute graft-versus-host disease (GVHD)-induced mortality in a full major histocompatibility complex- plus multiple minor antigen-mismatched A/J-->B10 bone marrow transplantation (BMT) model. Because most patients have access to a haploidentical, one haplotype-mismatched donor, we have now investigated the protective effect of IL-12 against GVHD and GVHD-associated immune dysfunction in a haploidentical CBD2F1 (H2kxd) --> B6D2F1 (H2bxd) strain combination. METHODS: GVHD was induced by injecting CBD2F1 marrow and spleen cells into lethally irradiated B6D2F1 mice. RESULTS: In untreated control mice, GVHD resulted in 87% mortality by day 8 after BMT, with no survivors beyond day 17. Treatment with a single injection of IL-12 on the day of BMT led to 87% long-term survival, with no significant weight loss, diarrhea or GVHD skin changes. The majority of T cells recovering in these mice showed the CD62L+, CD44low, CD45RBhigh naive phenotype. These T cells showed specific tolerance to both host and donor histocompatibility antigens, but normal anti-third party (H2s) alloresponses in vitro. B-cell proliferative responses to lipopolysaccharide were also normal in IL-12-protected mice. Moreover, normal negative selection of thymocytes bearing T cell receptors with Vbeta that recognize endogenous superantigens was observed among CD4+CD8- thymocytes, indicating a lack of GVHD-associated thymic selection abnormalities in IL-12-protected allogeneic BMT recipients. CONCLUSIONS: IL-12 provides permanent protection against an otherwise severe, rapidly lethal GVHD, with no clinical manifestations of chronic GVHD, immunosuppression or autoimmune features, in a full major histocompatibilty complex haplotype-mismatched murine BMT model.  相似文献   

11.
Diabetes-prone (DP) BB rats (RT1(u), RT6.1) spontaneously develop insulin-dependent diabetes mellitus (IDDM) and the disease manifestation resembles that in human IDDM. DP rats are immunodeficient with severe T lymphocytopenia due to the absence of T cells expressing the RT6 differential alloantigen, which have immunoregulatory functions. MHC- and non-MHC-compatible Wistar Furth (WF; RT1(u), RT6.2) pancreases were transplanted into DP rats. WF pancreas grafts were destroyed by IDDM recurrence (insulitis), but not by rejection, with a mean survival time of 65.3 +/- 21.7 days. To prevent the recurrence of IDDM in the grafts, monoclonal antibodies to intercellular adhesion molecule-1 and leukocyte function-associated antigen-1 were administered. WF pancreas grafts were indefinitely accepted (>108.0 +/- 26.8 days) in monoclonal antibody-treated DP recipients. The number of T cells was increased and cellular immune responses restored only in the DP rats that had accepted grafts. The increased number of T cells was due to the peripheral appearance of donor-type RT6.2+ T cells, which represented 34.3 +/- 7.0% of total splenic T cells. The cytotoxicity of splenic T cells to WF islet cells was suppressed in the presence of RT6+ T cells in vitro. These findings demonstrated that stable macrochimerism of donor-derived RT6+ T cells could restore the immune responses and prevent the recurrence of IDDM in the DP recipients.  相似文献   

12.
The optimal dose of FK506 on rat limb allograft was investigated across the BN-to-F344 histocompatibility barrier. BN limb allografts were rejected in untreated F344 hosts within 11 +/- 1 days (mean +/- SD) after operation. A single injection of 0.5 mg/kg, 1.0 mg/kg, or 2.0 mg/kg of FK506 on the day of transplantation significantly prolonged graft survival, mean survival times (MST) based on gross sign of skin rejection were 16 +/- 1 days, 19 +/- 1 days, 21 +/- 1 days, respectively. Maintenance doses of 0, 0.25, 0.5, 1.0, or 2.0 mg/kg/week of FK506 after a single administration of 10 mg/kg of FK506 on the day of limb allograft prolonged the graft survival, 63 +/- 10, 68 +/- 20, 87 +/- 23, 98 +/- 30, 136 +/- 20 days, respectively, and showed no evidence of infection or toxic side effects. The regimen of lower maintenance dose of FK506, however, developed chronic GVHD. In the second set of experiments, development of peripheral blood chimeras was studied in PVG-to-ACl limb allograft model. A single injection of 50 mg/kg of the day of transplantation prolonged graft survival and MST was 154 days. The average rates of peripheral blood chimeras were 2 to 6% and there was no relationship between graft survival and peripheral blood chimeras. However, GVHD developed in one of the six recipients at 201 days after operation. In the similar experiments, grafts were irradiated before operation. Peripheral blood chimeras was not observed in there experiments and GVHD was not developed in 300 days after operation. These data suggest that FK506 is quite effective for rat limb allograft survival in dose-dependent manner and GVHD could be prevented by graft irradiation before operation.  相似文献   

13.
Proteic molecules were found in the bone marrow that were later identified as transferrins. When applied to transplantation of genetically incompatible bone marrow in supralethally irradiated recipient mice, the transferrins obtained from plasma of bone marrow donors promoted engraftment, permanent hemopoietic chimerism, and donor-type immune character. A combination of donor-matched transferrins and antigens was needed for induction of xenogeneic (interspecies) "tolerance" or unresponsiveness to donor antigens in chemically immunosuppressed mice treated with human transferrins and donor leucocytes. This novel and unique property of transferrins may explain the genesis and maintenance of immunogenic identity and allow a reshaping of the immune system.  相似文献   

14.
The effect of intrathymic (IT) injection of donor splenocytes and a short course of rapamycin (Rapa) treatment on rat to mouse skin xenograft survival was investigated. ACI rat skin xenografts were transplanted to (C57BL/6 x A)F1 mice treated with rabbit anti-mouse lymphocyte serum (ALS) on days -1, +2, and +4 relative to skin grafting on day 0. Fifty million donor-type splenocytes were injected intrathymically on day 7 after transplantation. Rapa was given intraperitoneally every other day from day 0 to day 12 at a dose of 3.0 mg/kg. Prolonged skin xenograft survival was observed in ALS- and Rapa-treated recipients (no IT injection) with a median survival time of 47 days. However, skin graft survival was markedly more prolonged in the group treated with ALS, Rapa, and IT injection of donor splenocytes did not have a beneficial effect on skin xenograft survival in ALS-treated recipients. An increased presence of donor-type cells was observed in the thymus of the ALS- and Rapa-treated recipients for 7 days after IT injection of donor splenocytes. In conclusion, a short course of Rapa markedly augments rat skin xenograft survival in ALS-treated mice injected intrathymically with donor-type splenocytes.  相似文献   

15.
Myeloablative conditioning associated with hazardous immediate and late complications is considered as a mandatory first step in preparation for allogeneic blood or marrow transplantation (allogeneic BMT) for the treatment of malignant hematologic disorders and genetic diseases. Immune-mediated graft-versus-leukemia (GVL) effects constitute the major benefit of allogeneic BMT. Therefore, we have introduced the use of relatively nonmyeloablative conditioning before allogeneic BMT aiming for establishing host-versus-graft tolerance for engraftment of donor immunohematopoietic cells for induction of GVL effects to displace residual malignant or genetically abnormal host cells. Our preliminary data in 26 patients with standard indications for allogeneic BMT, including acute leukemia (n = 10); chronic leukemia (n = 8), non-Hodgkin's lymphoma (n = 2), myelodysplastic syndrome (n = 1), multiple myeloma (n = 1), and genetic diseases (n = 4) suggest that nonmyeloablative conditioning including fludarabine, anti-T-lymphocyte globulin, and low-dose busulfan (8 mg/kg) is extremely well tolerated, with no severe procedure-related toxicity. Granulocyte colony-stimulating factor mobilized blood stem cell transplantation with standard dose of cyclosporin A as the sole anti-graft-versus-host disease (GVHD) prophylaxis resulted in stable partial (n = 9) or complete (n = 17) chimerism. In 9 patients absolute neutrophil count (ANC) did not decrease to below 0.1 x 10(9)/L whereas 2 patients never experienced ANC < 0.5 x 10(9)/L. ANC > or = 0.5 x 10(9)/L was accomplished within 10 to 32 (median, 15) days. Platelet counts did not decrease to below 20 x 10(9)/L in 4 patients requiring no platelet support at all; overall platelet counts > 20 x 10(9)/L were achieved within 0 to 35 (median 12) days. Fourteen patients experienced no GVHD at all; severe GVHD (grades 3 and 4) was the single major complication and the cause of death in 4 patients, occurring after early discontinuation of cyclosporine A. Relapse was reversed by allogeneic cell therapy in 2/3 cases, currently with no residual host DNA (male) by cytogenetic analysis and polymerase chain reaction. To date, with an observation period extending over 1 year (median 8 months), 22 of 26 patients (85%) treated by allogeneic nonmyeloablative stem cell transplantation are alive, and 21 (81%) are disease-free. The actuarial probability of disease-free survival at 14 months is 77.5% (95% confidence interval, 53% to 90%). Successful eradication of malignant and genetically abnormal host hematopoietic cells by allogeneic nonmyeloablative stem cell transplantation represents a potential new approach for safer treatment of a large variety of clinical syndromes with an indication for allogeneic BMT. Transient mixed chimerism which may protect the host from severe acute GVHD may be successfully reversed postallogeneic BMT with graded increments of donor lymphocyte infusions, thus resulting in eradication of malignant or genetically abnormal progenitor cells of host origin.  相似文献   

16.
BACKGROUND: The supply of solid organs for transplantation will never meet the growing demand. Xenotransplantation is considered to be a potential solution for the critical shortage of allografts. However, xenograft rejection is currently not controlled by conventional immunosuppressive agents. Bone marrow chimerism induces donor-specific tolerance without the requirement for chronic immunosuppressive therapy. The aim of this study was to develop a nonlethal recipient-conditioning approach to achieve mixed bone marrow chimerism and donor-specific tolerance. METHODS: C57BL/10SnJ mice were conditioned with total body irradiation followed by a single injection of cyclophosphamide on day +2. On day 0, mice were reconstituted with untreated bone marrow cells from Fischer 344 rats. Recipients were analyzed by flow cytometry for donor bone marrow engraftment and multilineage chimerism. Donor-specific tolerance was tested by skin grafting. RESULTS: One hundred percent of recipients engrafted after irradiation with 600 cGy total body irradiation, transplantation with 80 x 10(6) Fischer 344 bone marrow cells, and injection with 50 mg/kg cyclophosphamide intraperitoneally. Donor chimerism was detectable in all engrafted animals for up to 11 months. This conditioning was nonlethal, because conditioned untransplanted animals survived indefinitely. Mixed xenogeneic chimeras were tolerant to donor-specific skin grafts but rejected third-party (Wistar Furth) grafts as rapidly as naive C57BL/10SnJ mice. In contrast, animals that received less efficacious conditioning regimens and did not exhibit detectable chimerism showed prolonged graft survival, but delayed graft rejection occurred in all animals within 10 weeks. CONCLUSION: The induction of bone marrow chimerism and donor-specific tolerance after nonlethal conditioning might be useful to prevent the vigorous cellular and humoral rejection response to xenografts.  相似文献   

17.
While the existence of chimeric cells in host tissue following organ transplantation is well documented, its distribution, temporal evolution and relationship to allograft survival is less clear. To explore this phenomenon, Lewis recipients of ACI cardiac allografts representing a wide range of immunosuppressive protocols and graft survival times were examined for the presence of chimerism using a sensitive polymerase chain reaction assay. Four groups of animals were examined: untransplanted animals receiving donor specific transfusion (DST)/cyclosporine A (CsA); allograft recipients with no treatment; recipients treated with DST/CsA/supplementary immunosuppression with rejection at 21-183 days; and recipients sacrificed with functioning allografts, treated with DST/CsA/supplementary immunosuppression and surviving > 200 days. To elucidate variations in the tissue distribution of chimeric cells, bone marrow, skin, liver, spleen, and thymus were examined in each animal. Untransplanted animals receiving DST/CsA displayed no evidence of chimerism. In animals receiving a cardiac allograft but no treatment, there was extensive evidence of chimerism in four of five animals. Chimerism was also detected in seven of nine animals with intermediate graft survival at the time of rejection. In animals with long-term graft survival, only four of eight displayed chimerism. These results suggest that, without immunosuppression, early chimerism does not lead to prolonged graft survival and that, even when graft survival is moderately prolonged, these cells are not sufficient to prevent rejection. In conclusion, chimerism appears to be a common phenomenon following transplantation, is not a result of DST, and may not be necessary for maintenance of long-term graft survival.  相似文献   

18.
Rapamycin (Rapa) monotherapy can promote renal allograft survival in dogs, but it is very toxic. To attempt to augment the effectiveness of Rapa and reduce its toxicity in a tolerance induction protocol, canine renal allograft recipients were treated briefly with antilymphocyte serum (ALS), donor bone marrow cells (BMC), and a limited course of cyclosporine (CsA). Rapa had little effect when CsA-treated recipients were given ALS on days -5 to -1 and BMC on day +1. When combined with CsA given days +13 to +42, ALS on days -5 to +7, and BMC on day +10, Rapa at 0.3 mg/kg on day +8 plus alternate days +15 to +39 significantly increased overall survival and was compatible with long-term survival after immunosuppression (6 grafts, 1 graft > 212 days, 1 graft > 470 days). Rapa appeared to prevent early rejections that can occur during treatment with these ALS/BMC/CsA protocols. Little toxicity of Rapa was observed with any treatment.  相似文献   

19.
The binding of CD2, present on T cells, to its counterreceptor CD48 facilitates adhesion, signaling, alloantigen-induced cytokine production, and cytotoxic T-lymphocyte responses. Because these T-cell functions have been implicated in graft-versus-host disease (GVHD) pathogenesis, we have analyzed the effects of the CD2:CD48 pathway on GVHD mediated by CD4(+) and CD8(+) T cells infused into sublethally irradiated recipients. CD4(+) T-cell-mediated, and to a lesser extent, CD8(+) T-cell-mediated GVHD was inhibited by CD2 + 48 monoclonal antibody (MoAb) infusion. To assess the effects of combined MoAb infusion on alloengraftment, two different alloengraftment bone marrow transplantation (BMT) models were used. In both, MoAb infusion markedly inhibited alloengraftment and hematopoietic recovery post-BMT. To determine if the adverse effects on lymphohematopoiesis in the allogeneic BMT recipients were caused by an immune or nonimmune mechanism, studies were performed in congenic BMT recipients to preclude an immune mechanism as the cause for delayed recovery post-BMT. MoAb infusion resulted in impaired lymphohematopoietic recovery in congenic BMT recipients and markedly reduced day 12 colony-forming unit-spleen formation in syngeneic BMT recipients, consistent with a nonimmune mediated mechanism. Because the spleen is a site of early hematopoietic recovery post-BMT, studies were performed using adult splenectomized syngeneic BMT recipients. MoAb infusion delayed recovery in both nonsplenectomized and splenectomized recipients post-BMT, indicating that the delayed hematopoietic recovery was not the consequence of an abnormal homing pattern of hematopoietic progenitors to the spleen early post-BMT. CD48 MoAb was necessary and sufficient for the inhibition of GVHD lethality and delayed lymphohematopoietic effects of the combined MoAb regimen. CD48 MoAb was found to induce a profound modulation of CD48 antigen expression on BM cells, suggesting that the CD48 antigen may have an important function in hematopoiesis in the BM compartment. Taken together, these data provide evidence that the CD48 antigen plays a critical role in regulating hematopoiesis in post-BMT.  相似文献   

20.
The long-term success of organ transplantation is limited by complications resulting from consistent nonspecific immunosuppression. Induction of stable, donor-specific tolerance remains the main goal of transplantation immunology. In this article, a new, nonmyeloablative method is described for induction of transplantation tolerance to fully mismatched bone marrow cells (BMC), bone marrow stromal precursors, heart muscle, and skin allografts. The method is based on pretransplant conditioning with no postgraft immunosuppression, and consists of a short course (six daily fractions of 200 cGy) of total lymphoid irradiation (sTLI), followed by selective elimination of donor-specific alloreactive cells of the host escaping low-dose sTLI. Donor-specific alloreactive cells were activated by intravenous inoculation with a high dose of donor BMC (3 x 10(7) cells) 1 day after sTLI, and eliminated by a single intraperitoneal dose (200 mg/kg) of cyclophosphamide given 1 day after cell transfer. Infusion of a low number of T cell-depleted BMC (3 x 10(6) cells) after tolerogenic preconditioning converted recipients to stable mixed chimeras free of graft-versus-host disease. The same treatment provided long-lasting acceptance of heterotopically transplanted allografts of the heart muscle and of the stromal precursors to the hematopoietic microenvironment. This treatment also led to acceptance and life-long survival of full-thickness donor skin allografts. However, skin allografts survived only in mice that received donor T cell-depleted BMC after cyclophosphamide and had 20-50% donor cells in the blood. Our results suggest that after sTLI, additional selective clonal deletion of residual host cells induces a state of long-lasting specific tolerance to a wide variety of donor-derived tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号