首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Values of open-circuit-potentials (OCP) have been determined for pairs of electrodes: Au and Pt, Ni-Ce0.8Sm0.2O1.9 cermet and Au, Pt and Sm0.5Sr0.5CoO3 composite at the YSZ electrolyte, in the uniform atmospheres of xCH4 + yO2 + (1 − x − y)Ar gas mixtures with variable x and y coefficients, at 600 °C. The determined dependencies of OCP values on the initial gas mixture compositions have been compared with the respective dependencies calculated for equilibrium or quasi-equilibrium compositions of these gas mixtures. The OCP values for the pair of Pt and Au electrodes have been measured also in the xH2 + yO2 + (1 − x − y)Ar uniform gas mixtures but no distinct difference of the OCP values has been observed in this atmosphere. For some pairs of electrodes investigated in xCH4 + yO2 + (1 − x − y)Ar atmospheres the measured OCP values have shown differences up to ca 0.9-1.0 V. These differences were stable within large range of compositions of this gas mixture. Within this gas composition range one of the electrodes conserves the potential of oxygen electrode determined by oxygen partial pressure in the initial gas mixture and is insensitive to reaction occurring in the gas phase. These results are discussed on the basis of equilibria or some quasi-equilibria, that establish in the C-H-O gas mixture and the solid carbon deposition is considered. For a given pair of dissimilar electrodes, their selective sensibility to the electrochemical process of oxygen electrode has been confirmed. Within large range of gas mixture concentrations, in the Pt-Au electrode pair Au has shown behavior of the oxygen electrode, whereas the OCP values of the Pt electrode are within the range of hydrogen electrode, also at gas compositions corresponding to the solid carbon stability. With this pair the OCP differences of ca. 600 mV have been obtained. Among three electrodes studied the cermet Ni-Ce0.8Sm0.2O1.9 electrode shows the best electrocatalytic properties resulting in the OCP values following exactly the respective equilibrium dependence. In the pair Ni-Ce0.8Sm0.2O1.9 and Au a stable potential difference of ca. 900 mV have been established. Unexpectedly, Pt electrode in the pair with the Sm0.5Sr0.5CoO3 composite electrode plays role of the oxygen electrode quite insensitive to other components of the equilibrated initial gas mixture. This surprising fact seems indicate that in conditions of the experiments performed the electrocatalytic behavior of the electrode depends not only of the material of this electrode but also on the properties of the second electrode in the given pairs of electrodes.  相似文献   

2.
Single-chamber solid oxide fuel cell is a device where two electrodes of different materials contacting a solid oxide ionic conductor, may generate a considerable potential difference and electrical power, when supplied by a common fuel + oxidant gas mixture. The Au|YSZ|Pt system in the CH4 + O2 gas mixture is one of the simplest examples of such a cell. In this article the open-circuit voltage (OCV) of this cell, supplied with the gas mixture xO2 + aCH4 + (1 − x − a)Ar (where a = 0.01, 0.1 or 0.5), is investigated. On the basis of the obtained results, as well as those for the xCH4 + (1 − x)(0.2O2 + 0.8Ar) (0 ≤ x ≤ 1) gas mixture, reported in our previous work [Electrochim. Acta, 50 (2005) 2771], we postulate that the OCV of the above system arises as a result of electrode modification resulting from solid carbon deposition in the cell. After oxidation of the carbon deposit, the system, once treated by the gas mixture enabling the formation of the carbon phase, shows more and more tendency to generate the OCV. The open-circuit potential of the Au electrode depends only on the O2 concentration in the initial gas mixture, whereas in the case of the Pt electrode it becomes dependent on chemical equilibria determining the O2 content in the converted gas mixture. Our results reveal that the OCV achieves a reproducible limiting value of ∼650 mV, which is lower by ∼400 mV than the calculated equilibrium value.  相似文献   

3.
Electrochemical decomposition of CO2 and CO gases using a porous cell of Ru-8 mol% yttria-stabilized zirconia (YSZ) anode/porous YSZ electrolyte/Ni–YSZ cathode system at 400–800 °C was studied by analyzing the flow rate and composition of outlet gas, current density, and phases and elementary distribution of the electrodes and electrolyte. A part of CO2 gas supplied at 50 ml/min was decomposed to solid carbon and O2 gas through the cell at the electric field strengths of 0.9–1.0 V/cm. The outlet gas at a flow rate of 3 ml/min included 61–63% CO2 and 37–39% O2 at 700–800 °C and the outlet gas at a flow rate of 50 ml/min included 73–96% (average 85%) CO2 and 4–27% (average 15%) O2 at 800 °C. On the other hand, the supplied CO gas was also decomposed to solid carbon, O2 and CO2 gases at 800 °C. The fraction of outlet gas at a flow rate of 50 ml/min during the CO decomposition at 800 °C for 5 h was 11–36% CO, 59–81% O2 and 2–9% CO2. The detailed decomposition mechanisms of CO2 and CO gases are discussed. Both Ni metal in the cathode and porous YSZ grains under the DC electric field have the ability to decompose CO gas into solid carbon and O2− ions or O2 gas.  相似文献   

4.
This paper reports on the composition and flow rate of outlet gas and current density during the reforming of CH4 with CO2 using three different electrochemical cells: cell A, with Ni−GDC (Gd-doped ceria: Ce0.8Gd0.2O1.9) cathode/porous GDC electrolyte/Cu−GDC anode, cell B, with Cu−GDC cathode/ porous GDC electrolyte/Cu−GDC anode and cell C, with Ru−GDC cathode/ porous GDC electrolyte/ Cu−GDC anode. In the cathode, CO2 reacts with supplied electrons to form CO fuel and O2− ions (CO2+2e→CO+O2−). Too low affinity of Cu cathode to CO2 in cell B reduced the reactivity of the CO2 with electrons. The CO fuel, O2− ions and CH4 gas were transported to the anode through the porous GDC mixed conductor of O2− ions and electrons. In the anode, CH4 reacts with O2− ions to produce CO and H2 fuels (CH4+O2−→2 H2+CO+2e). The reforming efficiency at 700−800 °C was lowest in cell B and highest in cell A. The Cu anode in cells A and C worked well to oxidize CH4 with O2− ions (2Cu+O2−→Cu2O+2e, Cu2O+CH4→2Cu+CO+2H2). However, a blockage of the outlet gas occurred in all the cells at 700−800 °C. The gas flow is inhibited due to a reduction in pore size in the cermet cathode, as well as sintering and grain growth of Cu metal in the anode during the reforming.  相似文献   

5.
This work summarises available measurements of laminar burning velocities in CH4 + H2 + O2 + N2 flames at atmospheric pressure performed using a heat flux method. Hydrogen content in the fuel was varied from 0% to 40%, amount of oxygen in the oxidiser was varied from 20.9% down to 16%, and initial temperature of the mixtures was varied from 298 to 418 K. These mixtures could be formed when enrichment by hydrogen is combined with flue gas recirculation. An empirical correlation for the laminar burning velocity covering a complete range of these measurements is derived and compared with experiments and other correlations from the literature.  相似文献   

6.
An in situ experimental technique was developed for detecting structure changes at the electrode/electrolyte interface of lithium cell using synchrotron X-ray reflectometry and two-dimensional model electrodes with a restricted lattice plane. The electrode was constructed with an epitaxial film of LiNi0.8Co0.2O2 synthesized by the pulsed laser deposition method. The orientation of the epitaxial film depends on the substrate plane; the 2D layer of LiNi0.8Co0.2O2 is parallel to the SrTiO3 (1 1 1) substrate ((003)LiCo0.2Ni0.8O2//(111)SrTiO3), while the 2D layer is perpendicular to the SrTiO3 (1 1 0) substrate ((110)LiCo0.2Ni0.8O2//(110)SrTiO3). These films provided an ideal reaction field suitable for detecting structure changes at the electrode/electrolyte interface during the electrochemical reaction. The X-ray reflectometry indicated a formation of a thin-film layer at the LiNi0.8Co0.2O2 (1 1 0)/electrolyte interface during the first charge-discharge cycle, while the LiNi0.8Co0.2O2 (0 0 3) surface showed an increase in the surface roughness without forming the surface thin-film layer. The reaction mechanism at the electrode/electrolyte interface is discussed based on our new experimental technique for lithium batteries.  相似文献   

7.
The aim of this work was to compare the electrochemical behaviors and safety performance of graphite and the lithium titanate spinel Li1.33Ti1.67O4 with half-cells versus Li metal. Their electrochemical properties in 1 M LiPF6/EC + DEC (1:1 w/w) or 1 M LiPF6/PC + DEC (1:1 w/w) at room and elevated temperatures (30 and 60 °C) have been studied using galvanostatic cycling. At 30 °C graphite has higher reversible capacity than Li1.33Ti1.67O4 when using the LiPF6/EC + DEC as electrolyte. At 60 °C graphite declines in cell capacity yet Li1.33Ti1.67O4 remains almost unchanged. In a propylene carbonate (PC) containing electrolyte, graphite electrode exfoliates and loses its mechanical integrity while Li1.33Ti1.67O4 electrode is very stable. An accelerating rate calorimeter (ARC) and microcalorimeter have been used to compare the thermal stability of lithiated lithium titanate spinel and graphite. Results show that Li1.33Ti1.67O4 may be used as an alternative anode material offering good battery performance and higher safety.  相似文献   

8.
Guohong Qiu 《Electrochimica acta》2008,53(12):4074-4081
The direct electrochemical reduction process of Nb2O5 powder was investigated by cyclic voltammetry and constant potential electrolysis with a novel metallic cavity electrode in molten calcium chloride at 850 °C. The products of both constant potential and constant voltage electrolysis were characterized by XRD, SEM and EDX. CaNb2O6 was formed upon addition of solid Nb2O5 into molten CaCl2 when CaO was present. During the electrolysis solid Nb2O5 was reduced to various niobium oxides of lower oxidation states, including some composite oxides, and then was converted completely to metallic niobium near −0.35 V (vs. Ag/AgCl), which was more positive than the reduction potential of Ca2+. Constant potential electrolysis was applied at the potentials near the reduction current peaks derived from the cyclic voltammetry curves, and cell voltages were monitored. The voltage was near 2.4 V when the oxide was metallized at −0.35 V (vs. Ag/AgCl). Nb2O5 pellet could be used to prepared metallic niobium at cell voltage 2.4 V in a larger electrolysis bath filled with calcium chloride at 850 °C. The experiment results further demonstrated the direct electrochemical reduction mechanism of Nb2O5 powder in a molten system.  相似文献   

9.
Hao Yu 《Electrochimica acta》2007,52(13):4403-4410
The gallium hexacyanoferrate (GaHCF) was synthesized chemically and characterized by FTIR technique. Its electrochemical behavior was carefully investigated by fabricating a GaHCF modified carbon paste electrode in various supporting electrolyte. The experimental results showed that in KNO3, K2SO4, KCl and other supporting electrolyte, GaHCF yielded one pair of ill-defined redox waves with a formal potential of 0.9 V (versus SCE). In 0.050 mol L−1 phosphate buffer solution (PBS, pH 6.8), however, GaHCF yielded one pair of well-defined redox peaks with a formal potential of 0.222 V. Furthermore, this modified electrode exhibited a high electrocatalytic activity toward the reduction of H2O2 in pH 6.8 PBS, with over-potential dramatically lower than that of on the bare carbon paste electrode. Amperometry was used for the determination of H2O2, under the optimal conditions, a linear dependence of the catalytic current versus H2O2 concentration was obtained in the range of 4.9 × 10−6 to 4.0 × 10−4 mol L−1 with a detection limit of 1 × 10−6 mol L−1 when the signal-to-noise ratio was 3, and a sensitivity of 27.9 μA mM−1 (correlation coefficient of 0.997). Chronoamperometry was used to conveniently determine the diffusion coefficient of H2O2 in the solution.  相似文献   

10.
We have developed double layer-type (catalyst layer/current collecting layer) oxygen electrodes (DLE) for reversible SOFCs. As the catalyst layer (cathode for SOFC and anode for steam electrolysis) interfaced with a samaria-doped ceria [(CeO2)0.8(SmO1.5)0.2, SDC] interlayer/YSZ solid electrolyte, mixed conducting La0.6Sr0.4Co0.2Fe0.8O3 (LSCF) and SDC particles were employed. The current collecting porous LSCF layer was formed on the catalyst layer. By controlling the SDC content, as well as the thickness and porosity of the catalyst layer, the gas diffusion rate and the conduction networks for electrons and oxide ions were optimized, resulting in a marked reduction of the overpotential. The LSCF + SDC/LSCF DLE exhibited higher performance than single-layer electrodes of LSCF + SDC or LSCF; the IR-free anode potential vs. an air reference electrode was 0.12 V (corresponding to an overpotential of 0.08 V) at 0.5 A cm−2 and 900 °C under an atmosphere of O2 (1 atm).  相似文献   

11.
Yu Qiao  Eleanor Binner  Chun-Zhu Li 《Fuel》2010,89(11):3381-931
The ignition temperatures of a Loy Yang brown coal and a Datong bituminous coal were investigated in a wire-mesh reactor where the secondary reactions of the evolved volatiles were minimised. An increase in the average particle ignition temperature of 21 °C was observed for the brown coal when air (21% O2 + 79% N2) was replaced with a mixture of 21% O2 + 79% CO2. Combustion was also carried out in the mixtures of 21% O2 + 79% argon and 21%O2 + 79% helium in order to determine the effects of heat transfer on the observed particle ignition temperature. It is concluded that the thermal conductivity of gas atmosphere surrounding the particles greatly influences the observed particle ignition temperature while the effects of the heat capacity of the gas atmosphere was very minor under our experimental conditions. The structure of char and the reactions involving the char (char-O2 and char-CO2) can greatly affect the observed particle ignition temperature. In particular, the char-CO2 reactions were largely responsible for the observed difference in particle ignition temperature in air and in 21% O2 + 79% CO2. Alkali and alkaline earth metallic (AAEM) species in the brown coal also significantly affect the observed particle ignition temperature.  相似文献   

12.
Alkali carbonate-coated graphite electrode for lithium-ion batteries   总被引:1,自引:0,他引:1  
S. Komaba  M. Watanabe  N. Kumagai 《Carbon》2008,46(9):1184-1193
Charge and discharge behavior of a graphite electrode for rechargeable lithium-ion batteries was successfully improved by pretreatment of graphite powders with A2CO3 (A = Li, Na, and K) aqueous solutions. In the process of the pretreatment, graphite powders were simply dispersed in the aqueous solutions, and then filtered and dried to modify the surface of graphite powder with solid alkali carbonate. With the optimum concentration of each carbonate, 1 wt.% Li2CO3, 5 wt.% Na2CO3, and 1 wt.% K2CO3, the irreversible reaction at the initial cycle was suppressed by the pretreatment which was capable of modifying the solid electrolyte interphase formed on the graphite electrode surface. Furthermore, the rate capability was improved by the surface modification, that is, the reversible discharge capacities at 175 mA g−1 increased with adequate capacity retention in a 1 mol dm−3 LiClO4 ethylene carbonate:diethyl carbonate electrolyte solution because of the kinetics enhancement of lithium-ion transfer at the interface.  相似文献   

13.
Zhongyu Hou  Bingchu Cai  Hai Liu  Dong Xu 《Carbon》2008,46(3):405-413
This paper investigates the consequence of the material property and the plasma gas chemistry (herein referred to the plasma gas-feeding species and methods) on the electrode performance in plasma treatments of screen-printed carbon nanotube (CNT) films. Four plasma gases (Ar, O2, SF6, and CHF3) and three gas-feeding methods were examined. The surface morphology, microstructure, and composition of 11 sample groups have been carefully characterized. Tests of the CNT film electrode subjected to gas discharge and field emission show that surface morphology modification is the most influential factor in respect of lowering the onset voltages. In detail, O2/Ar (O2 followed by Ar) and Ar + CHF3 + SF6 (mixed three gases) treatments are the best choices for ionization and field emission applications, respectively. The relevant results are even better than that of the samples of aligned CNT films prepared by chemical vapor deposition. The underlying mechanisms are modeled by two opposing processes (etching and coating), which phenomenally produce three competing effects, i.e., CNT protruding, bundle forming, and neo-nanostructure forming. The results and the correct behavior of our model suggest that the plasma gas chemistry is the most fundamental factor in the process of plasma treatments of CNT films.  相似文献   

14.
Li1 + x[Mn0.45Co0.40Ni0.15]O2 spherical cathode materials with different sizes (about 2 and 5 μm) were fabricated by calcining uniform spherical metal carbonate, [Mn0.45Co0.40Ni0.15]CO3 with lithium hydroxide at high temperature. The precursor of spherical metal carbonate, [Mn0.45Co0.40Ni0.15]CO3, was obtained via co-precipitation method at room temperature, which was significantly dependent on synthetic conditions, such as the reaction temperature, the concentration of NH4HCO3, and stirring speed, etc. The optimized condition resulted in [Mn0.45Co0.40Ni0.15]CO3, of which the particle size distribution was uniform and the particle shape was spherical. The final products, Li1 + x[Mn0.45Co0.40Ni0.15]O2, had a well-ordered layered structure and uniform homogeneity. Raman spectroscopy analysis showed the Raman-active species Eg and A1g modes were observed at 488, 473 cm− 1 and 597, 590 cm− 1, respectively, for the obtained spherical cathode materials.  相似文献   

15.
In molten carbonate fuel cells (MCFC), the wettability of the electrode and the electrolyte distribution are very important factors influencing the active reaction area. We have observed the molten carbonate behaviour directly on the cathode (porous NiO) and the electrolyte plate (LiAlO2) under various gas conditions and at controlled potentials using an environmental scanning electron microscope (ESEM) equipped with a hot stage. We estimated the liquid electrolyte distribution in the cathode and measured the contact angles on NiO and LiAlO2 in the electrolyte. Moreover, the electrolyte movement in the reaction CO2 + O2 + 2e = CO3 2– was observed on the surface of the porous NiO in a CO2/O2 atmosphere. The reaction CO3 2– + 2e = CO + 2 O2– of the gas generation was observed in a H2O atmosphere. The active reaction points on the electrode are the areas where the electrolyte film is thin.  相似文献   

16.
Alumina (Al2O3) and alumina-yttria stabilized zirconia (YSZ) composites containing 3 and 5 mass% ceria (CeO2) were prepared by spark plasma sintering (SPS) at temperatures of 1350-1400 °C for 300 s under a pressure of 40 MPa. Densification, microstructure and mechanical properties of the Al2O3 based composites were investigated. Fully dense composites with a relative density of approximately 99% were obtained. The grain growth of alumina was inhibited significantly by the addition of 10 vol% zirconia, and formation of elongated CeAl11O18 grains was observed in the ceria containing composites sintered at 1400 °C. Al2O3-YSZ composites without CeO2 had higher hardness than monolithic Al2O3 sintered body and the hardness of Al2O3-YSZ composites decreased from 20.3 GPa to 18.5 GPa when the content of ZrO2 increased from 10 to 30 vol%. The fracture toughness of Al2O3 increased from 2.8 MPa m1/2 to 5.6 MPa m1/2 with the addition of 10 vol% YSZ, and further addition resulted in higher fracture toughness values. The highest value of fracture toughness, 6.2 MPa m1/2, was achieved with the addition of 30 vol% YSZ.  相似文献   

17.
The lithium deposition-dissolution process in solid polymer electrolytes containing Al2O3 filler treated under different conditions has been investigated comparing with the ionic conduction behavior of the electrolyte. The composite electrolytes were prepared from poly(ethylene oxide) (PEO), LiBF4 and α-Al2O3 filler by using a dry process, where the surface of α-Al2O3 was beforehand modified by a wet process. The exchange current densities, i0, of the lithium electrode process in P(EO)20LiBF4 with and without Al2O3 filler were determined by a micro-polarization method. The temperature dependence of i0 provided similar values for activation energy, ca. 25 and 70 kJ mol−1 in both temperature regions above and below 60 °C, respectively. The effect of the surface treatment of the filler on the lithium electrode process gave a different tendency from that on the ionic conductivity. The Al2O3 surface treated by alkali solution enhanced the electrode process to the largest extent among the fillers used here, while it led to rather poor cycling stability in voltammetry. The enhanced reaction rate at the lithium electrode/solid polymer electrolyte interface has probably resulted in the improved ion dissociation by the surface groups of the Al2O3 filler.  相似文献   

18.
This work demonstrates that iron-enriched natural zeolitic volcanic tuff (Paglisa deposit, Cluj county, Transilvania, Romania) resulting from a previous use as adsorbent in wastewater treatment can be recycled into effective electrode modifier applied to the electrocatalytic detection of hydrogen peroxide. After physico-chemical characterization of tuff samples using various techniques such as chemical analysis, X-ray diffraction, scanning electron microscopy, infrared spectroscopy, BET analysis and X-ray photoelectron spectroscopy, the electrochemical response of the iron-enriched zeolites was studied on the basis of solid carbon paste electrodes modified with these samples. The results indicate that iron centers in the zeolite are electroactive and that they act as electrocatalysts in the voltammetric and amperometric detection of H2O2. Best performance was achieved in phosphate buffer at pH 7, showing a sensitivity of 0.57 mA M−1 cm−2, a detection limit down to 60 μM, and a linear domain up to 100 mM H2O2.  相似文献   

19.
We have recently proposed a compressible lattice model for CO2 + polymer systems in which CO2 forms complexes with one or more functional groups in the polymer. Furthermore, we have shown that this model is able to simultaneously correlate phase equilibria, sorption behavior, and glass transition temperatures in such systems. In the present work, we extend the model to ternary CO2 + cosolvent + polymer systems and demonstrate that cloud point behavior in CO2 + dimethyl ether + poly (?-caprolactone), CO2 + dimethyl ether + poly (isopropyl acrylate), and CO2 + dimethyl ether + poly (isodecyl acrylate) systems can be predicted using parameters obtained from binary data. Our results also suggest that dimethyl ether may form weak complexes with poly (?-caprolactone), poly (isopropyl acrylate), and poly (isodecyl acrylate).  相似文献   

20.
Fabrications of micro-dot electrodes of LiCoO2 and Li4Ti5O12 on Au substrates were demonstrated using a sol-gel process combined with a micro-injection technology. A typical size of prepared dots was about 100 μm in diameter, and the dot population on the substrate was 2400 dots cm−2. The prepared LiCoO2 and Li4Ti5O12 micro-dot electrodes were characterized with scanning electron microscopy, X-ray diffraction, micro-Raman spectroscopy, and cyclic voltammetry. The prepared LiCoO2 and Li4Ti5O12 micro-dot electrodes were evaluated in an organic electrolyte as cathode and anode for lithium micro-battery, respectively. The LiCoO2 micro-dot electrode exhibited reversible electrochemical behavior in a potential range from 3.8 to 4.2 V versus Li/Li+, and the Li4Ti5O12 micro-dot electrode showed sharp redox peaks at 1.5 V.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号