首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 356 毫秒
1.
Electrochemical deposition of Te onto n- and p-Si(1 0 0) wafers from 0.1 M HNO3 + 1 mM TeO2 solution was studied using cyclic voltammetry (CV), chronoamperometry, ex situ SEM and XRD. Electrodeposition of Te onto n-Si takes place both in the dark and under illumination. Electrodeposition of Te onto p-Si proceeds only under illumination, when the photoelectrons are generated in silicon substrate and reduce Te(IV) species in solution. Electrochemical reduction of Te(IV) on n- and p-Si occurs with large cathodic overvoltage (0.22-0.62 V). Nucleation of Te on n- and p-Si proceeds via 3D island growth, it is characterised correspondingly by progressive and instantaneous nucleation mechanisms followed by diffusion limited growth. Cathodic deposition of Te onto n- and p-Si is irreversible. Anodic stripping of Te electrodeposited onto p-Si occurs both in the dark and under illumination and anodic stripping of Te from n-Si proceeds only under illumination.  相似文献   

2.
PbSe was electrodeposited onto monocrystalline n-Si(1 0 0) wafers from 50 mM Pb(NO3)2 + 2 mM SeO2 + 0.1 M HNO3 solution. The mechanism of PbSe electrocrystallization on n-Si was studied. At initial stage, 3D Pb and 3D Se nuclei are simultaneously codeposited onto Si at potentials more negative than Si flat band potential and chemically interact resulting in PbSe formation. When n-Si/PbSe heterostructure is formed, the overvoltage of bulk lead deposition increases, as a result of redistribution of electrode potential. Further growth of PbSe is realized due to underpotential deposition (UPD) of Pb and overpotential deposition (OPD) of Se onto formed PbSe nuclei. With Pb UPD shift increase, amorphous Se inclusion is registrated in the deposit. When 2D Pb nucleation mechanism is changed to 3D mode, metal Pb cubic phase is codeposited with PbSe. Electrodeposition of PbSe onto n-Si is irreversible. PbSe anodic stripping does not take place in the dark due to the barrier on solid interface. Oxidation of PbSe on n-Si is observed only under illumination, when photoholes are generated in silicon substrate.  相似文献   

3.
Cyclic voltammetry, chronoamperometry and in situ electrochemical scanning tunneling microscopy were used to study the kinetics of nucleation and crystal growth during the initial stages of copper overpotential deposition (OPD) on a previously iodine-modified Au(1 1 1) electrode, from an aqueous solution 10−3 M CuSO4 in 0.05 M H2SO4. The starting potential during step experiments was chosen in the region where the gold electrode was completely free of the copper deposit. The recorded current transients for copper deposition onto the iodine-modified Au(1 1 1) electrode surface appear to be very complex, with the unusual presence of two or more current maxima. A new method was used for quantitative evaluation of current transients that involves the transition UPD-OPD, developed by our group [M. Palomar-Pardavé, I. González, N. Batina, J. Phys. Chem. B 104 (2000) 3545], was used for the quantitative interpretation. Our results show that, within a single current transient, copper adsorption and two types of nucleation process: two-dimensional (2D) and three-dimensional (3D) limited by lattice incorporation of copper adatoms and diffusion of Cu(II) ion, respectively, take place simultaneously. STM images revealed the enhanced growth of 3D copper on edge of I-Au(1 1 1) during the early stages of deposition. Moreover, our results strongly suggest that the iodine adlayer is constantly present, even after the striping Cu that was overpotential deposited.  相似文献   

4.
The electrodeposition of Cu on Ru(0 0 0 1) from 0.1 M CuSO4/0.5 M H2SO4 solution has been studied by cyclic voltammetry, current-time transient measurements, and by in situ electrochemical atomic force microscopy (EC-AFM). Cyclic voltammetry measurements show that the as-prepared Ru(0 0 0 1) electrode exhibits a UPD peak, while EC-AFM data indicate a broadly terraced surface with step heights of atomic dimensions. Kinetic data show that the electrodeposition/nucleation process is not well described by 3D or 2D nucleation models. The EC-AFM data show that at potentials near the OPD/UPD threshold, Cu crystallites exhibit pronounced growth anisotropy, with lateral dimensions greatly exceeding vertical dimensions. AFM data also show that deposition at more cathodic potentials result in smaller crystallites.  相似文献   

5.
In this article, the electrodeposition of Bi on Au(1 1 1) surface in the underpotential region in BMIBF4 ionic liquid containing BiCl3 is studied by cyclic voltammetry and in situ scanning tunneling microscopy (STM). The cyclic voltammogram shows several cathodic and anodic peaks associated with underpotential deposition (UPD) of Bi and dissolution of the UPD deposit, respectively, in the potential region between −0.38 and −0.7 V versus Pt quasi-reference electrode. In situ STM results indicate there is a BiCl3 precursor adsorption stage prior to the Bi UPD. The adsorption of BiCl3 leads to the formation of unique hexagonal and trigonal supramolecular assembly with a Au(1 1 1)(10 × 10) structure. The initial stage of Bi UPD proceeds with the formation of Au(1 1 1)(7 × 7) R21.8° adlayer structure composed of Bi trigonal clusters at −0.5 V. A structural transformation occurred at −0.6 V resulting in a unique “zipper-like” double-chain pattern composed of well-aligned Bi trigonal clusters which can be denoted by Au(1 1 1)(5 × 25√3/3) structural model. The trigonal clusters composed of six Bi atoms seem to be the main characteristic elemental units of Bi UPD adlayer regardless of underpotential shift. These features are dramatically different from those observed in Bi(III)-containing acidic aqueous solutions as well as in chloroaluminated ionic liquid, but are similar to those of Sb UPD in BMIBF4 ionic liquid, which reveals profound solvent effects on the electrodeposition of semimetals.  相似文献   

6.
The initial stages of Sn and Sn-Cu electrodeposition from Sn-citrate and Sn-Cu-citrate solutions on Pt were studied using both current-controlled and potential-controlled electrochemical techniques. For both Sn-citrate and Sn-Cu-citrate solutions, when the current density is controlled to lower than 15 mA/cm2, potentials remain almost constant which is appropriate to plate dense and uniform films. When the current density is controlled to between 25 and 35 mA/cm2, potentials drop quickly initially, followed by a gradual increase to a constant value. When current density is controlled to higher than 50 mA/cm2, potential oscillation happens, and significant hydrogen evolution prevents the formation of dense and continuous Sn and Sn-Cu films. A constant transition time constant indicates a diffusion-controlled process. The diffusion coefficient calculated from the Sand equation is about 3.8 × 10−6 cm2/s for the Sn-citrate solution and 4.1 × 10−6 cm2/s for the Sn-Cu-citrate solution. The morphology of both Sn and Sn-Cu deposits plated under different potentials was examined by atomic force microscopy (AFM) and the distribution of each element were analyzed using Auger imaging. Analysis of both the electrochemical results at −0.72, −1.1 and −1.5 V and AFM images for both Sn and Sn-Cu deposits at −1.1 and −1.5 V suggested progressive nucleation controlled by diffusion for both Sn and Sn-Cu electrodeposition. Tin reacted with Pt to form PtSn4, and co-deposited with Cu to form Cu6Sn5 during nucleation, with more Sn forming at higher applied potentials.  相似文献   

7.
The rotating ring disk method (RRDE) is applied to investigate the pH effect on oxygen reduction reaction (ORR) on Ag(1 1 1) single crystal surface in 0.1 M KOH and 0.1 M HClO4. In 0.1 M KOH, the ORR proceeds through 4e reaction pathway with a very small (0.5-2.5%) peroxide formation in the entire potential range. In 0.1 M HClO4 the onset potential for the ORR is shifted for ca. 400 mV toward the higher overpotentials compared to the 0.1 M KOH solution. At the low overpotentials, in 0.1 M HClO4 the ORR proceeds entirely as a 2e process, i.e, 100% H2O2 formation. At higher overpotentials, the initial mixed a 2e and 4e reduction is followed by the potential region where the ORR proceeds entirely as a 4e process, with H2O formation as a final product. The pH dependent shift in the onset of the ORR as well as the reaction pathway has been explained based on both: a thermodynamic analysis of pH independent rate determining step, and on the pH dependent change in availability of surface active sites and adsorption energies of molecular oxygen and reaction intermediates.  相似文献   

8.
The kinetics of electrocatalytic reduction of nitrate on Pt(1 1 0) in perchloric acid was studied with cyclic voltammetry at a very low sweep rate of 1 mV s−1, where pseudo-steady state condition was assumed to be achieved at each electrode potential. Stationary current-potential curves in perchloric acid in the absence of nitrate showed two peaks at 0.13 V and 0.23 V (RHE) in the so-called adsorbed hydrogen region. The nitrate reduction proceeded in the potential region of the latter peak in the pH range studied. The reaction orders with respect to NO3 and H+ were observed to be close to 0 and 1, respectively. The former value means that the adsorbed NO3 at a saturated coverage is one of the reactants in the rate-determining step (rds). The latter value means that hydrogen species is also a reactant above or on the rds. The Tafel slope of nitrate reduction was −66 mV per decade, which is taken to be approximately −59 mV per decade, indicating that the rds is a pure chemical reaction following electron transfer. We discuss two possible reaction schemes including bimolecular and monomolecular reactions in the rds to explain the kinetics and suggest that the reactants in the rds are adsorbed hydrogen and adsorbed NO3 with the assistance of the results in our recent report for nitrate reduction on Pt(S)[n(1 1 1) × (1 1 1)] electrodes: the nitrate reduction mechanism can be classified within the framework of the Langmuir-Hinshelwood mechanism.  相似文献   

9.
The mechanism and kinetics of electrocrystallization of Au nanoparticles on glassy carbon (GC) were investigated in the system GC/1 mM KAuCl4 + 0.1 M HClO4. Experimental results show that the gold electrodeposition follows the so-called Volmer-Weber growth mechanism involving formation and growth of 3D Au nanoparticles on an unmodified GC substrate. The analysis of current transients shows that at relatively positive electrode potentials (E ≥ 0.84 V) the deposition kinetics corresponds to the theoretical model for progressive nucleation and diffusion-controlled 3D growth of Au nanoparticles. The potential dependence of the nucleation rate extracted from the current transients is in agreement with the atomistic theory of nucleation. At sufficiently negative electrode potentials (E ≤ 0.64 V) the nucleation frequency becomes very high and the nucleation occurs instantaneously. Based on this behaviour is applied a potentiostatic double-pulse routine, which allows controlled electrodeposition of Au nanoparticles with a relatively narrow size distribution.  相似文献   

10.
Zinc electrodeposition in the presence of polyethylene glycol 20000   总被引:2,自引:0,他引:2  
The influence of polyethylene glycol 20000 (PEG20000) on the mechanism of zinc deposition and nucleation was studied by voltammetry, chronoamperometry, and atomic force microscopy (AFM). The electrodeposition of zinc in an electrolytic bath containing PEG20000 occurs via two reduction processes with different energies that involve the same species, ZnCl42−: the first reduction process occurs at EPI′c = −1.25 V, SCE, whereas the second process, which corresponds to the bulk deposition of Zn, occurs at EPII′c = −1.6 V, SCE without significant interference from the hydrogen evolution reaction. Analysis of chronoamperograms obtained in the absence and presence of PEG20000 indicates that distinct nucleation mechanisms are involved during the initial stages of Zn deposition. In the absence of PEG20000, the transients are consistent with the model of 3D diffusion-controlled nucleation. In the presence of PEG20000, however, the transients exhibit a more complex form involving two simultaneous nucleation and growth processes: 2D instantaneous nucleation limited by the incorporation of adatoms (2Di-li) and a diffusion-controlled 3D nucleation mechanism (3D-dc). Characterization of the surface morphologies of the zinc deposits by AFM imaging confirmed our conclusions drawn from the electrochemical studies. SEM analysis showed that the zinc coatings obtained in the presence of PEG20000 at −1.6 V, SCE are smoother and more compact.  相似文献   

11.
Electroless ZnO deposition on a glass substrate from dissolved oxygen-free aqueous solutions containing Zn(NO3)2 and dimethylamineborane (DMAB) was examined to yield ZnO films applicable to a transparent conducting oxide (TCO). Concentration of Zn(NO3)2 was optimized in terms of crystal growth orientation and surface morphology using XRD and AFM, and that ranging from 0.065 to 0.075 M was found to provide well 〈0 0 0 1〉-oriented dense ZnO films. The polycrystalline ZnO films deposited with Zn(NO3)2 concentration of 0.07 M had a preferred 〈0 0 0 1〉 growth orientation and exhibited high visible transparency. Top-view and cross-sectional FE-SEM images revealed that hexagonal columnar ZnO grains with 200 nm in diameter and 290 nm in length grew almost vertically from a glass substrate. Heat treatment at 723 K under a reductive atmosphere was performed to increase the intrinsic carrier concentration in the ZnO film, and Hall effect measurements revealed low electrical resistivity of 4.7 × 10−3 Ω cm.  相似文献   

12.
High-density, surface-mounted ferrocene has been prepared using covalent immobilisation of an alcohol substituted ferrocene derivative to a pre-assembled single-walled carbon nanotubes directly anchored to silicon(1 0 0) surface (SWCNTs-Si). The formation of these ferrocene-modified electrodes (Fc-SWCNTs-Si) has been followed using X-ray photoelectron spectroscopy and atomic force microscopy. Electrochemical results show the surface concentration of ferrocenemethanol molecules is 9.26 × 10−8 mol cm−2, which is about 500-1000 times greater than the experimentally measured coverage of ferrocene directly attached to flat Si(1 0 0) surfaces. The reversible one-electron wave of the ferrocene/ferrocenium couple was observed at 490 mV versus Ag+/Ag and the apparent rate constant of electron transfer, kapp, was 21 s−1. These results suggest these ferrocene-modified electrodes are excellent candidates for molecular memory devices.  相似文献   

13.
Kinked Pt(7 5 1) surface was prepared and its electrochemical behaviors under different pretreatment conditions in acidic media were investigated systematically by using cyclic voltammetry. The results demonstrated that the upper limit of potential scanning and cooling atmospheres after the Pt(7 5 1) having been flame-annealed significantly influence the voltammetric behavior of Pt(7 5 1) electrode. The electric charge of hydrogen adsorption-desorption slightly increases with increasing the upper limit of potential scanning. Different cooling atmospheres give rise impacts to the surface structure of Pt(7 5 1) electrode, but hardly change the amount of hydrogen adsorption-desorption sites on the electrode. In addition, the so-called third oxidation peak appears near −0.08 V in H2SO4 media and −0.05 V in HClO4 solution because of the presence of (1 1 0) terrace sites on this surface, and a plausible mechanism for the formation of this current peak is discussed. The results are of importance in understanding the electroadsorption properties of the kinked Pt(7 5 1) surface, as well as in further exploration of this kinked electrode in electrocatalysis.  相似文献   

14.
Different surface states (GeOH and GeH) were found on n-Germanium. These two surface states can be controlled by potential (GeH at U<−0.2 V, GeOH at U>0.1 V in 0.5 M H2SO4). The surface reaction Had↔OHad is reversible and can be described by:
(1)  相似文献   

15.
Kinetics and mechanism of nitrate ion reduction on Pt(1 1 1) and Cu-modified Pt(1 1 1) electrodes have been studied by means of cyclic voltammetry, potentiostatic current transient technique and in situ FTIRS in solutions of perchloric and sulphuric acids to elucidate the role of the background anion. Modification of platinum surface with copper adatoms or small amount of 3D-Cu crystallites was performed using potential cycling between 0.05 and 0.3 V in solutions with low concentration of copper ions, this allowed us to vary coverage θCu smoothly. Following desorption of copper during the potential sweep from 0.3 to 1.0 V allowed us to estimate actual coverage of Pt surface with Cu adatoms. Another manner of the modification was also applied: copper was electrochemically deposited at several constant potentials in solutions containing 10−5 or 10−4 M Cu2+ and 5 mM NaNO3 with registration of current transients of copper deposition and nitrate reduction.It has been found that nitrate reduction at the Pt(1 1 1) surface modified by copper adatoms in sulphuric acid solutions is hindered as compared to pure platinum due to induced sulphate adsorption at E < 0.3 V. Sulphate blocks the adsorption sites on the platinum surface and/or islands of epitaxial Cu(1 × 1) monolayer thus hindering the adsorption of nitrate anions and their reduction. The extent of inhibition weakly depends on the copper adatom coverage. Deposition of a small amount of bulk copper does not affect noticeably the rate of nitrate reduction.Nitrate reduction on copper-modified Pt(1 1 1) electrodes in perchloric acid solutions occurs much faster as compared to pure platinum. The steady-state currents are higher by 4 and 2 orders of magnitude at the potentials of 0.12 and 0.3 V, respectively. The catalytic effect of copper adatoms is largely caused by the facilitation of nitrate adsorption on the platinum surface near Cuad and/or on the islands of the Cu(1 × 1) monolayer (induced nitrate adsorption).Hydrogen adatoms block the adsorption sites on platinum for NO3 anion adsorption and inhibit reactions of nitrate reduction even at moderate surface coverage.The products of nitrate reduction in sulphuric and perchloric acids are essentially the same (NO and ammonia) irrespective of the presence or absence of Cu on the platinum surface.  相似文献   

16.
The effect of an uniform magnetic field with a flux density up to 1 T and different configurations relative to the electrode surface on the electrocrystallization of Fe on polycrystalline Au(1 1 1) from acidic sulphate electrolyte has been investigated. It was found, irrespective of the applied parameters, that the deposition proceeds through successive nucleation and growth steps. The first one related to 2D growth was followed by a second nucleation and 3D diffusion controlled growth. At potential of −1500 and −1550 mVMSE nucleation proceeds via a progressive mode, while at −1650 mVMSE it follows an instantaneous mode. A strong influence of the parallel-to-electrode magnetic field on the nucleation processes was found for the progressive mode, which leads to the increase of the growth rate and as a consequence to retardation of the nucleation rate of the 3D step. Additionally, in this configuration at a sufficiently high magnetic flux density a third nucleation step could be observed (3D), which was found to be also affected by a magnetic field. No effect of a perpendicular-to-electrode magnetic field on the nucleation has been observed. The effects of a magnetic field on the nucleation and growth processes are discussed with respect to the magnetohydrodynamic effect (MHD) and confirmed by rotating disc electrode (RDE) experiments.  相似文献   

17.
Perovskite-type ternary oxides with molecular formulae, La2−xSrxNiO4 (0 ≤ x ≤ 1), were prepared by a modified citric acid sol-gel route at 600 °C for their possible use in a direct methanol fuel cell (DMFC). The study was conducted by cyclic voltammetry, chronoamperometry, impedance and anodic Tafel polarization techniques. The results showed that the electrocatalytic activity of the base oxide (x = 0) in 1 M KOH plus 1 M CH3OH at 25 °C increases with x, the observed current densities being 23.6, 47.3, 43.2 and 50.9 mA cm−2 at a scan rate of 10 mV s−1 and E = 0.6 V versus Hg/HgO for oxides with x = 0, 0.25, 0.5 and 1.0, respectively. All the four perovskite anodes used in this study did not indicate any poisoning by the methanol oxidation intermediates/products. The methanol electro-oxidation reaction followed a Tafel slope of ∼2 × 2.303RT/3F (=40 mV decade−1) on each oxide catalyst, regardless of Sr content.  相似文献   

18.
The electrochemical reduction of nitrate ion was studied by cyclic voltammetry on Pt(1 1 1) and [n(1 1 1) × (1 1 1)] stepped Pt surfaces, where n (=14, 10, 7, 6, 5, 4, 3, 2) is the number of terrace atoms, in 0.1 M HClO4 + 10 mM KNO3. The electrocatalytic nitrate reduction was found to hardly proceed on Pt(1 1 1) in the hydrogen adsorption region, while the electrocatalytic activity was improved with the increase in the step density. Inactivation was observed in the presence of adsorbed hydrogen or nitrate-derived reduced adsorbate, i.e. adsorbed NO, on (1 1 1) step sites. It was, therefore, concluded that the electrocatalytically active NO3 species does not adsorb on the (1 1 1) terraces but on the (1 1 1) monoatomic steps. The nitrate reduction current increased with the step density in a non-linear relationship. The overall current density at 0.21 V (RHE) corresponding to the peak potential of the main electrocatalytic nitrate reduction wave which was maximum at n = 2, abruptly increased with short terraces, i.e. n < 5, where the current wave of adsorbed hydrogen on the Pt stepped surface with comparatively narrow (1 1 1) terraces, denoted as Hnt, also appeared unmodified for n < 5 on voltammograms recorded in 0.1 M HClO4 in the absence of nitrate.  相似文献   

19.
Phase equilibria and glass formation studies of the (1 − x)TeO2-xCdO system (0.05 ≤ x ≤ 0.33 mol) were realized by using differential thermal analysis (DTA), X-ray diffraction (XRD) and scanning electron microscopy (SEM) techniques. The samples were prepared by applying a conventional melt-quenching technique at 800 °C. The glass formation range of the system was determined as 0.05 ≤ x < 0.15 and the sample containing 10 mol% CdO showed the highest glass stability. Crystallization behavior of the TeO2-CdO glasses was investigated and formation and/or transformation of different phases were detected for each crystallization reaction. In order to obtain thermal stability of the system, as-cast samples were heat-treated above all crystallization reaction temperatures at 550 °C for 24 h. A binary eutectic: liquid → TeO2 + CdTe2O5 was detected at 638 ± 4 °C. Crystallization behavior of the TeO2-CdO glasses and microstructural characterization of the TeO2-CdTe2O5 system was realized.  相似文献   

20.
Surface structure of Pt(3 1 0) = 3(1 0 0)-(1 1 0), which contains kink atoms in the step, has been determined with the use of in situ surface X-ray scattering (SXS) in the double layer region (0.50 V(RHE)) in 0.1 M HClO4. Clean Pt(3 1 0) surface has pseudo (1 × 1) structure on which lateral displacements of 2-9% and 0.3-1% are found along a and b directions, respectively, whereas the surfaces of Pt(1 1 0) = 2(1 1 1)-(1 1 1) and Pt(3 1 1) = 2(1 0 0)-(1 1 1) are reconstructed to (1 × 2) according to previous reports. Interlayer spacing between the first and the second layers d12 is contracted about 5% compared with the bulk spacing, whereas those between underlying layers are expanded down to fourth layer. Fully adsorbed CO has no effect on the surface structure of Pt(3 1 0). This result differs from that on Pt(1 1 1), where d12 is expanded after CO adsorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号