首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In this paper we report the combined, positive effect of triphenyloborane (BPh3) additive on conductivity and lithium cation transference numbers in poly(ethylene oxide) dimethyl ether (PEODME)-lithium trifluoromethanesulfonate (LiCF3SO3, LiTf) electrolytes. The transport mechanism is discussed on the basis of impedance measurements, restricted diffusion t+ measurements, ionic association semi-empirical quantitative estimation and spectroscopic studies. A substantial increase in the lithium transference number values in triphenylborane enriched composite electrolytes was observed in comparison with the pure PEODME-LiCF3SO3 electrolyte. This effect is assisted by ionic conductivity enhancement.  相似文献   

2.
Hu Cheng 《Electrochimica acta》2007,52(19):5789-5794
New gel polymer electrolytes containing 1-butyl-4-methylpyridinium bis(trifluoromethanesulfonyl)imide (BMPyTFSI) ionic liquid are prepared by solution casting method. Thermal and electrochemical properties have been determined for these gel polymer electrolytes. The addition of BMPyTFSI to the P(EO)20LiTFSI electrolyte results in an increase of the ionic conductivity, and at high BMPyTFSI concentration (BMPy+/Li+ = 1.0), the ionic conductivity reaches the value of 6.9 × 10−4 S/cm at 40 °C. The lithium ion transference numbers obtained from polarization measurements at 40 °C were found to decrease as the amount of BMPyTFSI increased. However, the lithium ionic conductivity increased with the content of BMPyTFSI. The electrochemical stability and interfacial stability for these gel polymer electrolytes were significantly improved due to the incorporation of BMPyTFSI.  相似文献   

3.
2-(2-methyloxyethoxy)ethanol modified poly (cyclotriphosphazene-co-4,4′-sufonyldiphenol) (PZS) nanotubes were synthesized and solid composite polymer electrolytes based on the surface modified polyphosphazene nanotubes added to PEO/LiClO4 model system were prepared. Differential Scanning Calorimetry (DSC) and Scanning Electron Microscopy (SEM) were used to investigate the characteristics of the composite polymer electrolytes (CPE). The ionic conductivity, lithium ion transference number and electrochemical stability window can be enhanced after the addition of surface modified PZS nanotubes. The electrochemical investigation shows that the solid composite polymer electrolytes incorporated with PZS nanotubes have higher ionic conductivity and lithium ion transference number than the filler SiO2. Maximum ionic conductivity values of 4.95 × 10−5 S cm−1 at ambient temperature and 1.64 × 10−3 S cm−1 at 80 °C with 10 wt % content of surface modified PZS nanotubes were obtained and the lithium ion transference number was 0.41. The good chemical properties of the solid state composite polymer electrolytes suggested that the inorganic-organic hybrid polyphosphazene nanotubes had a promising use as fillers in solid composite polymer electrolytes and the PEO10-LiClO4-PZS nanotubes solid composite polymer electrolyte can be used as a candidate material for lithium polymer batteries.  相似文献   

4.
A method to produce nanocomposite polymer electrolytes consisting of poly(ethylene oxide) (PEO) as the polymer matrix, lithium tetrafluoroborate (LiBF4) as the lithium salt, and TiO2 as the inert ceramic filler is described. The ceramic filler, TiO2, was synthesized in situ by a sol–gel process. The morphology and crystallinity of the nanocomposite polymer electrolytes were examined by scanning electron microscopy and differential scanning calorimetry, respectively. The electrochemical properties of interest to battery applications, such as ionic conductivity, Li+ transference number, and stability window were investigated. The room‐temperature ionic conductivity of these polymer electrolytes was an order of magnitude higher than that of the TiO2 free sample. A high Li+ transference number of 0.51 was recorded, and the nanocomposite electrolyte was found to be electrochemically stable up to 4.5 V versus Li+/Li. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2815–2822, 2003  相似文献   

5.
Shanshan Wang 《Polymer》2010,51(13):2864-2871
Thermoplastic polyurethane (TPU) electrolytes with lithium salts were prepared by an in-situ polymerization method. Three different lithium salts were used to study the effects of the anion structure on the properties of polyurethane electrolytes: LiCl, LiClO4, LiN(SO2CF3)2 (LiTFSI). The effects of the anion structure on monomer (PTMG) prior to polymerization and on the properties of TPU electrolytes post polymerization were investigated. The anion structure of lithium salt has a significant influence on the ionic conductivity, thermal stability and tensile property of TPU electrolytes. The TPU electrolytes with LiTFSI demonstrated a high ionic conductivity up to 10−5 S/cm at 300 K. The ionic conductivity of polyurethane electrolytes with lithium salts is in the order: LiCl < LiClO4 < LiTFSI. It was found that the lithium salts with larger anions were easily dissociated in TPU and had stronger interaction with TPU, which provided more charge carriers and gave higher ionic conductivity.  相似文献   

6.
Two polar polymers with different dielectric constants, poly(vinylidene fluoride) (PVDF) and poly(ethylene oxide) (PEO), were each blended with a chlorine-terminated poly(ethylene ether) (PEC) and one of the two salts, LiBF4 and LiCF3CO2, to form PEC plasticized polymer electrolytes. The room-temperature ionic conductivity of the PEC plasticized polymer electrolytes reached a value as high as 10?4 S/cm. The room-temperature ionic conductivity of the PVDF-based polymer electrolytes displayed a stronger dependence on the PEC content than did the PEO-based polymer electrolytes. In PVDF/PEC/LiBF4 polymer electrolytes, the dynamic ionic conductivity was less dependent on temperature and more dependent on the PEC content than it was in PEO/PEC/LiBF4 polymer electrolytes. The highly plasticized PVDF-based polymer electrolyte film with a PEC content greater than CF4 (CF4 defined as the molar ratio of the repeat units of PEC to those of PVDF equal to 4) was self-supported and nonsticky, while the corresponding PEO-based polymer electrolyte film was sticky. In these highly plasticized PVDF-based polymer electrolytes, the curves of the room-temperature ionic conductivity vs. the salt concentration were convex because the number of carrier ions and the chain rigidity both increased with increase of the salt content. The maximum ionic conductivity at 30°C was independent of the PEC content, but it depended on the anion species of the lithium salts in these highly plasticized polymer electrolytes. © 1995 John Wiley & Sons, Inc.  相似文献   

7.
Hybrid polymer dry electrolytes comprised of poly(ethylene oxide) (PEO), polyacrylonitrile (PAN), and LiClO4 were investigated. The impedance spectroscopy showed that the effect of PAN on the ion conductivity of PEO‐based electrolytes depends on the concentration of lithium salt. When the mole ratio of lithium to oxygen is 0.062 (15%LiClO4‐PEO), adding PAN will increase the ionic conductivity. Differential scanning calorimetry, NMR, and IR data suggested that the enhanced conductivity was due to both the decreasing of the PEO crystallinity and increasing of the degree of ionization of lithium salt. There was obviously no interaction between PAN and lithium ions, and PAN acts as a reinforcing filler, and hence contributes to the mechanical strength besides reducing the crystallinity of the polymer electrolytes. When the LiClO4‐PEO‐PAN hybrid polymer electrolyte was heated at 200°C under N2, PAN crosslinked partially, which further decreased the crystallinity of PEO and increased the ionic conductivity, and at the same time prevented the recrystallization of PEO upon sitting at ambient environment. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1530–1540, 2006  相似文献   

8.
It is shown that the addition of calix[6]pyrrole to polyether based electrolytes doped with LiBF4 results in an considerable increase in the cation transport number tLi+ as confirmed by dc-ac current techniques as well as by PFG NMR studies. The value of tLi+ in composite electrolytes beyond a certain minimum value weakly depends on the concentration of added calix[6]pyrrole. The increase in lithium transference number is associated with a decrease in ionic conductivity of composite polymeric electrolytes compared to the pure PEO-LiBF4 systems.  相似文献   

9.
Nanocomposite polymer electrolytes (NCPEs) composed of poly(ethylene oxide), calcium phosphate [Ca3(PO4)2], and lithium perchlorate (LiClO4)/lithium bis(trifluoromethane sulfonyl)imide [LiN(CF3SO2)2 or LiTFSI] in various proportions were prepared by a hot‐press method. The membranes were characterized by scanning electron microscopy, differential scanning calorimetry, thermogravimetry–differential thermal analysis, ionic conductivity testing, and transference number studies. The free volume of the membranes was probed by positron annihilation lifetime spectroscopy at 30°C, and the results supported the ionic conductivity data. The NCPEs with LiClO4 exhibited higher ionic conductivities than the NCPE with LiTFSI as a salt. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

10.
Shanshan Wang 《Polymer》2010,51(12):2621-2628
Polymer electrolytes based on thermoplastic polyurethane (TPU) and polyether modified polysiloxane (PEMPS) blend with lithium salts were developed via an in-situ polymerization of TPU with the presence of PEMPS and salts. Morphological study of TPU/PEMPS electrolytes showed that TPU and PEMPS were immiscible and TPU/PEMPS electrolytes had a multiphase morphology. The lithium salt enhanced the interfacial compatibilization between TPU and PEMPS via the interaction of lithium ions with different phases. Three lithium salts with different interaction strengths with TPU and PEMPS were used to prepare TPU/PEMPS electrolytes with different levels of phase compatibilization: LiCl, LiClO4, and LiN(SO2CF3)2 (LiTFSI). The effect of PEMPS on ionic conductivity, dimensional stability and thermal stability of TPU/PEMPS electrolytes and their relationship with the blend morphology were investigated. TPU/PEMPS electrolytes showed good dimensional stability and thermal stability. The addition of PEMPS to TPU increased the ionic conductivity of TPU/PEMPS electrolytes. The room temperature ionic conductivity of TPU/PEMPS electrolytes with LiTFSI can reach up to 2.49 × 10−5 S/cm.  相似文献   

11.
Hyperbranched network-based gel copolymer electrolytes are synthesized by in situ free radical polymerization. This research is separated into two parts: the first is an investigation of modified bismaleimide oligomer (MBMI) as a free volume additive, and the second investigates the salt concentration effect on high power application. A polymer electrolyte with MBMI additive provided more free volume space, and the ionic conductivity of gel copolymer electrolytes was measured as a function of the salt concentration of lithium hexafluorophosphate (LiPF6). The highest ionic conductivity and the lowest activation energy of hyperbranched-network gel copolymer electrolytes were determined to be 7.72 × 10−3 S/cm at 23 °C and 5.41 kJ/mol, respectively. Furthermore, the MBMI additive and the optimal concentration of lithium salt increased the free space for carrier ions and contributed to increasing capacity and working voltage at a high rate discharge (8C). The reliability and cycling ability of lithium polymer batteries are as good as lithium ion batteries for potential electric vehicle (EV) application.  相似文献   

12.
The aim of the present work is to generalize an ion transport phenomena observed in composite polymeric electrolytes using the previously developed models as well as design a new approach which would be helpful in describing changes in conductivity and lithium ion transference numbers occurring upon addition of fillers to polymeric electrolytes. The concept is based on the observation of changes in ionic associations in the polymeric electrolytes studied in a wide salt concentration range. The idea is illustrated by the results coming from a variety of electrochemical and structural data obtained for composite electrolytes containing specially designed inorganic and organic fillers.  相似文献   

13.
Novel solid-state composite polymer electrolytes based on poly (ethylene oxide) (PEO) by using LiClO4 as doping salts and inorganic–organic hybrid poly (cyclotriphosphazene-co-4,4′-sulfonyldiphenol) (PZS) microspheres as fillers were prepared. Electrochemical and thermal properties of PEO-based polymer electrolytes incorporated with PZS microspheres were studied. Differential scanning calorimetry (DSC) results showed there was a decrease in the glass transition temperature of the electrolytes and the crystallinity of the samples in the presence of the fillers. Maximum ionic conductivity values of 1.2 × 10−5 S cm−1 at ambient temperature and 7.5 × 10−4 S cm−1 at 80° were obtained and lithium ion transference number was 0.29. Compared with traditional ceramic fillers such as SiO2, the addition of PZS microspheres increased the ionic conductivity of the electrolytes slightly and led to remarkable enhancement in the lithium ion transference number.  相似文献   

14.
Novel thermoplastic polyurethanes with chelating groups were synthesized from 4,4′-diphenylmethane diisocyanate (MDI), poly(ethylene glycol) (PEG), and EP-IDA. Differential scanning calorimetry (DSC), fourier transform infrared spectroscopy (FT-IR), and impedance spectroscopy (IS) were used to monitor changes in the morphology of these polyurethanes with the concentration of lithium perchlorate (LiClO4) dopants. Adding the salt significantly changes the FTIR spectrum of the polyurethane, indicating an interaction between the lithium cation within the urethane group and the chelating group. The soft segment Tg increases with LiClO4 concentration, as determined by DSC, indicating that solubility of the lithium cation in the host polyurethane increases with the chelating groups. IS shows that the bulk conductivity reaches a maximum as the salt concentration is increased. One of the investigated polyurethane electrolytes has an ionic conductivity as high as ∼10−6 S cm−1 at room temperature.  相似文献   

15.
Polymer electrolyte based lithium ion batteries represent a revolution in the battery community due to their intrinsic enhanced safety, and as a result polymer electrolytes have been proposed as a replacement for conventional liquid electrolytes. Herein, the preparation of a family of crosslinked network polymers as electrolytes via the ‘click‐chemistry’ technique involving thiol‐ene or thiol‐epoxy is reported. These network polymer electrolytes comprise bifunctional poly(ethylene glycol) as the lithium ion solvating polymer, pentaerythritol tetrakis (3‐mercaptopropionate) as the crosslinker and lithium bis(trifluoromethane)sulfonimide as the lithium salt. The crosslinked network polymer electrolytes obtained show low Tg, high ionic conductivity and a good lithium ion transference number (ca 0.56). In addition, the membrane demonstrated sterling mechanical robustness and high thermal stability. The advantages of the network polymer electrolytes in this study are their harmonious characteristics as solid electrolytes and the potential adaptability to improve performance by combining with inorganic fillers, ionic liquids or other materials. In addition, the simple formation of the network structures without high temperatures or light irradiation has enabled the practical large‐area fabrication and in situ fabrication on cathode electrodes. As a preliminary study, the prepared crosslinked network polymer materials were used as solid electrolytes in the elaboration of all‐solid‐state lithium metal battery prototypes with moderate charge–discharge profiles at different current densities leaving a good platform for further improvement. © 2018 Society of Chemical Industry  相似文献   

16.
We have applied the concept of heterogeneous doping [1] to prepare and examine composite electrolytes, consisting of silica particles, low molecular weight polyethylene glycol solvents and lithium perchlorate salt. These “soggy sand” electrolytes combine high ionic conductivities (on the order of mS cm−1) and high Li transference numbers (typically 60–80%) with improved mechanical properties. They were characterized using differential scanning calorimetry, dc-polarization and ac-impedance spectroscopy, zeta potential measurements and viscosimetry. Oxide, size and concentration as well as solvent molecular weight were varied to better understand the influence of ceramic oxide fillers on the ion conduction in these systems. As regarding the filler content, we observe that both conductivity and transference number of Li+ start increasing already at low volume fractions of oxide particles, reach a maximum and subsequently decrease to low values. The percolating network is – after initial partial coarsening – found to be stable within the time periods of the measurements.  相似文献   

17.
Polymeric solid electrolytes, with excellent cationic conductivity, were prepared from the complexation of lithium methoxyoligo(oxyethylene) sulfate and lithium methoxyoligo(oxyethylene) sulfonate with poly[methoxyoligo(oxyethylene)methacrylate-co-acrylamide]. The electrolytes exhibit low glass transition temperature and have almost no crystal. Their ionic conductivities at 25°C are over 10?5 S/cm. The carrier number in the complex decreases while ionic mobility increases considerably with increasing considerably with increasing temperature. The polarization reversing method confirms that the cationic transference numbers are all over 0.9. The electrolytes have single ion conduction characteristics in DC polarization. © 1995 John Wiley & Sons, Inc.  相似文献   

18.
Hexanoyl chitosan that exhibited solubility in tetrahydrofuran was prepared by acyl modification of chitosan. Films of hexanoyl chitosan‐based polymer electrolyte were prepared by the technique of solution casting. Ethylene carbonate, propylene carbonate, and diethyl carbonate with different dielectric constants were employed as the plasticizing solvents and lithium trifluoromethanesulfonate (LiCF3SO3) was used as the salt. The importance of dielectric constant affecting conductivity and transport properties of hexanoyl chitosan:LiCF3SO3 electrolytes have been examined in the present study. An enhancement in the ionic conductivity has been found on plasticization, and the magnitude of conductivity increment strongly depended on the dielectric constant of the plasticizer. Transport properties such as activation energy and charge carrier concentration have been calculated to obtain information that may be used to elucidate the mechanism of conductance. In addition to conductivity studies, thermal studies and transference number measurements were performed to correlate the phase structure and diffusion phenomena to the conductivity behavior of hexanoyl chitosan‐based polymer electrolyte. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101:4474–4479, 2006  相似文献   

19.
A safe electrolyte system is prepared from N-methyl-N-propylpiperidinium bis (trifluoromethanesulfonyl) imide (PP13TFSI), organic electrolyte (1 mol L−1 LiPF6/EC-DEC) and lithium bis (oxalato) borate (LiBOB). The additive of LiBOB enhances the stability of interface between electrolyte and anode. The LiBOB-containing mixed electrolytes show non-flammability and good compatibility with active materials. The performance of anode for lithium ion battery is successfully improved by LiBOB-containing mixed electrolytes, which shows 200 mA h g−1 reversible capacities at 0.3 C rate. The ionic conductivity and the lithium ion transference number in LiBOB-containing mixed electrolytes system also suits to application for lithium ion battery.  相似文献   

20.
Tomonobu Mizumo 《Polymer》2004,45(3):861-864
Poly(propylene oxide) (PPO) tailed lithium(trifluoromethyl sulfonylimide)s (TFSI-PPO) were prepared as non-onium type ionic liquid polymers. Introduction of PPO chain to the TFSI salt group resulted in lower the glass transition temperature (Tg) and induce the salt dissociation. The TFSI-PPO showed relatively high ionic conductivity owing to the high dissociation degree of the TFSI salt group. The maximum ionic conductivity of 3.3×10−6 S cm−1 was observed at 30 °C for TFSI salt having PPO tail with number average molecular weight of 850. On the other hand, PPOs having the same salt moiety on both chain ends ((TFSI)2-PPO) showed higher Tg than that of TFSI-PPOs. The lithium transference number of the (TFSI)2-PPO with PPO chain length of Mn=2000 was 0.74 in spite of slightly lower ionic conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号