首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 30 毫秒
1.
Stable silver thin films were prepared either by chemical deposition or by argon sputtering on germanium and silicon substrates, respectively, and used as electrodes for in situ infrared spectroscopy experiments with a Kretschmann internal reflection configuration. The spectra obtained for acetate anions adsorbed from neutral solutions showed a noticeable intensity enhancement (SEIRA effect). This enhanced absorption has been related to the surface structure of the films that have been characterized by ex situ STM and in situ electrochemical measurements (lead underpotential deposition, UPD). STM images of the chemically deposited silver films show mean grain sizes ranging from ca. 20 to 90 nm for deposition times between 2 and 20 min, and the absence of flat domains. On the other hand, STM images of the films deposited by argon sputtering show mean grain sizes around 30 nm for a film growth rate of 0.05 nm s−1 and 70 nm for a film growth rate of 0.005 nm s−1. In this latter case, atomically flat domains up to 50 nm wide have been observed. This observation is consistent with a more defined voltammetric profile for lead UPD, that indicates a higher degree of surface order. Moreover, the roughness factor obtained from the charge density involved in lead UPD in the case of the sputtered silver film is lower than that measured for the chemically deposited silver film. All these structural data can be connected with the observations on the effect of deposition conditions of the silver film on the SEIRA effect for adsorbed acetate. Maximum enhancement is observed for chemically deposited films and sputtered films at high deposition rate for which the grain size is around 40-60 nm. The increase of the grain size for the sputtered silver films deposited at decreasing deposition rates can be related to the observed decrease in the SEIRA effect.  相似文献   

2.
A.A. Woodworth 《Carbon》2010,48(7):1999-2003
Ni films ranging in thickness from 0.4 nm to 50 nm were deposited by evaporation onto terraced SiC (0 0 0 1) substrates at room temperature and annealed at 700 °C. The resulting changes in surface composition and morphology were characterized using Auger electron spectroscopy and atomic force microscopy. In all cases, graphitic films dominate the surface chemistry. There appears to be three different thickness dependent morphology regimes. For the thinnest Ni films (0.4 nm), there is a uniform carbon-overlayer. For slightly thicker Ni films (0.6-9.6 nm), clustering and platelet formation are observed, and for still thicker films (50 nm), the platelets give way to hillocks. Within the platelet regime, there is a critical thickness at which surface roughening occurs. These results reveal a potential parametric window in which graphene may be produced and harvested.  相似文献   

3.
We have investigated the adsorbed intermediates of ethanol electro-oxidation at Pt(1 1 1), Pt(1 0 0) and Pt(1 1 0) using FTIR and SFG spectroscopies. Mainly, we focus on the CO formation. The aim of the present work is to compare the responses coming from two different surface probes: FTIR spectroscopy and SFG spectroscopy. Between 1800 cm−1 and 2300 cm−1, our FTIR and SFG results are in good agreement. Specifically in the case of the ethanol/Pt(1 1 1) interface, the SFG spectroscopy presents higher sensibility to the interface response compared to the FTIR spectroscopy.  相似文献   

4.
Thin Cu films of microelectronic quality and low electrical resistivity were created by electroless deposition (ELD) onto SiO2 surface modified first with self-assembled monolayer (SAM) of 3-aminopropyltrimethoxysilane (APTMS) and activated then by 5 nm gold nano-particles (AuNPs). The presence of highly oriented amino-terminated SAM was revealed by XPS and ToF-SIMS analyses. The Cu films were deposited in boron- and phosphorous-free tartrate/formaldehyde electrolyte. Controlling the deposition rate via the solution pH permitted a minimum value in resistivity ρ. XPS depth profile revealed that diffusion of Cu into SiO2 modified by APTMS did not take place after annealing at 220 °C, 4 h. Moreover, annealing resulted in the drop of electrical resistivity to ρ = 4 ± 0.4 μΩ cm for the films with the thickness of 35-100 nm. This value of ρ is several times smaller than those reported in literature for sub-100 nm Cu films deposited by electroless on different SAMs. It is speculated that nano-scale porosity and corrugated structure observed by HRTEM and AFM in the ELD Cu films contribute to the resistivity. The obtained results demonstrate a viable route for formation of low resistivity, sub-100 nm Cu films on dielectrics for microelectronic application.  相似文献   

5.
The paper reports on the preparation and characterization of organosilicon thin polymer films deposited on glass slides coated with 5 nm adhesion layer of titanium and 50 nm of gold. The polymer was obtained by the decomposition of 1,1,3,3-tetramethyldisiloxane precursor (TMDSO) premixed with oxygen induced in a N2 plasma afterglow using remote plasma-enhanced chemical vapor deposition (PECVD) technique. The film thickness was controlled by laser interferometry and was 9 nm. The chemical stability of the gold substrate coated with the organosilicon polymer film (p-TMDSO) was studied in different acidic and basic solutions (pH 1-14). While the gold/polymer interface showed a high stability in acidic media, the film was almost completely removed in basic solutions. The resulting surfaces were characterized using atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), water contact angle measurements, cyclic voltammetry, and surface plasmon resonance (SPR).  相似文献   

6.
The paper reports on the corrosion behavior of carbon steel coated with thin SiOx-like oxide films. The SiOx-like coatings were deposited by plasma-enhanced chemical vapor deposition (PECVD) and their thickness was varied between 20 and 200 nm. The coated carbon steel interfaces were investigated for their corrosion protection efficiency when immersed in an aqueous saline solution of 3% NaCl. FTIR measurements and electrochemical impedance spectroscopy (EIS) experiments revealed that thin SiOx-like coating layers (20 nm thick) do not prevent the carbon steel from corrosion, while thicker silica layers (d ≥ 100 nm) protect efficiently carbon steel interfaces in highly saline media with a protection efficiency of about 96% for a 200 nm thick coating.  相似文献   

7.
This paper reviews recent progress in the studies of buried polymer interfaces using sum frequency generation (SFG) vibrational spectroscopy. Both buried solid/liquid and solid/solid interfaces involving polymeric materials are discussed. SFG studies of polymer/water interfaces show that different polymers exhibit varied surface restructuring behavior in water, indicating the importance of probing polymer/water interfaces in situ. SFG has also been applied to the investigation of interfaces between polymers and other liquids. It has been found that molecular interactions at such polymer/liquid interfaces dictate interfacial polymer structures. The molecular structures of silane molecules, which are widely used as adhesion promoters, have been investigated using SFG at buried polymer/silane and polymer/polymer interfaces, providing molecular-level understanding of polymer adhesion promotion. The molecular structures of polymer/solid interfaces have been examined using SFG with several different experimental geometries. These results have provided molecular-level information about polymer friction, adhesion, interfacial chemical reactions, interfacial electronic properties, and the structure of layer-by-layer deposited polymers. Such research has demonstrated that SFG is a powerful tool to probe buried interfaces involving polymeric materials, which are difficult to study by conventional surface sensitive analytical techniques.  相似文献   

8.
Nanostructured carbon films with thicknesses of 100 and 200 nm have been deposited from pure vapour carbon plasma using an original thermionic vacuum arc method. Silicon single crystalline wafers, glass and stainless steel held at 400 °C were used for substrates. The films consist of diamond nanoparticles of 5 nm diameter on the average embedded in a disordered graphite matrix as revealed by HRTEM, XPS and visible Raman measurements. The graphitic cluster diameters La range from 1.5 to 2.3 nm. Thicker films (200 nm) on stainless steel exhibit the largest clusters.  相似文献   

9.
Mechanical spectroscopy is applied to thin polystyrene films of 7.5-730 nm thickness spin coated on a thin silicon reed. Below a thickness of 100 nm, the α-relaxation peak (glass transition) broadens considerably and shifts to lower temperatures by a few degrees. These effects are attributed to a different polymer dynamics at the polymer/vacuum and the polymer/silicon interfaces.  相似文献   

10.
We review the recent development of chiral sum frequency generation (SFG) spectroscopy and its applications to study chiral vibrational structures at interfaces. This review summarizes observations of chiral SFG signals from various molecular systems and describes the molecular origins of chiral SFG response. It focuses on the chiral vibrational structures of proteins and presents the chiral SFG spectra of proteins at interfaces in the C-H stretch, amide I, and N-H stretch regions. In particular, a combination of chiral amide I and N-H stretches of the peptide backbone provides highly characteristic vibrational signatures, unique to various secondary structures, which demonstrate the capacity of chiral SFG spectroscopy to distinguish protein secondary structures at interfaces. On the basis of these recent developments, we further discuss the advantages of chiral SFG spectroscopy and its potential application in various fields of science and technology. We conclude that chiral SFG spectroscopy can be a new approach to probe chiral vibrational structures of protein at interfaces, providing structural and dynamic information to study in situ and in real time protein structures and dynamics at interfaces.  相似文献   

11.
In this study, S-DLC films were deposited using pulsed laser ablation of a novel sulfur-graphite (SG) mixture target using an ArF excimer laser (193 nm). The SG targets were made by mixing sulfur and graphite powders at different sulfur molar percentages from 0% to 25%. The S-DLC films were deposited at room temperature, 150 °C and 250 °C. The optical and electronic properties of the doped films were studied. Laser Raman spectroscopy indicated increased graphitic behavior with temperature but decreased with higher sulfur content. Spectroscopic ellipsometry analyses found that the optical band-gap energy, extinction coefficient and reflective index, clearly depended on deposition temperature and sulfur content. Hall Effect measurements indicated n-type carrier with concentration in the range of 1 × 1014 to 2 × 1017 cm− 3, strongly depended upon the deposition temperature and amount of sulfur.  相似文献   

12.
Electrochemistry provides unique features for the preparation of low-dimensional structures, but in situ spectroscopy with atomic/molecular resolution at such structures is at present not well established yet. This paper shows that in situ scanning probe spectroscopy at solid/liquid interfaces can be utilized to study electronic properties at nanoscale, if appropriate conditions are applied. Tunneling spectroscopy provides information about tunneling barrier heights and electronic states in the tunneling gap, as shown on Au(1 1 1) substrates, contact spectroscopy allows for transport measurements at single nanostructures, as shown at Au/n-Si(1 1 1) nanodiodes. The influence of the electrolytic environment on spectroscopic investigations is not a principal limitation, but offers additional degrees of freedom, which allow, for example, spectroscopic studies of potential dependent surface phenomena at solid/liquid interfaces.  相似文献   

13.
Plasma gas-modified cyclo-olefin polymer (COP) surfaces and the interfaces between borosilicate glass and COP films were investigated by sum-frequency generation (SFG) vibrational spectroscopy. Upon exposure to oxygen gas plasma, the SFG signal intensities increased, indicating an improvement in the orientational order at the surface functional groups. In addition, thermal annealing following lamination improved the COP interphase molecular ordering and increased the number density of functional molecules at the interfaces.  相似文献   

14.
Carbon films were deposited on silicon substrates by liquid electrochemical technique at low temperature (60 °C) in ambient atmosphere. Glass reactor, glass reactor with PTFE-coating inside, glass reactor with quartz-coating inside and quartz reactor were used with the same experimental setup to compare the effects of reactors on the deposition of carbon films. The applied potential, the distance between anode and substrate and the deposition time were fixed at 900 V (4.2 kHz, 50%), 6 mm and 5 h, respectively. The morphology and microstructure of the films were analyzed by scanning electron microscopy (SEM) and Raman spectroscopy. Energy Dispersive X-ray Spectrometry (EDX) was used to measure the composition of the films. The SEM observations showed that the films deposited using glass reactor were composed of crystals of several micrometers which contained nearly 10 at.% of Ca. Raman spectroscopy analysis confirmed that DLC films have been deposited, but with an obvious sharp peak at 1085 cm− 1 which is assigned to calcium carbonate (CaCO3) crystals. The glass reactor is the possible source of Ca because the electrolyte was composed of analytically pure acetone and deionized water with the proportion of Ca below the determination of AAS (atomic absorption emission spectrophotometer AA-6200). Using glass reactor with PTFE-coating inside could successfully avoid the impurity of Ca from the glass reactor, but new non-metallic impurities coming from the PTFE-coating made the films rough. Continuous and smooth films were deposited by using a glass reactor with quartz-coating inside and quartz reactor, which could avoid both Ca (< 1 at.%) and other impurities. Raman spectroscopy analysis confirmed typical DLC films without CaCO3. It can be concluded that the materials of the reactors could play an important role not only in the composition, but also the morphology and microstructure of films deposited by liquid electrochemical technique.  相似文献   

15.
Liquid polycarbosilane (LPCS) derived hard coatings of silicon carbide (SiC) were deposited on Inconel alloy at three different moderately high temperatures by chemical vapour deposition. The deposited films were characterized by X-ray diffractometry and Field emission scanning electron microscopy. Liquid PCS yielded a mixture of α-SiC and β-SiC during decomposition having uniform round-shaped particles of dimension around 200–300 nm without extensive cracking and few discrete shaped particles were also found to form at higher temperature (i.e. 1100 °C and 1200 °C) deposited films. The coated samples showed substantial increment in hardness and fracture toughness as compared to the uncoated sample. The fracture toughness (KIC) values of the deposited films were in the range of 6.7–10.7 MPa(m)1/2. The tribological properties and hardness of the films were also found to vary with deposition temperature. The scratch tracks of the films revealed that brittle failures occurred in all SiC coated substrates.  相似文献   

16.
LiCoO2 thin films were deposited using radio frequency (rf) magnetron sputtering system on stainless steel substrates. Different rf powers, up to 150 W, were applied during deposition. The as-deposited films exhibited (1 0 1) and (1 0 4) preferred orientation and the nanocrystalline film structure was enhanced with increasing rf power. The film crystallinity was examined using X-ray diffraction, Raman scattering spectroscopy and transmission electron microscopy. The compositions of the films were determined by inductively coupled plasma-mass spectroscopy. The average discharge capacity of as-deposited films is about 59 μAh/(cm2 μm) for cut-off voltage range of 4.2 and 3.0 V. From the electrochemical cycling data, it is suggested that as-deposited LiCoO2 films with a nanocrystalline structure and a favorable preferred orientation, e.g. (1 0 1) or (1 0 4) texture, can be used without post-annealing at high temperatures for solid-state thin film batteries.  相似文献   

17.
This paper reviews recent progress in the studies on polymer surfaces/interfaces using sum frequency generation (SFG) vibrational spectroscopy. SFG theory, technique, and some experimental details have been presented. The review is focused on the SFG studies on buried interfaces involving polymer materials, such as polymer–water interfaces and polymer–polymer interfaces. Molecular interactions between polymer surfaces and adhesion promoters as well as biological molecules such as proteins and peptides have also been elucidated using SFG. This review demonstrates that SFG is a powerful technique to characterize molecular level structural information of complicated polymer surfaces and interfaces in situ. Copyright © 2006 Society of Chemical Industry  相似文献   

18.
ZnO thin ?lms were successfully deposited onto PET substrates prepared by using cathodic arc plasma deposition (CAPD) technique at a low temperature (<75 °C). Their structure, optical and electrical properties were investigated with various arc currents (40, 45, 50 and 55 A). ZnO (0 0 2) peak was clearly observed, and increased as the arc current increased from 40 A to 55 A. The calculated average crystallized sizes were around 15.9-17.7 nm. The films have an average transmittance over 85% in the visible region, and calculated values of the band gap around 3.33-3.31 eV with increase of the arc current. It was also found that a slight blue shift of optical transmission spectra was observable when decreasing the arc current. The deposited ZnO films had the lowest resistivity; about 3 × 10−3 Ω cm for the ZnO ?lm with the arc current of 40 A.  相似文献   

19.
Carbon films as thin as 5 nm were synthesized by graphitization of 4H-SiC substrates at 1200-1350 °C, in a dilute HCl/Ar atmosphere at a pressure of 0.8 bar. These films formed at significantly lower temperatures and higher pressures than conventional synthesis of epitaxial graphene by sublimation of Si. Graphitization rates of 0.08-1.40 nm/min were observed. The activation energy for graphitization was approximately 460 kJ/mol. Raman spectroscopy indicated that the material was highly disordered with D-peak to G-peak ratios ranging from 0.70 to 1.43, compared to high quality graphene which does not exhibit the disorder induced D-peak.  相似文献   

20.
Ga-doped ZnO (GZO)/ZnO bi-layered films were deposited on glass substrates by radio frequency magnetron sputtering at different substrate temperatures of 100, 200 and 300 °C to investigate the effects of substrate temperature on the structural, electrical, and optical properties of the films. Thicknesses of the GZO and ZnO buffer layer were kept constant at 85 and 15 nm by controlling the deposition times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号