首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Spherical (Ni0.5Mn0.5)(OH)2 with different secondary particle size (3 μm, 10 μm in diameter) was synthesized by co-precipitation method. Mixture of the prepared hydroxide and lithium hydroxide was calcined at 950 °C for 20 h in air. X-ray diffraction patterns revealed that the prepared material had a typical layered structure with space group. Spherical morphologies with mono-dispersed powders were observed by scanning electron microscopy. It was found that the layered Li[Ni0.5Mn0.5]O2 delivered an initial discharge capacity of 148 mAh g−1 (3.0-4.3 V) though the particle sizes were different. Li[Ni0.5Mn0.5]O2 having smaller particle size (3 μm) showed improved area specific impedance due to the reduced Li+ diffusion path, compared with that of Li[Ni0.5Mn0.5]O2 possessing larger particle size (10 μm). Although the Li[Ni0.5Mn0.5]O2 (3 μm) was electrochemically delithiated to Li0.39[Ni0.5Mn0.5]O2, the resulting exothermic onset temperature was around 295 °C, of which the value is significantly higher than that of highly delithiated Li1−δCoO2 (∼180 °C).  相似文献   

2.
Spherical Li[Ni1/3Co1/3Mn1/3]O2 powders were synthesized from LiOH·H2O and coprecipitated spherical metal hydroxide, (Ni1/3Mn1/3Co1/3)(OH)2 and coated with Al(OH)3. The Al(OH)3-coated Li[Ni1/3Co1/3Mn1/3]O2 showed a capacity retention of 80% at 320 mA g−1 (2 C-rate) based on 20 mA g−1 (0.1 C-rate), while the pristine Li[Ni1/3Co1/3Mn1/3]O2 delivered only 45% at the same current density. Also, unlike pristine Li[Ni1/3Co1/3Mn1/3]O2, the Al(OH)3-coated Li[Ni1/3Co1/3Mn1/3]O2 cathode exhibits excellent rate capability and good thermal stability.  相似文献   

3.
A positive electrode material for lithium ion battery applications was successfully synthesized using microwave irradiation. This microwave synthesis has several merits such as homogeneity of final product and much shorter reaction time compared to conventional synthetic methods. We synthesized spherical [Ni0.4Co0.2Mn0.4](OH)2 as a precursor by a co-precipitation method. The pelletized mixture of the precursor and lithium hydroxide was calcined under different reaction times and temperatures by applying 1200 W of microwave irradiation at 2.45 GHz. We determined the optimum conditions of microwave synthesis for positive electrode materials. The powders were characterized by X-ray diffraction, scanning electron microscopy, and electrochemical testing. The capacity, its retention, and thermal stability of Li[Ni0.4Co0.2Mn0.4]O2 synthesized by the microwave synthesis were comparable to the Li[Ni0.4Co0.2Mn0.4]O2 prepared by the high temperature calcination method.  相似文献   

4.
Sen Zhang 《Electrochimica acta》2007,52(25):7337-7342
Li[Ni1/3Co1/3Mn1/3]O2 cathode material for lithium ion batteries was prepared by mixing metal hydroxide, (Ni1/3Co1/3Mn1/3)(OH)2, with 6% excess LiOH followed by calcinations. The (Ni1/3Co1/3Mn1/3)(OH)2 with secondary particle of about 12 μm was prepared by hydroxide co-precipitation. The tap density of the obtained Li[Ni1/3Co1/3Mn1/3]O2 powder was 2.56 ± 0.21 g cm−3. The powder was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), particle size distribution (PSD) and galvanostatic charge-discharge cycling. The XRD pattern of Li[Ni1/3Co1/3Mn1/3]O2 revealed a well ordered hexagonal layered structure with low cation mixing. Secondary particles with size of 13-14 μm and primary particles with size of about 1 μm can be identified from the SEM observations. In the voltage range of 2.8-4.3 V, the initial discharge capacity of the Li[Ni1/3Co1/3Mn1/3]O2 electrode was 166.6 mAh g−1, and 96.5% of the initial capacity was retained after 50 charge-discharge cycling.  相似文献   

5.
The layered Li[Li0.07Ni0.1Co0.6Mn0.23]O2 materials were synthesized by sol-gel method with glycine or citric acid as chelating agent. The prepared materials were characterized by means of XRD, SEM and Raman spectroscopy. Li/Li[Li0.07Ni0.1Co0.6Mn0.23]O2 cells were assembled and subjected to charge-discharge studies at different C rates, viz 0.2, 1, 2 and 4 C. Although the samples showed less discharge capacity at 4 C rate the fade in capacity per cycle is lesser than that of capacity fade at 0.2 C rate. The citric acid assisted sample is found to be superior in terms of discharge capacity, capacity retention rate and also in thermal stability to that of sample prepared with glycine as chelating agent.  相似文献   

6.
A novel Li[Ni0.67Co0.15Mn0.18]O2 cathode material encapsulated completely within a concentration-gradient shell was successfully synthesized via co-precipitation. The Li[Ni0.67Co0.15Mn0.18]O2 has a core of Li[Ni0.8Co0.15Mn0.05]O2 that is rich in Ni, a concentration-gradient shell having decreasing Ni concentration and increasing Mn concentration toward the particle surface, and a stable outer-layer of Li[Ni0.57Co0.15Mn0.28]O2. The electrochemical and thermal properties of the material were investigated and compared to those of the core Li[Ni0.8Co0.15Mn0.05]O2 material alone. The discharge capacity of the concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 electrode increased with increasing upper cutoff voltage to 4.5 V, and cells with this cathode material delivered a very high capacity, 213 mAh/g, with excellent cycling stability even at 55 °C. The enhanced thermal and lithium intercalation stability of the Li[Ni0.67Co0.15Mn0.18]O2 was attributed to the gradual increase in tetravalent Mn concentration and decrease in Ni concentration in the concentration-gradient shell layer.  相似文献   

7.
Li[Co1−zAlz]O2 (0 ≤ z ≤ 0.5) samples were prepared by co-precipitation and solid-state methods. The lattice constants varied smoothly with z for the co-precipitated samples but deviated for the solid-state samples above z = 0.2. The solid-state method may not produce materials with a uniform cation distribution when the aluminum content is large or when the duration of heating is too brief. Non-stoichiometric Lix[Co0.9Al0.1]O2 samples were synthesized by the co-precipitation method at various nominal compositions x = Li/(Co + Al) = 0.95, 1.0, 1.1, 1.2, 1.3. XRD patterns of the Lix[Co0.9Al0.1]O2 samples suggest the solid solution limit is between Li/(Co + Al) = 1.1 and 1.2. Electrochemical studies of the Li[Co1−zAlz]O2 samples were used to measure the rate of capacity reduction with Al content, found to be about −250 ± 30 (mAh/g)/(z = 1). Literature work on Li[Ni1/3Mn1/3Co1/3−zAlz]O2, Li[Ni1−zAlz]O2 and Li[Mn2−yAly]O4 demonstrates the same rate of capacity reduction with Al/(Al + M) ratio. These studies serve as baseline characterization of samples to be used to determine the impact of Al content on the thermal stability of delithiated Li[Co1−zAlz]O2 in electrolyte.  相似文献   

8.
S. Zhang  C. Deng  B.L. Fu  L. Ma 《Powder Technology》2010,198(3):373-400
A carbonate co-precipitation method was employed to prepare spherical Li[Ni1/3Co1/3Mn1/3]O2 cathode material. The precursor, [Ni1/3Co1/3Mn1/3]CO3, was prepared using ammonia as chelating agent under CO2 atmosphere. The spherical Li[Ni1/3Co1/3Mn1/3]O2 was prepared by mixing the precalcined [Ni1/3Co1/3Mn1/3]CO3 with LiOH followed by high temperature calcination. The preparation conditions such as ammonia concentration, co-precipitation temperature, calcination temperature and Li/[Ni1/3Co1/3Mn1/3] ratio were varied to optimize the physical and electrochemical properties of the prepared Li[Ni1/3Co1/3Mn1/3]O2. The structural, morphological, and electrochemical properties of the prepared LiNi1/3Co1/3Mn1/3O2 were characterized by XRD, SEM, and galvanostatic charge-discharge cycling. The optimized material has a spherical particle shape and a well ordered layered structure, and it also has an initial discharge capacity of 162.7 mAh g− 1 in a voltage range of 2.8-4.3 V and a capacity retention of 94.8% after a hundred cycles. The optimized ammonia concentration, co-precipitation temperature, calcination temperature, and Li/[Ni1/3Co1/3Mn1/3] ratio are 0.3 mol L− 1, 60 °C, 850 °C, and 1.10, respectively.  相似文献   

9.
In order to get homogeneous layered oxide Li[Ni1/3Mn1/3Co1/3]O2 as a lithium insertion positive electrode material, we applied the metal acetates decomposition method. The oxide compounds were calcined at various temperatures, which results in greater difference in morphological (shape, particle size and specific surface area) and the electrochemical (first charge profile, reversible capacity and rate capability) differences. The Li[Ni1/3Mn1/3Co1/3]O2 powders were characterized by means of X-ray diffraction (XRD), charge/discharge cycling, cyclic voltammetry and SEM. XRD experiment revealed that the layered Li[Ni1/3Mn1/3Co1/3]O2 material can be best synthesized at temperature of 800 °C. In that synthesized temperature, the sample showed high discharge capacity of 190 mAh g−1 as well as stable cycling performance at a current density of 0.2 mA cm−2 in the voltage range 2.3-4.6 V. The reversible capacity after 100 cycles is more than 190 mAh g−1 at room temperature.  相似文献   

10.
In this research, we studied the first cycle characteristics of Li[Ni1/3Co1/3Mn1/3]O2 charged up to 4.7 V. Properties, such as valence state of the transition metals and crystallographic features, were analyzed by X-ray absorption spectroscopy and X-ray and neutron diffractions. Especially, two plateaus observed around 3.75 and 4.54 V were investigated by ex situ X-ray absorption spectroscopy. XANES studies showed that the oxidation states of transition metals in Li[Ni1/3Co1/3Mn1/3]O2 are mostly Ni2+, Co3+ and Mn4+. Based on neutron diffraction Rietveld analysis, there is about 6% of all nickel divalent (Ni2+) ions mixed with lithium ions (cation mixing). Meanwhile, it was found that the oxidation reaction of Ni2+/Ni4+ is related to the lower plateau around 3.75 V, but that of Co3+/Co4+ seems to occur entire range of x in Li1−x[Ni1/3Co1/3Mn1/3]O2. Small volume change during cycling was attributed to the opposite variation of lattice parameter “c” and “a” with charging-discharging.  相似文献   

11.
J. Jiang 《Electrochimica acta》2005,50(24):4778-4783
Samples of the layered cathode materials, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 (x = 1/12, 1/4, 5/12, and 1/2), were synthesized at 900 °C. Electrodes of these samples were charged in Li-ion coin cells to remove lithium. The charged electrode materials were rinsed to remove the electrolyte salt and then added, along with EC/DEC solvent or 1 M LiPF6 EC/DEC, to stainless steel accelerating rate calorimetry (ARC) sample holders that were then welded closed. The reactivity of the samples with electrolyte was probed at two states of charge. First, for samples charged to near 4.45 V and second, for samples charged to 4.8 V, corresponding to removal of all mobile lithium from the samples and also concomitant release of oxygen in a plateau near 4.5 V. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples with x = 1/4, 5/12 and 1/2 charged to 4.45 V do not react appreciably till 190 °C in EC/DEC. Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples charged to 4.8 V versus Li, across the oxygen release plateau, start to significantly react with EC/DEC at about 130 °C. However, their high reactivity is similar to that of Li0.5CoO2 (4.2 V) with 1 μm particle size. Therefore, Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 samples showing specific capacity of up to 225 mAh/g may be acceptable for replacing LiCoO2 (145 mAh/g to 4.2 V) from a safety point of view, if their particle size is increased.  相似文献   

12.
Layered metastable lithium manganese oxides, Li2/3[Ni1/3−xMn2/3−yMx+y]O2 (x = y = 1/36 for M = Al, Co, and Fe and x = 2/36, y = 0 for M = Mg) were prepared by the ion exchange of Li for Na in P2-Na2/3[Ni1/3−xMn2/3−yMx+y]O2 precursors. The Al and Co doping produced the T#2 structure with the space group Cmca. On the other hand, the Fe and Mg doped samples had the O6 structure with space group R-3m. Electron diffraction revealed the 1:2 type ordering within the Ni1/3−xMn2/3−yMx+yO2 slab. It was found that the stacking sequence and electrochemical performance of the Li cells containing T#2-Li2/3[Ni1/3Mn2/3]O2 were affected by the doping with small amounts of Al, Co, Fe, and Mg. The discharge capacity of the Al doped sample was around 200 mAh g−1 in the voltage range between 2.0 and 4.7 V at the current density of 14.4 mA g−1 along with a good capacity retention. Moreover, for the Al and Co doped and undoped oxides, the irreversible phase transition of the T#2 into the O2 structure was observed during the initial lithium deintercalation.  相似文献   

13.
In our previous report, we have synthesized Li2MnO3-LiCoO2 solid solutions and have investigated electrochemical properties [J.-M. Kim, T. Sho, N. Kumagai, Electrochem. Commun. 9 (2007) 103]. These materials have showed a long charge plateau at above 4.5 V during the first charge, which disappears with the subsequent cycles. This phenomenon is usually observed in Li2MnO3 and Li2MnO3-LiMeO2 system (Me = Ni1/2Mn1/2 [Z. Lu, D.D. MacNeil, J.R. Dahn, Electrochem. Solid State Lett. 4 (2001) 191], Co [K. Numata, C. Sakaki, S. Yamanaka, Solid State Ionics 117 (1999) 257; Y.J. Park, Y.-S. Hong, X. Wu, M.K. Kim, K.S. Ryu, S.H. Chang, J. Electrochem. Soc. 151 (2004) A720], Fe [M. Tabuchi, A. Nakashima, H. Shigemura, K. Ado, H. Kobayashi, H. Sakaebe, H. Kageyama, T. Nakamura, M. Kohzaki, A. Hirano, R. Kanno, J. Electrochem. Soc. 149 (2002) A509], or Cr [B. Ammundsen, J. Paulsen, Adv. Mater. 13 (2001) 943]). In this study, we investigate the relationship between the first lithium extraction process and the electrochemical property of the synthesized Li[Li0.27Co0.2Mn0.53]O2 material. The crystal structure and electrochemical performance of the synthesized Li[Li0.27Co0.20Mn0.53]O2 are modified by the Li+ extraction.  相似文献   

14.
Spherical Li[Ni0.4Co0.2Mn(0.4−x)Mgx]O2−yFy (x = 0, 0.04, y = 0, 0.08) with phase-pure and well-ordered layered structure have been synthesized by heat-treatment of spherical [Ni0.4Co0.2Mn0.4−xMgx]3O4 precursors with LiOH·H2O and LiF salts. The average particle size of the powders was about 10-15 μm and the size distribution was quite narrow due to the homogeneity of the metal carbonate, [Ni0.4Co0.2Mn(0.4−x)Mgx]CO3 (x = 0, 0.04) precursors. Although the Li[Ni0.4Co0.2Mn0.36Mg0.04]O1.92F0.08 delivered somewhat slightly lower initial discharge capacity, however, the capacity retention, interfacial resistance, and thermal stability were greatly enhanced comparing to the Li[Ni0.4Co0.2Mn0.4]O2 and Li[Ni0.4Co0.2Mn0.36Mg0.04]O2.  相似文献   

15.
A Li[Ni0.4Co0.3Mn0.3]O2 cathode was modified by applying a La2/3−XLi3XTiO3 (LLT) coating. Transmission electron microscope (TEM) images reveal that the coating layer consists of nanoparticles. The coated cathode demonstrated an enhanced rate capability, discharge capacity, and cyclic performance than the uncoated cathode. However, the influence of the coating upon these electrochemical properties is highly dependent upon the composition of the LLT coating layer. Coating layers having high La and low Li contents, such as La0.67TiO3, effectively improved the rate capability of the cathode. However, coating layers with a low La and high Li content greatly enhanced the discharge capacity of the cathode under high cut-off voltage (4.8 V) conditions. Overall, the thermal stability of the Li[Ni0.4Co0.3Mn0.3]O2 electrode was improved by the LLT coating. Storage tests confirmed that the La2/3−XLi3XTiO3 coating dramatically suppressed the dissolution of transition metals into the electrolyte.  相似文献   

16.
C. Deng  L. Liu  K. Sun  D. Sun 《Electrochimica acta》2008,53(5):2441-2447
The layered Li[Ni1/3Co1/3Mn1/3]O2 powder with good crystalline and spherical shape was prepared by hydroxide co-precipitation method. The effects of pH value, NH4OH amount, calcination temperature and extra Li amount on the morphology, structure and electrochemical properties of the cathode material were investigated in detail. SEM results indicate that pH value affected both the morphology and the property of the cathode material, and the highest discharge capacity in the first cycle of 163 mAh g−1 (2.8-4.3 V) was obtained at pH value was 12. On the contrary, the NH4OH amount, which was used as a chelating agent, only affected the particle size distribution of the material. The calcination temperatures caused great difference in the structure and property of layered Li[Ni1/3Co1/3Mn1/3]O2, and the best electrochemical properties were obtained at the calcination temperature of 800 °C. Extra Li amount not only caused difference in the material structure, but also affected their electrochemical properties. With increasing Li amount, the lattice parameters (a and c) increased monotonously, and the highest first cycle coulombic efficiency (the ratio of discharge capacity to charge capacity in the first cycle) was obtained with the Li/M of 1.10. Therefore, the optimum synthetic conditions for the hydroxide co-precipitation reaction were: pH value was 12, NH4OH amount was 0.36 mol L−1, calcination temperature was 800 °C and the Li/M molar ratio was 1.10.  相似文献   

17.
Al and/or Mg-substituted Li[Ni0.8Co0.1Mn0.1−xyAlxMgy]O2 were prepared by a co-precipitation method and characterized by X-ray diffraction with Rietveld refinement, thermogravimetric analysis, differential scanning calorimetry (DSC), and electrochemical measurements. The Rietveld refinement results show that cation mixing of Al and/or Mg-substituted Li[Ni0.8Co0.1Mn0.1−xyAlxMgy]O2 was reduced with increased doping amounts of Al and Mg. The Al and/or Mg substitution in Li[Ni0.8Co0.1Mn0.1]O2 also resulted in improved electrochemical cycling behavior, structural stability, and thermal stability compared to pristine Li[Ni0.8Co0.1Mn0.1]O2. The improvements of electrochemical and thermal properties resulted from the stabilized host structure by Al and/or Mg incorporation into Li[Ni0.8Co0.1Mn0.1]O2.  相似文献   

18.
Synthetic optimization of Li[Ni1/3Co1/3Mn1/3]O2 via co-precipitation   总被引:1,自引:0,他引:1  
Li[Ni1/3Co1/3Mn1/3]O2 powders were synthesized from co-precipitated spherical metal hydroxide, (Ni1/3Co1/3Mn1/3)(OH)2. The preparation of metal hydroxide was significantly dependent on synthetic conditions, such as pH, amount of chelating agent, stirring speed, etc. The optimized condition resulted in (Ni1/3Co1/3Mn1/3)(OH)2, of which the particle size distribution was uniform and the particle shape was spherical, as observed by scanning electron microscopy. Calcination of the uniform metal hydroxide with LiOH at higher temperature led to a well-ordered layer-structured Li[Ni1/3Co1/3Mn1/3]O2, as confirmed by Rietveld refinement of X-ray diffraction pattern. Due to the homogeneity of the metal hydroxide, (Ni1/3Co1/3Mn1/3)(OH)2, the final product, Li[Ni1/3Co1/3Mn1/3]O2, was also significantly uniform, i.e., the average particle size was of about 10 μm in diameter and the distribution was relatively narrow. As a result, the corresponding tap-density was also high approximately 2.39 g cm−3, of which the value is comparable to that of commercialized LiCoO2. In the voltage range of 2.8-4.3, 2.8-4.4, and 2.8-4.5 V, the discharge capacities of Li[Ni1/3Co1/3Mn1/3]O2 electrode were 159, 168, and 177 mAh g−1, respectively. For elevated temperature operation (55 °C), the resulted capacity was of about 168 mAh g−1 with an excellent cyclability.  相似文献   

19.
Layered LiNi0.6Co0.2Mn0.2O2 materials were synthesized at different sintering temperatures using spray-drying precursor with molar ratio of Li/Me = 1.04 (Me = transition metals). The influences of sintering temperature on crystal structure, morphology and electrochemical performance of LiNi0.6Co0.2Mn0.2O2 materials have been characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge-discharge test. As a result, material synthesized at 850 °C has excellent electrochemical performance, delivering an initial discharge capacity of 173.1 mAh g− 1 between 2.8 and 4.3 V at a current density of 16 mA g− 1 and exhibiting good cycling performance.  相似文献   

20.
Li[Li0.2Mn0.54Ni0.13Co0.13]O2 as a cathode material for Li-ion battery has been successfully prepared by co-precipitation (CP), sol–gel (SG) and sucrose combustion (SC) methods. The prepared materials were characterized by XRD, SEM, BET and electrochemical measurements. The XRD result shows that the Li[Li0.2Mn0.54Ni0.13Co0.13]O2 materials prepared by different methods all form a pure phase with good crystallinity. SEM images and BET data present that the SC-material exhibited the smallest particle size (ca. 0.1 μm) and the highest surface area (7.4635 m2 g−1). The tap density of SC-material is lower than that of CP- and SG-materials. The result of rate performance tests indicates that the SC-material showed the best rate capability with the highest discharge capacity of 178 mAh g−1 at 5.0 C, followed by SG-material and then CP-material. However, the cycling stability of SC-material tested at 0.1 and 0.5 C is relatively poor as compared to that of SG-material and CP-material. The result of EIS measurements reveals that large surface area and small particle size of the SC-electrode result in more SEI layer formation because of the increased side reactions with the electrolyte during cycling, which deteriorates the electrode/electrolyte interface and thus leads to the faster capacity fading of the SC-material.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号